mirror of
https://github.com/python/cpython.git
synced 2025-08-04 08:59:19 +00:00
Merged revisions 76878 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/trunk ........ r76878 | mark.dickinson | 2009-12-19 11:07:23 +0000 (Sat, 19 Dec 2009) | 3 lines Issue #3366: Add error function and complementary error function to math module. ........
This commit is contained in:
parent
056aafe7f2
commit
45f992a45e
4 changed files with 242 additions and 2 deletions
|
@ -69,6 +69,7 @@ extern double copysign(double, double);
|
|||
*/
|
||||
|
||||
static const double pi = 3.141592653589793238462643383279502884197;
|
||||
static const double sqrtpi = 1.772453850905516027298167483341145182798;
|
||||
|
||||
static double
|
||||
sinpi(double x)
|
||||
|
@ -375,6 +376,141 @@ m_lgamma(double x)
|
|||
return r;
|
||||
}
|
||||
|
||||
/*
|
||||
Implementations of the error function erf(x) and the complementary error
|
||||
function erfc(x).
|
||||
|
||||
Method: following 'Numerical Recipes' by Flannery, Press et. al. (2nd ed.,
|
||||
Cambridge University Press), we use a series approximation for erf for
|
||||
small x, and a continued fraction approximation for erfc(x) for larger x;
|
||||
combined with the relations erf(-x) = -erf(x) and erfc(x) = 1.0 - erf(x),
|
||||
this gives us erf(x) and erfc(x) for all x.
|
||||
|
||||
The series expansion used is:
|
||||
|
||||
erf(x) = x*exp(-x*x)/sqrt(pi) * [
|
||||
2/1 + 4/3 x**2 + 8/15 x**4 + 16/105 x**6 + ...]
|
||||
|
||||
The coefficient of x**(2k-2) here is 4**k*factorial(k)/factorial(2*k).
|
||||
This series converges well for smallish x, but slowly for larger x.
|
||||
|
||||
The continued fraction expansion used is:
|
||||
|
||||
erfc(x) = x*exp(-x*x)/sqrt(pi) * [1/(0.5 + x**2 -) 0.5/(2.5 + x**2 - )
|
||||
3.0/(4.5 + x**2 - ) 7.5/(6.5 + x**2 - ) ...]
|
||||
|
||||
after the first term, the general term has the form:
|
||||
|
||||
k*(k-0.5)/(2*k+0.5 + x**2 - ...).
|
||||
|
||||
This expansion converges fast for larger x, but convergence becomes
|
||||
infinitely slow as x approaches 0.0. The (somewhat naive) continued
|
||||
fraction evaluation algorithm used below also risks overflow for large x;
|
||||
but for large x, erfc(x) == 0.0 to within machine precision. (For
|
||||
example, erfc(30.0) is approximately 2.56e-393).
|
||||
|
||||
Parameters: use series expansion for abs(x) < ERF_SERIES_CUTOFF and
|
||||
continued fraction expansion for ERF_SERIES_CUTOFF <= abs(x) <
|
||||
ERFC_CONTFRAC_CUTOFF. ERFC_SERIES_TERMS and ERFC_CONTFRAC_TERMS are the
|
||||
numbers of terms to use for the relevant expansions. */
|
||||
|
||||
#define ERF_SERIES_CUTOFF 1.5
|
||||
#define ERF_SERIES_TERMS 25
|
||||
#define ERFC_CONTFRAC_CUTOFF 30.0
|
||||
#define ERFC_CONTFRAC_TERMS 50
|
||||
|
||||
/*
|
||||
Error function, via power series.
|
||||
|
||||
Given a finite float x, return an approximation to erf(x).
|
||||
Converges reasonably fast for small x.
|
||||
*/
|
||||
|
||||
static double
|
||||
m_erf_series(double x)
|
||||
{
|
||||
double x2, acc, fk;
|
||||
int i;
|
||||
|
||||
x2 = x * x;
|
||||
acc = 0.0;
|
||||
fk = (double)ERF_SERIES_TERMS + 0.5;
|
||||
for (i = 0; i < ERF_SERIES_TERMS; i++) {
|
||||
acc = 2.0 + x2 * acc / fk;
|
||||
fk -= 1.0;
|
||||
}
|
||||
return acc * x * exp(-x2) / sqrtpi;
|
||||
}
|
||||
|
||||
/*
|
||||
Complementary error function, via continued fraction expansion.
|
||||
|
||||
Given a positive float x, return an approximation to erfc(x). Converges
|
||||
reasonably fast for x large (say, x > 2.0), and should be safe from
|
||||
overflow if x and nterms are not too large. On an IEEE 754 machine, with x
|
||||
<= 30.0, we're safe up to nterms = 100. For x >= 30.0, erfc(x) is smaller
|
||||
than the smallest representable nonzero float. */
|
||||
|
||||
static double
|
||||
m_erfc_contfrac(double x)
|
||||
{
|
||||
double x2, a, da, p, p_last, q, q_last, b;
|
||||
int i;
|
||||
|
||||
if (x >= ERFC_CONTFRAC_CUTOFF)
|
||||
return 0.0;
|
||||
|
||||
x2 = x*x;
|
||||
a = 0.0;
|
||||
da = 0.5;
|
||||
p = 1.0; p_last = 0.0;
|
||||
q = da + x2; q_last = 1.0;
|
||||
for (i = 0; i < ERFC_CONTFRAC_TERMS; i++) {
|
||||
double temp;
|
||||
a += da;
|
||||
da += 2.0;
|
||||
b = da + x2;
|
||||
temp = p; p = b*p - a*p_last; p_last = temp;
|
||||
temp = q; q = b*q - a*q_last; q_last = temp;
|
||||
}
|
||||
return p / q * x * exp(-x2) / sqrtpi;
|
||||
}
|
||||
|
||||
/* Error function erf(x), for general x */
|
||||
|
||||
static double
|
||||
m_erf(double x)
|
||||
{
|
||||
double absx, cf;
|
||||
|
||||
if (Py_IS_NAN(x))
|
||||
return x;
|
||||
absx = fabs(x);
|
||||
if (absx < ERF_SERIES_CUTOFF)
|
||||
return m_erf_series(x);
|
||||
else {
|
||||
cf = m_erfc_contfrac(absx);
|
||||
return x > 0.0 ? 1.0 - cf : cf - 1.0;
|
||||
}
|
||||
}
|
||||
|
||||
/* Complementary error function erfc(x), for general x. */
|
||||
|
||||
static double
|
||||
m_erfc(double x)
|
||||
{
|
||||
double absx, cf;
|
||||
|
||||
if (Py_IS_NAN(x))
|
||||
return x;
|
||||
absx = fabs(x);
|
||||
if (absx < ERF_SERIES_CUTOFF)
|
||||
return 1.0 - m_erf_series(x);
|
||||
else {
|
||||
cf = m_erfc_contfrac(absx);
|
||||
return x > 0.0 ? cf : 2.0 - cf;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
wrapper for atan2 that deals directly with special cases before
|
||||
|
@ -721,6 +857,10 @@ FUNC1(cos, cos, 0,
|
|||
"cos(x)\n\nReturn the cosine of x (measured in radians).")
|
||||
FUNC1(cosh, cosh, 1,
|
||||
"cosh(x)\n\nReturn the hyperbolic cosine of x.")
|
||||
FUNC1A(erf, m_erf,
|
||||
"erf(x)\n\nError function at x.")
|
||||
FUNC1A(erfc, m_erfc,
|
||||
"erfc(x)\n\nComplementary error function at x.")
|
||||
FUNC1(exp, exp, 1,
|
||||
"exp(x)\n\nReturn e raised to the power of x.")
|
||||
FUNC1(expm1, m_expm1, 1,
|
||||
|
@ -1497,6 +1637,8 @@ static PyMethodDef math_methods[] = {
|
|||
{"cos", math_cos, METH_O, math_cos_doc},
|
||||
{"cosh", math_cosh, METH_O, math_cosh_doc},
|
||||
{"degrees", math_degrees, METH_O, math_degrees_doc},
|
||||
{"erf", math_erf, METH_O, math_erf_doc},
|
||||
{"erfc", math_erfc, METH_O, math_erfc_doc},
|
||||
{"exp", math_exp, METH_O, math_exp_doc},
|
||||
{"expm1", math_expm1, METH_O, math_expm1_doc},
|
||||
{"fabs", math_fabs, METH_O, math_fabs_doc},
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue