SF bug #812202: randint is always even

* Added C coded getrandbits(k) method that runs in linear time.
* Call the new method from randrange() for ranges >= 2**53.
* Adds a warning for generators not defining getrandbits() whenever they
  have a call to randrange() with too large of a population.
This commit is contained in:
Raymond Hettinger 2003-10-05 09:09:15 +00:00
parent 5c68ef04b7
commit 2f726e9093
5 changed files with 196 additions and 10 deletions

View file

@ -4,6 +4,7 @@ import unittest
import random
import time
import pickle
import warnings
from math import log, exp, sqrt, pi
from sets import Set
from test import test_support
@ -153,6 +154,13 @@ class WichmannHill_TestBasicOps(TestBasicOps):
self.assertEqual(x1, x2)
self.assertEqual(y1, y2)
def test_bigrand(self):
# Verify warnings are raised when randrange is too large for random()
oldfilters = warnings.filters[:]
warnings.filterwarnings("error", "Underlying random")
self.assertRaises(UserWarning, self.gen.randrange, 2**60)
warnings.filters[:] = oldfilters
class MersenneTwister_TestBasicOps(TestBasicOps):
gen = random.Random()
@ -219,6 +227,76 @@ class MersenneTwister_TestBasicOps(TestBasicOps):
seed = (1L << (10000 * 8)) - 1 # about 10K bytes
self.gen.seed(seed)
def test_53_bits_per_float(self):
# This should pass whenever a C double has 53 bit precision.
span = 2 ** 53
cum = 0
for i in xrange(100):
cum |= int(self.gen.random() * span)
self.assertEqual(cum, span-1)
def test_bigrand(self):
# The randrange routine should build-up the required number of bits
# in stages so that all bit positions are active.
span = 2 ** 500
cum = 0
for i in xrange(100):
r = self.gen.randrange(span)
self.assert_(0 <= r < span)
cum |= r
self.assertEqual(cum, span-1)
def test_bigrand_ranges(self):
for i in [40,80, 160, 200, 211, 250, 375, 512, 550]:
start = self.gen.randrange(2 ** i)
stop = self.gen.randrange(2 ** (i-2))
if stop <= start:
return
self.assert_(start <= self.gen.randrange(start, stop) < stop)
def test_rangelimits(self):
for start, stop in [(-2,0), (-(2**60)-2,-(2**60)), (2**60,2**60+2)]:
self.assertEqual(Set(range(start,stop)),
Set([self.gen.randrange(start,stop) for i in xrange(100)]))
def test_genrandbits(self):
# Verify cross-platform repeatability
self.gen.seed(1234567)
self.assertEqual(self.gen.getrandbits(100),
97904845777343510404718956115L)
# Verify ranges
for k in xrange(1, 1000):
self.assert_(0 <= self.gen.getrandbits(k) < 2**k)
# Verify all bits active
getbits = self.gen.getrandbits
for span in [1, 2, 3, 4, 31, 32, 32, 52, 53, 54, 119, 127, 128, 129]:
cum = 0
for i in xrange(100):
cum |= getbits(span)
self.assertEqual(cum, 2**span-1)
def test_randbelow_logic(self, _log=log, int=int):
# check bitcount transition points: 2**i and 2**(i+1)-1
# show that: k = int(1.001 + _log(n, 2))
# is equal to or one greater than the number of bits in n
for i in xrange(1, 1000):
n = 1L << i # check an exact power of two
numbits = i+1
k = int(1.00001 + _log(n, 2))
self.assertEqual(k, numbits)
self.assert_(n == 2**(k-1))
n += n - 1 # check 1 below the next power of two
k = int(1.00001 + _log(n, 2))
self.assert_(k in [numbits, numbits+1])
self.assert_(2**k > n > 2**(k-2))
n -= n >> 15 # check a little farther below the next power of two
k = int(1.00001 + _log(n, 2))
self.assertEqual(k, numbits) # note the stronger assertion
self.assert_(2**k > n > 2**(k-1)) # note the stronger assertion
_gammacoeff = (0.9999999999995183, 676.5203681218835, -1259.139216722289,
771.3234287757674, -176.6150291498386, 12.50734324009056,
-0.1385710331296526, 0.9934937113930748e-05, 0.1659470187408462e-06)