mirror of
https://github.com/python/cpython.git
synced 2025-08-04 00:48:58 +00:00
SF patch 658251: Install a C implementation of the Mersenne Twister as the
core generator for random.py.
This commit is contained in:
parent
5e65ce671c
commit
40f6217092
6 changed files with 981 additions and 320 deletions
399
Lib/random.py
399
Lib/random.py
|
@ -18,61 +18,26 @@
|
|||
negative exponential
|
||||
gamma
|
||||
beta
|
||||
pareto
|
||||
Weibull
|
||||
|
||||
distributions on the circle (angles 0 to 2pi)
|
||||
---------------------------------------------
|
||||
circular uniform
|
||||
von Mises
|
||||
|
||||
Translated from anonymously contributed C/C++ source.
|
||||
General notes on the underlying Mersenne Twister core generator:
|
||||
|
||||
Multi-threading note: the random number generator used here is not thread-
|
||||
safe; it is possible that two calls return the same random value. However,
|
||||
you can instantiate a different instance of Random() in each thread to get
|
||||
generators that don't share state, then use .setstate() and .jumpahead() to
|
||||
move the generators to disjoint segments of the full period. For example,
|
||||
* The period is 2**19937-1.
|
||||
* It is one of the most extensively tested generators in existence
|
||||
* Without a direct way to compute N steps forward, the
|
||||
semantics of jumpahead(n) are weakened to simply jump
|
||||
to another distant state and rely on the large period
|
||||
to avoid overlapping sequences.
|
||||
* The random() method is implemented in C, executes in
|
||||
a single Python step, and is, therefore, threadsafe.
|
||||
|
||||
def create_generators(num, delta, firstseed=None):
|
||||
""\"Return list of num distinct generators.
|
||||
Each generator has its own unique segment of delta elements from
|
||||
Random.random()'s full period.
|
||||
Seed the first generator with optional arg firstseed (default is
|
||||
None, to seed from current time).
|
||||
""\"
|
||||
|
||||
from random import Random
|
||||
g = Random(firstseed)
|
||||
result = [g]
|
||||
for i in range(num - 1):
|
||||
laststate = g.getstate()
|
||||
g = Random()
|
||||
g.setstate(laststate)
|
||||
g.jumpahead(delta)
|
||||
result.append(g)
|
||||
return result
|
||||
|
||||
gens = create_generators(10, 1000000)
|
||||
|
||||
That creates 10 distinct generators, which can be passed out to 10 distinct
|
||||
threads. The generators don't share state so can be called safely in
|
||||
parallel. So long as no thread calls its g.random() more than a million
|
||||
times (the second argument to create_generators), the sequences seen by
|
||||
each thread will not overlap.
|
||||
|
||||
The period of the underlying Wichmann-Hill generator is 6,953,607,871,644,
|
||||
and that limits how far this technique can be pushed.
|
||||
|
||||
Just for fun, note that since we know the period, .jumpahead() can also be
|
||||
used to "move backward in time":
|
||||
|
||||
>>> g = Random(42) # arbitrary
|
||||
>>> g.random()
|
||||
0.25420336316883324
|
||||
>>> g.jumpahead(6953607871644L - 1) # move *back* one
|
||||
>>> g.random()
|
||||
0.25420336316883324
|
||||
"""
|
||||
# XXX The docstring sucks.
|
||||
|
||||
from math import log as _log, exp as _exp, pi as _pi, e as _e
|
||||
from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
|
||||
|
@ -82,32 +47,20 @@ __all__ = ["Random","seed","random","uniform","randint","choice","sample",
|
|||
"randrange","shuffle","normalvariate","lognormvariate",
|
||||
"cunifvariate","expovariate","vonmisesvariate","gammavariate",
|
||||
"stdgamma","gauss","betavariate","paretovariate","weibullvariate",
|
||||
"getstate","setstate","jumpahead","whseed"]
|
||||
|
||||
def _verify(name, computed, expected):
|
||||
if abs(computed - expected) > 1e-7:
|
||||
raise ValueError(
|
||||
"computed value for %s deviates too much "
|
||||
"(computed %g, expected %g)" % (name, computed, expected))
|
||||
"getstate","setstate","jumpahead"]
|
||||
|
||||
NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0)
|
||||
_verify('NV_MAGICCONST', NV_MAGICCONST, 1.71552776992141)
|
||||
|
||||
TWOPI = 2.0*_pi
|
||||
_verify('TWOPI', TWOPI, 6.28318530718)
|
||||
|
||||
LOG4 = _log(4.0)
|
||||
_verify('LOG4', LOG4, 1.38629436111989)
|
||||
|
||||
SG_MAGICCONST = 1.0 + _log(4.5)
|
||||
_verify('SG_MAGICCONST', SG_MAGICCONST, 2.50407739677627)
|
||||
|
||||
del _verify
|
||||
|
||||
# Translated by Guido van Rossum from C source provided by
|
||||
# Adrian Baddeley.
|
||||
# Adrian Baddeley. Adapted by Raymond Hettinger for use with
|
||||
# the Mersenne Twister core generator.
|
||||
|
||||
class Random:
|
||||
from _random import Random as CoreGenerator
|
||||
|
||||
class Random(CoreGenerator):
|
||||
"""Random number generator base class used by bound module functions.
|
||||
|
||||
Used to instantiate instances of Random to get generators that don't
|
||||
|
@ -122,7 +75,7 @@ class Random:
|
|||
|
||||
"""
|
||||
|
||||
VERSION = 1 # used by getstate/setstate
|
||||
VERSION = 2 # used by getstate/setstate
|
||||
|
||||
def __init__(self, x=None):
|
||||
"""Initialize an instance.
|
||||
|
@ -131,12 +84,7 @@ class Random:
|
|||
"""
|
||||
|
||||
self.seed(x)
|
||||
|
||||
## -------------------- core generator -------------------
|
||||
|
||||
# Specific to Wichmann-Hill generator. Subclasses wishing to use a
|
||||
# different core generator should override the seed(), random(),
|
||||
# getstate(), setstate() and jumpahead() methods.
|
||||
self.gauss_next = None
|
||||
|
||||
def seed(self, a=None):
|
||||
"""Initialize internal state from hashable object.
|
||||
|
@ -144,141 +92,26 @@ class Random:
|
|||
None or no argument seeds from current time.
|
||||
|
||||
If a is not None or an int or long, hash(a) is used instead.
|
||||
|
||||
If a is an int or long, a is used directly. Distinct values between
|
||||
0 and 27814431486575L inclusive are guaranteed to yield distinct
|
||||
internal states (this guarantee is specific to the default
|
||||
Wichmann-Hill generator).
|
||||
"""
|
||||
|
||||
if a is None:
|
||||
# Initialize from current time
|
||||
import time
|
||||
a = long(time.time() * 256)
|
||||
|
||||
if type(a) not in (type(3), type(3L)):
|
||||
a = hash(a)
|
||||
|
||||
a, x = divmod(a, 30268)
|
||||
a, y = divmod(a, 30306)
|
||||
a, z = divmod(a, 30322)
|
||||
self._seed = int(x)+1, int(y)+1, int(z)+1
|
||||
|
||||
CoreGenerator.seed(self, a)
|
||||
self.gauss_next = None
|
||||
|
||||
def random(self):
|
||||
"""Get the next random number in the range [0.0, 1.0)."""
|
||||
|
||||
# Wichman-Hill random number generator.
|
||||
#
|
||||
# Wichmann, B. A. & Hill, I. D. (1982)
|
||||
# Algorithm AS 183:
|
||||
# An efficient and portable pseudo-random number generator
|
||||
# Applied Statistics 31 (1982) 188-190
|
||||
#
|
||||
# see also:
|
||||
# Correction to Algorithm AS 183
|
||||
# Applied Statistics 33 (1984) 123
|
||||
#
|
||||
# McLeod, A. I. (1985)
|
||||
# A remark on Algorithm AS 183
|
||||
# Applied Statistics 34 (1985),198-200
|
||||
|
||||
# This part is thread-unsafe:
|
||||
# BEGIN CRITICAL SECTION
|
||||
x, y, z = self._seed
|
||||
x = (171 * x) % 30269
|
||||
y = (172 * y) % 30307
|
||||
z = (170 * z) % 30323
|
||||
self._seed = x, y, z
|
||||
# END CRITICAL SECTION
|
||||
|
||||
# Note: on a platform using IEEE-754 double arithmetic, this can
|
||||
# never return 0.0 (asserted by Tim; proof too long for a comment).
|
||||
return (x/30269.0 + y/30307.0 + z/30323.0) % 1.0
|
||||
|
||||
def getstate(self):
|
||||
"""Return internal state; can be passed to setstate() later."""
|
||||
return self.VERSION, self._seed, self.gauss_next
|
||||
return self.VERSION, CoreGenerator.getstate(self), self.gauss_next
|
||||
|
||||
def setstate(self, state):
|
||||
"""Restore internal state from object returned by getstate()."""
|
||||
version = state[0]
|
||||
if version == 1:
|
||||
version, self._seed, self.gauss_next = state
|
||||
if version == 2:
|
||||
version, internalstate, self.gauss_next = state
|
||||
CoreGenerator.setstate(self, internalstate)
|
||||
else:
|
||||
raise ValueError("state with version %s passed to "
|
||||
"Random.setstate() of version %s" %
|
||||
(version, self.VERSION))
|
||||
|
||||
def jumpahead(self, n):
|
||||
"""Act as if n calls to random() were made, but quickly.
|
||||
|
||||
n is an int, greater than or equal to 0.
|
||||
|
||||
Example use: If you have 2 threads and know that each will
|
||||
consume no more than a million random numbers, create two Random
|
||||
objects r1 and r2, then do
|
||||
r2.setstate(r1.getstate())
|
||||
r2.jumpahead(1000000)
|
||||
Then r1 and r2 will use guaranteed-disjoint segments of the full
|
||||
period.
|
||||
"""
|
||||
|
||||
if not n >= 0:
|
||||
raise ValueError("n must be >= 0")
|
||||
x, y, z = self._seed
|
||||
x = int(x * pow(171, n, 30269)) % 30269
|
||||
y = int(y * pow(172, n, 30307)) % 30307
|
||||
z = int(z * pow(170, n, 30323)) % 30323
|
||||
self._seed = x, y, z
|
||||
|
||||
def __whseed(self, x=0, y=0, z=0):
|
||||
"""Set the Wichmann-Hill seed from (x, y, z).
|
||||
|
||||
These must be integers in the range [0, 256).
|
||||
"""
|
||||
|
||||
if not type(x) == type(y) == type(z) == int:
|
||||
raise TypeError('seeds must be integers')
|
||||
if not (0 <= x < 256 and 0 <= y < 256 and 0 <= z < 256):
|
||||
raise ValueError('seeds must be in range(0, 256)')
|
||||
if 0 == x == y == z:
|
||||
# Initialize from current time
|
||||
import time
|
||||
t = long(time.time() * 256)
|
||||
t = int((t&0xffffff) ^ (t>>24))
|
||||
t, x = divmod(t, 256)
|
||||
t, y = divmod(t, 256)
|
||||
t, z = divmod(t, 256)
|
||||
# Zero is a poor seed, so substitute 1
|
||||
self._seed = (x or 1, y or 1, z or 1)
|
||||
|
||||
self.gauss_next = None
|
||||
|
||||
def whseed(self, a=None):
|
||||
"""Seed from hashable object's hash code.
|
||||
|
||||
None or no argument seeds from current time. It is not guaranteed
|
||||
that objects with distinct hash codes lead to distinct internal
|
||||
states.
|
||||
|
||||
This is obsolete, provided for compatibility with the seed routine
|
||||
used prior to Python 2.1. Use the .seed() method instead.
|
||||
"""
|
||||
|
||||
if a is None:
|
||||
self.__whseed()
|
||||
return
|
||||
a = hash(a)
|
||||
a, x = divmod(a, 256)
|
||||
a, y = divmod(a, 256)
|
||||
a, z = divmod(a, 256)
|
||||
x = (x + a) % 256 or 1
|
||||
y = (y + a) % 256 or 1
|
||||
z = (z + a) % 256 or 1
|
||||
self.__whseed(x, y, z)
|
||||
|
||||
## ---- Methods below this point do not need to be overridden when
|
||||
## ---- subclassing for the purpose of using a different core generator.
|
||||
|
||||
|
@ -744,6 +577,153 @@ class Random:
|
|||
u = self.random()
|
||||
return alpha * pow(-_log(u), 1.0/beta)
|
||||
|
||||
## -------------------- Wichmann-Hill -------------------
|
||||
|
||||
class WichmannHill(Random):
|
||||
|
||||
VERSION = 1 # used by getstate/setstate
|
||||
|
||||
def seed(self, a=None):
|
||||
"""Initialize internal state from hashable object.
|
||||
|
||||
None or no argument seeds from current time.
|
||||
|
||||
If a is not None or an int or long, hash(a) is used instead.
|
||||
|
||||
If a is an int or long, a is used directly. Distinct values between
|
||||
0 and 27814431486575L inclusive are guaranteed to yield distinct
|
||||
internal states (this guarantee is specific to the default
|
||||
Wichmann-Hill generator).
|
||||
"""
|
||||
|
||||
if a is None:
|
||||
# Initialize from current time
|
||||
import time
|
||||
a = long(time.time() * 256)
|
||||
|
||||
if not isinstance(a, (int, long)):
|
||||
a = hash(a)
|
||||
|
||||
a, x = divmod(a, 30268)
|
||||
a, y = divmod(a, 30306)
|
||||
a, z = divmod(a, 30322)
|
||||
self._seed = int(x)+1, int(y)+1, int(z)+1
|
||||
|
||||
self.gauss_next = None
|
||||
|
||||
def random(self):
|
||||
"""Get the next random number in the range [0.0, 1.0)."""
|
||||
|
||||
# Wichman-Hill random number generator.
|
||||
#
|
||||
# Wichmann, B. A. & Hill, I. D. (1982)
|
||||
# Algorithm AS 183:
|
||||
# An efficient and portable pseudo-random number generator
|
||||
# Applied Statistics 31 (1982) 188-190
|
||||
#
|
||||
# see also:
|
||||
# Correction to Algorithm AS 183
|
||||
# Applied Statistics 33 (1984) 123
|
||||
#
|
||||
# McLeod, A. I. (1985)
|
||||
# A remark on Algorithm AS 183
|
||||
# Applied Statistics 34 (1985),198-200
|
||||
|
||||
# This part is thread-unsafe:
|
||||
# BEGIN CRITICAL SECTION
|
||||
x, y, z = self._seed
|
||||
x = (171 * x) % 30269
|
||||
y = (172 * y) % 30307
|
||||
z = (170 * z) % 30323
|
||||
self._seed = x, y, z
|
||||
# END CRITICAL SECTION
|
||||
|
||||
# Note: on a platform using IEEE-754 double arithmetic, this can
|
||||
# never return 0.0 (asserted by Tim; proof too long for a comment).
|
||||
return (x/30269.0 + y/30307.0 + z/30323.0) % 1.0
|
||||
|
||||
def getstate(self):
|
||||
"""Return internal state; can be passed to setstate() later."""
|
||||
return self.VERSION, self._seed, self.gauss_next
|
||||
|
||||
def setstate(self, state):
|
||||
"""Restore internal state from object returned by getstate()."""
|
||||
version = state[0]
|
||||
if version == 1:
|
||||
version, self._seed, self.gauss_next = state
|
||||
else:
|
||||
raise ValueError("state with version %s passed to "
|
||||
"Random.setstate() of version %s" %
|
||||
(version, self.VERSION))
|
||||
|
||||
def jumpahead(self, n):
|
||||
"""Act as if n calls to random() were made, but quickly.
|
||||
|
||||
n is an int, greater than or equal to 0.
|
||||
|
||||
Example use: If you have 2 threads and know that each will
|
||||
consume no more than a million random numbers, create two Random
|
||||
objects r1 and r2, then do
|
||||
r2.setstate(r1.getstate())
|
||||
r2.jumpahead(1000000)
|
||||
Then r1 and r2 will use guaranteed-disjoint segments of the full
|
||||
period.
|
||||
"""
|
||||
|
||||
if not n >= 0:
|
||||
raise ValueError("n must be >= 0")
|
||||
x, y, z = self._seed
|
||||
x = int(x * pow(171, n, 30269)) % 30269
|
||||
y = int(y * pow(172, n, 30307)) % 30307
|
||||
z = int(z * pow(170, n, 30323)) % 30323
|
||||
self._seed = x, y, z
|
||||
|
||||
def __whseed(self, x=0, y=0, z=0):
|
||||
"""Set the Wichmann-Hill seed from (x, y, z).
|
||||
|
||||
These must be integers in the range [0, 256).
|
||||
"""
|
||||
|
||||
if not type(x) == type(y) == type(z) == int:
|
||||
raise TypeError('seeds must be integers')
|
||||
if not (0 <= x < 256 and 0 <= y < 256 and 0 <= z < 256):
|
||||
raise ValueError('seeds must be in range(0, 256)')
|
||||
if 0 == x == y == z:
|
||||
# Initialize from current time
|
||||
import time
|
||||
t = long(time.time() * 256)
|
||||
t = int((t&0xffffff) ^ (t>>24))
|
||||
t, x = divmod(t, 256)
|
||||
t, y = divmod(t, 256)
|
||||
t, z = divmod(t, 256)
|
||||
# Zero is a poor seed, so substitute 1
|
||||
self._seed = (x or 1, y or 1, z or 1)
|
||||
|
||||
self.gauss_next = None
|
||||
|
||||
def whseed(self, a=None):
|
||||
"""Seed from hashable object's hash code.
|
||||
|
||||
None or no argument seeds from current time. It is not guaranteed
|
||||
that objects with distinct hash codes lead to distinct internal
|
||||
states.
|
||||
|
||||
This is obsolete, provided for compatibility with the seed routine
|
||||
used prior to Python 2.1. Use the .seed() method instead.
|
||||
"""
|
||||
|
||||
if a is None:
|
||||
self.__whseed()
|
||||
return
|
||||
a = hash(a)
|
||||
a, x = divmod(a, 256)
|
||||
a, y = divmod(a, 256)
|
||||
a, z = divmod(a, 256)
|
||||
x = (x + a) % 256 or 1
|
||||
y = (y + a) % 256 or 1
|
||||
z = (z + a) % 256 or 1
|
||||
self.__whseed(x, y, z)
|
||||
|
||||
## -------------------- test program --------------------
|
||||
|
||||
def _test_generator(n, funccall):
|
||||
|
@ -768,25 +748,11 @@ def _test_generator(n, funccall):
|
|||
print 'avg %g, stddev %g, min %g, max %g' % \
|
||||
(avg, stddev, smallest, largest)
|
||||
|
||||
def _test_sample(n):
|
||||
# For the entire allowable range of 0 <= k <= n, validate that
|
||||
# the sample is of the correct length and contains only unique items
|
||||
population = xrange(n)
|
||||
for k in xrange(n+1):
|
||||
s = sample(population, k)
|
||||
uniq = dict.fromkeys(s)
|
||||
assert len(uniq) == len(s) == k
|
||||
assert None not in uniq
|
||||
|
||||
def _sample_generator(n, k):
|
||||
# Return a fixed element from the sample. Validates random ordering.
|
||||
return sample(xrange(n), k)[k//2]
|
||||
|
||||
def _test(N=2000):
|
||||
print 'TWOPI =', TWOPI
|
||||
print 'LOG4 =', LOG4
|
||||
print 'NV_MAGICCONST =', NV_MAGICCONST
|
||||
print 'SG_MAGICCONST =', SG_MAGICCONST
|
||||
_test_generator(N, 'random()')
|
||||
_test_generator(N, 'normalvariate(0.0, 1.0)')
|
||||
_test_generator(N, 'lognormvariate(0.0, 1.0)')
|
||||
|
@ -808,25 +774,13 @@ def _test(N=2000):
|
|||
_test_generator(N, 'weibullvariate(1.0, 1.0)')
|
||||
_test_generator(N, '_sample_generator(50, 5)') # expected s.d.: 14.4
|
||||
_test_generator(N, '_sample_generator(50, 45)') # expected s.d.: 14.4
|
||||
_test_sample(500)
|
||||
|
||||
# Test jumpahead.
|
||||
s = getstate()
|
||||
jumpahead(N)
|
||||
r1 = random()
|
||||
# now do it the slow way
|
||||
setstate(s)
|
||||
for i in range(N):
|
||||
random()
|
||||
r2 = random()
|
||||
if r1 != r2:
|
||||
raise ValueError("jumpahead test failed " + `(N, r1, r2)`)
|
||||
|
||||
# Create one instance, seeded from current time, and export its methods
|
||||
# as module-level functions. The functions are not threadsafe, and state
|
||||
# is shared across all uses (both in the user's code and in the Python
|
||||
# libraries), but that's fine for most programs and is easier for the
|
||||
# casual user than making them instantiate their own Random() instance.
|
||||
# as module-level functions. The functions share state across all uses
|
||||
#(both in the user's code and in the Python libraries), but that's fine
|
||||
# for most programs and is easier for the casual user than making them
|
||||
# instantiate their own Random() instance.
|
||||
|
||||
_inst = Random()
|
||||
seed = _inst.seed
|
||||
random = _inst.random
|
||||
|
@ -850,7 +804,6 @@ weibullvariate = _inst.weibullvariate
|
|||
getstate = _inst.getstate
|
||||
setstate = _inst.setstate
|
||||
jumpahead = _inst.jumpahead
|
||||
whseed = _inst.whseed
|
||||
|
||||
if __name__ == '__main__':
|
||||
_test()
|
||||
|
|
|
@ -1,19 +1,206 @@
|
|||
from test import test_support
|
||||
#!/usr/bin/env python
|
||||
|
||||
import unittest
|
||||
import random
|
||||
import time
|
||||
from test import test_support
|
||||
|
||||
# Ensure that the seed() method initializes all the hidden state. In
|
||||
# particular, through 2.2.1 it failed to reset a piece of state used by
|
||||
# (and only by) the .gauss() method.
|
||||
class TestBasicOps(unittest.TestCase):
|
||||
# Superclass with tests common to all generators.
|
||||
# Subclasses must arrange for self.gen to retrieve the Random instance
|
||||
# to be tested.
|
||||
|
||||
for seed in 1, 12, 123, 1234, 12345, 123456, 654321:
|
||||
for seeder in random.seed, random.whseed:
|
||||
seeder(seed)
|
||||
x1 = random.random()
|
||||
y1 = random.gauss(0, 1)
|
||||
def randomlist(self, n):
|
||||
"""Helper function to make a list of random numbers"""
|
||||
return [self.gen.random() for i in xrange(n)]
|
||||
|
||||
seeder(seed)
|
||||
x2 = random.random()
|
||||
y2 = random.gauss(0, 1)
|
||||
def test_autoseed(self):
|
||||
self.gen.seed()
|
||||
state1 = self.gen.getstate()
|
||||
time.sleep(1)
|
||||
self.gen.seed() # diffent seeds at different times
|
||||
state2 = self.gen.getstate()
|
||||
self.assertNotEqual(state1, state2)
|
||||
|
||||
test_support.vereq(x1, x2)
|
||||
test_support.vereq(y1, y2)
|
||||
def test_saverestore(self):
|
||||
N = 1000
|
||||
self.gen.seed()
|
||||
state = self.gen.getstate()
|
||||
randseq = self.randomlist(N)
|
||||
self.gen.setstate(state) # should regenerate the same sequence
|
||||
self.assertEqual(randseq, self.randomlist(N))
|
||||
|
||||
def test_seedargs(self):
|
||||
for arg in [None, 0, 0L, 1, 1L, -1, -1L, 10**20, -(10**20),
|
||||
3.14, 1+2j, 'a', tuple('abc')]:
|
||||
self.gen.seed(arg)
|
||||
for arg in [range(3), dict(one=1)]:
|
||||
self.assertRaises(TypeError, self.gen.seed, arg)
|
||||
|
||||
def test_jumpahead(self):
|
||||
self.gen.seed()
|
||||
state1 = self.gen.getstate()
|
||||
self.gen.jumpahead(100)
|
||||
state2 = self.gen.getstate() # s/b distinct from state1
|
||||
self.assertNotEqual(state1, state2)
|
||||
self.gen.jumpahead(100)
|
||||
state3 = self.gen.getstate() # s/b distinct from state2
|
||||
self.assertNotEqual(state2, state3)
|
||||
|
||||
self.assertRaises(TypeError, self.gen.jumpahead) # needs an arg
|
||||
self.assertRaises(TypeError, self.gen.jumpahead, "ick") # wrong type
|
||||
self.assertRaises(TypeError, self.gen.jumpahead, 2.3) # wrong type
|
||||
self.assertRaises(TypeError, self.gen.jumpahead, 2, 3) # too many
|
||||
|
||||
def test_sample(self):
|
||||
# For the entire allowable range of 0 <= k <= N, validate that
|
||||
# the sample is of the correct length and contains only unique items
|
||||
N = 100
|
||||
population = xrange(N)
|
||||
for k in xrange(N+1):
|
||||
s = self.gen.sample(population, k)
|
||||
self.assertEqual(len(s), k)
|
||||
uniq = dict.fromkeys(s)
|
||||
self.assertEqual(len(uniq), k)
|
||||
self.failIf(None in uniq)
|
||||
|
||||
def test_gauss(self):
|
||||
# Ensure that the seed() method initializes all the hidden state. In
|
||||
# particular, through 2.2.1 it failed to reset a piece of state used
|
||||
# by (and only by) the .gauss() method.
|
||||
|
||||
for seed in 1, 12, 123, 1234, 12345, 123456, 654321:
|
||||
self.gen.seed(seed)
|
||||
x1 = self.gen.random()
|
||||
y1 = self.gen.gauss(0, 1)
|
||||
|
||||
self.gen.seed(seed)
|
||||
x2 = self.gen.random()
|
||||
y2 = self.gen.gauss(0, 1)
|
||||
|
||||
self.assertEqual(x1, x2)
|
||||
self.assertEqual(y1, y2)
|
||||
|
||||
|
||||
class WichmannHill_TestBasicOps(TestBasicOps):
|
||||
gen = random.WichmannHill()
|
||||
|
||||
def test_strong_jumpahead(self):
|
||||
# tests that jumpahead(n) semantics correspond to n calls to random()
|
||||
N = 1000
|
||||
s = self.gen.getstate()
|
||||
self.gen.jumpahead(N)
|
||||
r1 = self.gen.random()
|
||||
# now do it the slow way
|
||||
self.gen.setstate(s)
|
||||
for i in xrange(N):
|
||||
self.gen.random()
|
||||
r2 = self.gen.random()
|
||||
self.assertEqual(r1, r2)
|
||||
|
||||
def test_gauss_with_whseed(self):
|
||||
# Ensure that the seed() method initializes all the hidden state. In
|
||||
# particular, through 2.2.1 it failed to reset a piece of state used
|
||||
# by (and only by) the .gauss() method.
|
||||
|
||||
for seed in 1, 12, 123, 1234, 12345, 123456, 654321:
|
||||
self.gen.whseed(seed)
|
||||
x1 = self.gen.random()
|
||||
y1 = self.gen.gauss(0, 1)
|
||||
|
||||
self.gen.whseed(seed)
|
||||
x2 = self.gen.random()
|
||||
y2 = self.gen.gauss(0, 1)
|
||||
|
||||
self.assertEqual(x1, x2)
|
||||
self.assertEqual(y1, y2)
|
||||
|
||||
class MersenneTwister_TestBasicOps(TestBasicOps):
|
||||
gen = random.Random()
|
||||
|
||||
def test_referenceImplementation(self):
|
||||
# Compare the python implementation with results from the original
|
||||
# code. Create 2000 53-bit precision random floats. Compare only
|
||||
# the last ten entries to show that the independent implementations
|
||||
# are tracking. Here is the main() function needed to create the
|
||||
# list of expected random numbers:
|
||||
# void main(void){
|
||||
# int i;
|
||||
# unsigned long init[4]={61731, 24903, 614, 42143}, length=4;
|
||||
# init_by_array(init, length);
|
||||
# for (i=0; i<2000; i++) {
|
||||
# printf("%.15f ", genrand_res53());
|
||||
# if (i%5==4) printf("\n");
|
||||
# }
|
||||
# }
|
||||
expected = [0.45839803073713259,
|
||||
0.86057815201978782,
|
||||
0.92848331726782152,
|
||||
0.35932681119782461,
|
||||
0.081823493762449573,
|
||||
0.14332226470169329,
|
||||
0.084297823823520024,
|
||||
0.53814864671831453,
|
||||
0.089215024911993401,
|
||||
0.78486196105372907]
|
||||
|
||||
self.gen.seed(61731L + (24903L<<32) + (614L<<64) + (42143L<<96))
|
||||
actual = self.randomlist(2000)[-10:]
|
||||
for a, e in zip(actual, expected):
|
||||
self.assertAlmostEqual(a,e,places=14)
|
||||
|
||||
def test_strong_reference_implementation(self):
|
||||
# Like test_referenceImplementation, but checks for exact bit-level
|
||||
# equality. This should pass on any box where C double contains
|
||||
# at least 53 bits of precision (the underlying algorithm suffers
|
||||
# no rounding errors -- all results are exact).
|
||||
from math import ldexp
|
||||
|
||||
expected = [0x0eab3258d2231fL,
|
||||
0x1b89db315277a5L,
|
||||
0x1db622a5518016L,
|
||||
0x0b7f9af0d575bfL,
|
||||
0x029e4c4db82240L,
|
||||
0x04961892f5d673L,
|
||||
0x02b291598e4589L,
|
||||
0x11388382c15694L,
|
||||
0x02dad977c9e1feL,
|
||||
0x191d96d4d334c6L]
|
||||
|
||||
self.gen.seed(61731L + (24903L<<32) + (614L<<64) + (42143L<<96))
|
||||
actual = self.randomlist(2000)[-10:]
|
||||
for a, e in zip(actual, expected):
|
||||
self.assertEqual(long(ldexp(a, 53)), e)
|
||||
|
||||
def test_long_seed(self):
|
||||
# This is most interesting to run in debug mode, just to make sure
|
||||
# nothing blows up. Under the covers, a dynamically resized array
|
||||
# is allocated, consuming space proportional to the number of bits
|
||||
# in the seed. Unfortunately, that's a quadratic-time algorithm,
|
||||
# so don't make this horribly big.
|
||||
seed = (1L << (10000 * 8)) - 1 # about 10K bytes
|
||||
self.gen.seed(seed)
|
||||
|
||||
class TestModule(unittest.TestCase):
|
||||
def testMagicConstants(self):
|
||||
self.assertAlmostEqual(random.NV_MAGICCONST, 1.71552776992141)
|
||||
self.assertAlmostEqual(random.TWOPI, 6.28318530718)
|
||||
self.assertAlmostEqual(random.LOG4, 1.38629436111989)
|
||||
self.assertAlmostEqual(random.SG_MAGICCONST, 2.50407739677627)
|
||||
|
||||
def test__all__(self):
|
||||
# tests validity but not completeness of the __all__ list
|
||||
defined = dict.fromkeys(dir(random))
|
||||
for entry in random.__all__:
|
||||
self.failUnless(entry in defined)
|
||||
|
||||
def test_main():
|
||||
suite = unittest.TestSuite()
|
||||
for testclass in (WichmannHill_TestBasicOps,
|
||||
MersenneTwister_TestBasicOps,
|
||||
TestModule):
|
||||
suite.addTest(unittest.makeSuite(testclass))
|
||||
test_support.run_suite(suite)
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_main()
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue