mirror of
https://github.com/python/cpython.git
synced 2025-07-31 23:23:11 +00:00
Patch #1675423: PyComplex_AsCComplex() now tries to convert an object
to complex using its __complex__() method before falling back to the __float__() method. Therefore, the functions in the cmath module now can operate on objects that define a __complex__() method. (backport)
This commit is contained in:
parent
6f187743ff
commit
2b869943fa
5 changed files with 258 additions and 50 deletions
|
@ -443,7 +443,9 @@ booleans. The following macros are available, however.
|
||||||
|
|
||||||
\begin{cfuncdesc}{double}{PyFloat_AsDouble}{PyObject *pyfloat}
|
\begin{cfuncdesc}{double}{PyFloat_AsDouble}{PyObject *pyfloat}
|
||||||
Return a C \ctype{double} representation of the contents of
|
Return a C \ctype{double} representation of the contents of
|
||||||
\var{pyfloat}.
|
\var{pyfloat}. If \var{pyfloat} is not a Python floating point
|
||||||
|
object but has a \method{__float__} method, this method will first
|
||||||
|
be called to convert \var{pyfloat} into a float.
|
||||||
\end{cfuncdesc}
|
\end{cfuncdesc}
|
||||||
|
|
||||||
\begin{cfuncdesc}{double}{PyFloat_AS_DOUBLE}{PyObject *pyfloat}
|
\begin{cfuncdesc}{double}{PyFloat_AS_DOUBLE}{PyObject *pyfloat}
|
||||||
|
@ -558,8 +560,11 @@ typedef struct {
|
||||||
\end{cfuncdesc}
|
\end{cfuncdesc}
|
||||||
|
|
||||||
\begin{cfuncdesc}{Py_complex}{PyComplex_AsCComplex}{PyObject *op}
|
\begin{cfuncdesc}{Py_complex}{PyComplex_AsCComplex}{PyObject *op}
|
||||||
Return the \ctype{Py_complex} value of the complex number
|
Return the \ctype{Py_complex} value of the complex number \var{op}.
|
||||||
\var{op}.
|
\versionchanged[If \var{op} is not a Python complex number object
|
||||||
|
but has a \method{__complex__} method, this method
|
||||||
|
will first be called to convert \var{op} to a Python
|
||||||
|
complex number object]{2.6}
|
||||||
\end{cfuncdesc}
|
\end{cfuncdesc}
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -5,7 +5,14 @@
|
||||||
\modulesynopsis{Mathematical functions for complex numbers.}
|
\modulesynopsis{Mathematical functions for complex numbers.}
|
||||||
|
|
||||||
This module is always available. It provides access to mathematical
|
This module is always available. It provides access to mathematical
|
||||||
functions for complex numbers. The functions are:
|
functions for complex numbers. The functions in this module accept
|
||||||
|
integers, floating-point numbers or complex numbers as arguments.
|
||||||
|
They will also accept any Python object that has either a
|
||||||
|
\method{__complex__} or a \method{__float__} method: these methods are
|
||||||
|
used to convert the object to a complex or floating-point number, respectively, and
|
||||||
|
the function is then applied to the result of the conversion.
|
||||||
|
|
||||||
|
The functions are:
|
||||||
|
|
||||||
\begin{funcdesc}{acos}{x}
|
\begin{funcdesc}{acos}{x}
|
||||||
Return the arc cosine of \var{x}.
|
Return the arc cosine of \var{x}.
|
||||||
|
|
|
@ -1,52 +1,196 @@
|
||||||
#! /usr/bin/env python
|
from test.test_support import run_unittest
|
||||||
""" Simple test script for cmathmodule.c
|
import unittest
|
||||||
Roger E. Masse
|
|
||||||
"""
|
|
||||||
import cmath, math
|
import cmath, math
|
||||||
from test.test_support import verbose, verify, TestFailed
|
|
||||||
|
|
||||||
verify(abs(cmath.log(10) - math.log(10)) < 1e-9)
|
class CMathTests(unittest.TestCase):
|
||||||
verify(abs(cmath.log(10,2) - math.log(10,2)) < 1e-9)
|
# list of all functions in cmath
|
||||||
try:
|
test_functions = [getattr(cmath, fname) for fname in [
|
||||||
cmath.log('a')
|
'acos', 'acosh', 'asin', 'asinh', 'atan', 'atanh',
|
||||||
except TypeError:
|
'cos', 'cosh', 'exp', 'log', 'log10', 'sin', 'sinh',
|
||||||
pass
|
'sqrt', 'tan', 'tanh']]
|
||||||
else:
|
# test first and second arguments independently for 2-argument log
|
||||||
raise TestFailed
|
test_functions.append(lambda x : cmath.log(x, 1729. + 0j))
|
||||||
|
test_functions.append(lambda x : cmath.log(14.-27j, x))
|
||||||
|
|
||||||
try:
|
def cAssertAlmostEqual(self, a, b, rel_eps = 1e-10, abs_eps = 1e-100):
|
||||||
cmath.log(10, 'a')
|
"""Check that two complex numbers are almost equal."""
|
||||||
except TypeError:
|
# the two complex numbers are considered almost equal if
|
||||||
pass
|
# either the relative error is <= rel_eps or the absolute error
|
||||||
else:
|
# is tiny, <= abs_eps.
|
||||||
raise TestFailed
|
if a == b == 0:
|
||||||
|
return
|
||||||
|
absolute_error = abs(a-b)
|
||||||
|
relative_error = absolute_error/max(abs(a), abs(b))
|
||||||
|
if relative_error > rel_eps and absolute_error > abs_eps:
|
||||||
|
self.fail("%s and %s are not almost equal" % (a, b))
|
||||||
|
|
||||||
|
def test_constants(self):
|
||||||
|
e_expected = 2.71828182845904523536
|
||||||
|
pi_expected = 3.14159265358979323846
|
||||||
|
self.assertAlmostEqual(cmath.pi, pi_expected, 9,
|
||||||
|
"cmath.pi is %s; should be %s" % (cmath.pi, pi_expected))
|
||||||
|
self.assertAlmostEqual(cmath.e, e_expected, 9,
|
||||||
|
"cmath.e is %s; should be %s" % (cmath.e, e_expected))
|
||||||
|
|
||||||
testdict = {'acos' : 1.0,
|
def test_user_object(self):
|
||||||
'acosh' : 1.0,
|
# Test automatic calling of __complex__ and __float__ by cmath
|
||||||
'asin' : 1.0,
|
# functions
|
||||||
'asinh' : 1.0,
|
|
||||||
'atan' : 0.2,
|
|
||||||
'atanh' : 0.2,
|
|
||||||
'cos' : 1.0,
|
|
||||||
'cosh' : 1.0,
|
|
||||||
'exp' : 1.0,
|
|
||||||
'log' : 1.0,
|
|
||||||
'log10' : 1.0,
|
|
||||||
'sin' : 1.0,
|
|
||||||
'sinh' : 1.0,
|
|
||||||
'sqrt' : 1.0,
|
|
||||||
'tan' : 1.0,
|
|
||||||
'tanh' : 1.0}
|
|
||||||
|
|
||||||
for func in testdict.keys():
|
# some random values to use as test values; we avoid values
|
||||||
f = getattr(cmath, func)
|
# for which any of the functions in cmath is undefined
|
||||||
r = f(testdict[func])
|
# (i.e. 0., 1., -1., 1j, -1j) or would cause overflow
|
||||||
if verbose:
|
cx_arg = 4.419414439 + 1.497100113j
|
||||||
print 'Calling %s(%f) = %f' % (func, testdict[func], abs(r))
|
flt_arg = -6.131677725
|
||||||
|
|
||||||
p = cmath.pi
|
# a variety of non-complex numbers, used to check that
|
||||||
e = cmath.e
|
# non-complex return values from __complex__ give an error
|
||||||
if verbose:
|
non_complexes = ["not complex", 1, 5L, 2., None,
|
||||||
print 'PI = ', abs(p)
|
object(), NotImplemented]
|
||||||
print 'E = ', abs(e)
|
|
||||||
|
# Now we introduce a variety of classes whose instances might
|
||||||
|
# end up being passed to the cmath functions
|
||||||
|
|
||||||
|
# usual case: new-style class implementing __complex__
|
||||||
|
class MyComplex(object):
|
||||||
|
def __init__(self, value):
|
||||||
|
self.value = value
|
||||||
|
def __complex__(self):
|
||||||
|
return self.value
|
||||||
|
|
||||||
|
# old-style class implementing __complex__
|
||||||
|
class MyComplexOS:
|
||||||
|
def __init__(self, value):
|
||||||
|
self.value = value
|
||||||
|
def __complex__(self):
|
||||||
|
return self.value
|
||||||
|
|
||||||
|
# classes for which __complex__ raises an exception
|
||||||
|
class SomeException(Exception):
|
||||||
|
pass
|
||||||
|
class MyComplexException(object):
|
||||||
|
def __complex__(self):
|
||||||
|
raise SomeException
|
||||||
|
class MyComplexExceptionOS:
|
||||||
|
def __complex__(self):
|
||||||
|
raise SomeException
|
||||||
|
|
||||||
|
# some classes not providing __float__ or __complex__
|
||||||
|
class NeitherComplexNorFloat(object):
|
||||||
|
pass
|
||||||
|
class NeitherComplexNorFloatOS:
|
||||||
|
pass
|
||||||
|
class MyInt(object):
|
||||||
|
def __int__(self): return 2
|
||||||
|
def __long__(self): return 2L
|
||||||
|
def __index__(self): return 2
|
||||||
|
class MyIntOS:
|
||||||
|
def __int__(self): return 2
|
||||||
|
def __long__(self): return 2L
|
||||||
|
def __index__(self): return 2
|
||||||
|
|
||||||
|
# other possible combinations of __float__ and __complex__
|
||||||
|
# that should work
|
||||||
|
class FloatAndComplex(object):
|
||||||
|
def __float__(self):
|
||||||
|
return flt_arg
|
||||||
|
def __complex__(self):
|
||||||
|
return cx_arg
|
||||||
|
class FloatAndComplexOS:
|
||||||
|
def __float__(self):
|
||||||
|
return flt_arg
|
||||||
|
def __complex__(self):
|
||||||
|
return cx_arg
|
||||||
|
class JustFloat(object):
|
||||||
|
def __float__(self):
|
||||||
|
return flt_arg
|
||||||
|
class JustFloatOS:
|
||||||
|
def __float__(self):
|
||||||
|
return flt_arg
|
||||||
|
|
||||||
|
for f in self.test_functions:
|
||||||
|
# usual usage
|
||||||
|
self.cAssertAlmostEqual(f(MyComplex(cx_arg)), f(cx_arg))
|
||||||
|
self.cAssertAlmostEqual(f(MyComplexOS(cx_arg)), f(cx_arg))
|
||||||
|
# other combinations of __float__ and __complex__
|
||||||
|
self.cAssertAlmostEqual(f(FloatAndComplex()), f(cx_arg))
|
||||||
|
self.cAssertAlmostEqual(f(FloatAndComplexOS()), f(cx_arg))
|
||||||
|
self.cAssertAlmostEqual(f(JustFloat()), f(flt_arg))
|
||||||
|
self.cAssertAlmostEqual(f(JustFloatOS()), f(flt_arg))
|
||||||
|
# TypeError should be raised for classes not providing
|
||||||
|
# either __complex__ or __float__, even if they provide
|
||||||
|
# __int__, __long__ or __index__. An old-style class
|
||||||
|
# currently raises AttributeError instead of a TypeError;
|
||||||
|
# this could be considered a bug.
|
||||||
|
self.assertRaises(TypeError, f, NeitherComplexNorFloat())
|
||||||
|
self.assertRaises(TypeError, f, MyInt())
|
||||||
|
self.assertRaises(Exception, f, NeitherComplexNorFloatOS())
|
||||||
|
self.assertRaises(Exception, f, MyIntOS())
|
||||||
|
# non-complex return value from __complex__ -> TypeError
|
||||||
|
for bad_complex in non_complexes:
|
||||||
|
self.assertRaises(TypeError, f, MyComplex(bad_complex))
|
||||||
|
self.assertRaises(TypeError, f, MyComplexOS(bad_complex))
|
||||||
|
# exceptions in __complex__ should be propagated correctly
|
||||||
|
self.assertRaises(SomeException, f, MyComplexException())
|
||||||
|
self.assertRaises(SomeException, f, MyComplexExceptionOS())
|
||||||
|
|
||||||
|
def test_input_type(self):
|
||||||
|
# ints and longs should be acceptable inputs to all cmath
|
||||||
|
# functions, by virtue of providing a __float__ method
|
||||||
|
for f in self.test_functions:
|
||||||
|
for arg in [2, 2L, 2.]:
|
||||||
|
self.cAssertAlmostEqual(f(arg), f(arg.__float__()))
|
||||||
|
|
||||||
|
# but strings should give a TypeError
|
||||||
|
for f in self.test_functions:
|
||||||
|
for arg in ["a", "long_string", "0", "1j", ""]:
|
||||||
|
self.assertRaises(TypeError, f, arg)
|
||||||
|
|
||||||
|
def test_cmath_matches_math(self):
|
||||||
|
# check that corresponding cmath and math functions are equal
|
||||||
|
# for floats in the appropriate range
|
||||||
|
|
||||||
|
# test_values in (0, 1)
|
||||||
|
test_values = [0.01, 0.1, 0.2, 0.5, 0.9, 0.99]
|
||||||
|
|
||||||
|
# test_values for functions defined on [-1., 1.]
|
||||||
|
unit_interval = test_values + [-x for x in test_values] + \
|
||||||
|
[0., 1., -1.]
|
||||||
|
|
||||||
|
# test_values for log, log10, sqrt
|
||||||
|
positive = test_values + [1.] + [1./x for x in test_values]
|
||||||
|
nonnegative = [0.] + positive
|
||||||
|
|
||||||
|
# test_values for functions defined on the whole real line
|
||||||
|
real_line = [0.] + positive + [-x for x in positive]
|
||||||
|
|
||||||
|
test_functions = {
|
||||||
|
'acos' : unit_interval,
|
||||||
|
'asin' : unit_interval,
|
||||||
|
'atan' : real_line,
|
||||||
|
'cos' : real_line,
|
||||||
|
'cosh' : real_line,
|
||||||
|
'exp' : real_line,
|
||||||
|
'log' : positive,
|
||||||
|
'log10' : positive,
|
||||||
|
'sin' : real_line,
|
||||||
|
'sinh' : real_line,
|
||||||
|
'sqrt' : nonnegative,
|
||||||
|
'tan' : real_line,
|
||||||
|
'tanh' : real_line}
|
||||||
|
|
||||||
|
for fn, values in test_functions.items():
|
||||||
|
float_fn = getattr(math, fn)
|
||||||
|
complex_fn = getattr(cmath, fn)
|
||||||
|
for v in values:
|
||||||
|
self.cAssertAlmostEqual(float_fn(v), complex_fn(v))
|
||||||
|
|
||||||
|
# test two-argument version of log with various bases
|
||||||
|
for base in [0.5, 2., 10.]:
|
||||||
|
for v in positive:
|
||||||
|
self.cAssertAlmostEqual(cmath.log(v, base), math.log(v, base))
|
||||||
|
|
||||||
|
def test_main():
|
||||||
|
run_unittest(CMathTests)
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
test_main()
|
||||||
|
|
|
@ -12,6 +12,11 @@ What's New in Python 2.6 alpha 1?
|
||||||
Core and builtins
|
Core and builtins
|
||||||
-----------------
|
-----------------
|
||||||
|
|
||||||
|
- Patch #1675423: PyComplex_AsCComplex() now tries to convert an object
|
||||||
|
to complex using its __complex__() method before falling back to the
|
||||||
|
__float__() method. Therefore, the functions in the cmath module now
|
||||||
|
can operate on objects that define a __complex__() method.
|
||||||
|
|
||||||
- Patch #1623563: allow __class__ assignment for classes with __slots__.
|
- Patch #1623563: allow __class__ assignment for classes with __slots__.
|
||||||
The old and the new class are still required to have the same slot names.
|
The old and the new class are still required to have the same slot names.
|
||||||
|
|
||||||
|
|
|
@ -252,12 +252,59 @@ Py_complex
|
||||||
PyComplex_AsCComplex(PyObject *op)
|
PyComplex_AsCComplex(PyObject *op)
|
||||||
{
|
{
|
||||||
Py_complex cv;
|
Py_complex cv;
|
||||||
|
PyObject *newop = NULL;
|
||||||
|
static PyObject *complex_str = NULL;
|
||||||
|
|
||||||
|
assert(op);
|
||||||
|
/* If op is already of type PyComplex_Type, return its value */
|
||||||
if (PyComplex_Check(op)) {
|
if (PyComplex_Check(op)) {
|
||||||
return ((PyComplexObject *)op)->cval;
|
return ((PyComplexObject *)op)->cval;
|
||||||
}
|
}
|
||||||
|
/* If not, use op's __complex__ method, if it exists */
|
||||||
|
|
||||||
|
/* return -1 on failure */
|
||||||
|
cv.real = -1.;
|
||||||
|
cv.imag = 0.;
|
||||||
|
|
||||||
|
if (PyInstance_Check(op)) {
|
||||||
|
/* this can go away in python 3000 */
|
||||||
|
if (PyObject_HasAttrString(op, "__complex__")) {
|
||||||
|
newop = PyObject_CallMethod(op, "__complex__", NULL);
|
||||||
|
if (!newop)
|
||||||
|
return cv;
|
||||||
|
}
|
||||||
|
/* else try __float__ */
|
||||||
|
} else {
|
||||||
|
PyObject *complexfunc;
|
||||||
|
if (!complex_str) {
|
||||||
|
if (!(complex_str = PyString_FromString("__complex__")))
|
||||||
|
return cv;
|
||||||
|
}
|
||||||
|
complexfunc = _PyType_Lookup(op->ob_type, complex_str);
|
||||||
|
/* complexfunc is a borrowed reference */
|
||||||
|
if (complexfunc) {
|
||||||
|
newop = PyObject_CallFunctionObjArgs(complexfunc, op, NULL);
|
||||||
|
if (!newop)
|
||||||
|
return cv;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (newop) {
|
||||||
|
if (!PyComplex_Check(newop)) {
|
||||||
|
PyErr_SetString(PyExc_TypeError,
|
||||||
|
"__complex__ should return a complex object");
|
||||||
|
Py_DECREF(newop);
|
||||||
|
return cv;
|
||||||
|
}
|
||||||
|
cv = ((PyComplexObject *)newop)->cval;
|
||||||
|
Py_DECREF(newop);
|
||||||
|
return cv;
|
||||||
|
}
|
||||||
|
/* If neither of the above works, interpret op as a float giving the
|
||||||
|
real part of the result, and fill in the imaginary part as 0. */
|
||||||
else {
|
else {
|
||||||
|
/* PyFloat_AsDouble will return -1 on failure */
|
||||||
cv.real = PyFloat_AsDouble(op);
|
cv.real = PyFloat_AsDouble(op);
|
||||||
cv.imag = 0.;
|
|
||||||
return cv;
|
return cv;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue