mirror of
https://github.com/python/cpython.git
synced 2025-08-04 00:48:58 +00:00
bpo-35904: Add statistics.fmean() (GH-11892)
This commit is contained in:
parent
f36f89257b
commit
47d9987247
6 changed files with 104 additions and 3 deletions
|
@ -404,7 +404,7 @@ with replacement to estimate a confidence interval for the mean of a sample of
|
||||||
size five::
|
size five::
|
||||||
|
|
||||||
# http://statistics.about.com/od/Applications/a/Example-Of-Bootstrapping.htm
|
# http://statistics.about.com/od/Applications/a/Example-Of-Bootstrapping.htm
|
||||||
from statistics import mean
|
from statistics import fmean as mean
|
||||||
from random import choices
|
from random import choices
|
||||||
|
|
||||||
data = 1, 2, 4, 4, 10
|
data = 1, 2, 4, 4, 10
|
||||||
|
@ -419,7 +419,7 @@ to determine the statistical significance or `p-value
|
||||||
between the effects of a drug versus a placebo::
|
between the effects of a drug versus a placebo::
|
||||||
|
|
||||||
# Example from "Statistics is Easy" by Dennis Shasha and Manda Wilson
|
# Example from "Statistics is Easy" by Dennis Shasha and Manda Wilson
|
||||||
from statistics import mean
|
from statistics import fmean as mean
|
||||||
from random import shuffle
|
from random import shuffle
|
||||||
|
|
||||||
drug = [54, 73, 53, 70, 73, 68, 52, 65, 65]
|
drug = [54, 73, 53, 70, 73, 68, 52, 65, 65]
|
||||||
|
|
|
@ -39,6 +39,7 @@ or sample.
|
||||||
|
|
||||||
======================= =============================================
|
======================= =============================================
|
||||||
:func:`mean` Arithmetic mean ("average") of data.
|
:func:`mean` Arithmetic mean ("average") of data.
|
||||||
|
:func:`fmean` Fast, floating point arithmetic mean.
|
||||||
:func:`harmonic_mean` Harmonic mean of data.
|
:func:`harmonic_mean` Harmonic mean of data.
|
||||||
:func:`median` Median (middle value) of data.
|
:func:`median` Median (middle value) of data.
|
||||||
:func:`median_low` Low median of data.
|
:func:`median_low` Low median of data.
|
||||||
|
@ -111,6 +112,23 @@ However, for reading convenience, most of the examples show sorted sequences.
|
||||||
``mean(data)`` is equivalent to calculating the true population mean μ.
|
``mean(data)`` is equivalent to calculating the true population mean μ.
|
||||||
|
|
||||||
|
|
||||||
|
.. function:: fmean(data)
|
||||||
|
|
||||||
|
Convert *data* to floats and compute the arithmetic mean.
|
||||||
|
|
||||||
|
This runs faster than the :func:`mean` function and it always returns a
|
||||||
|
:class:`float`. The result is highly accurate but not as perfect as
|
||||||
|
:func:`mean`. If the input dataset is empty, raises a
|
||||||
|
:exc:`StatisticsError`.
|
||||||
|
|
||||||
|
.. doctest::
|
||||||
|
|
||||||
|
>>> fmean([3.5, 4.0, 5.25])
|
||||||
|
4.25
|
||||||
|
|
||||||
|
.. versionadded:: 3.8
|
||||||
|
|
||||||
|
|
||||||
.. function:: harmonic_mean(data)
|
.. function:: harmonic_mean(data)
|
||||||
|
|
||||||
Return the harmonic mean of *data*, a sequence or iterator of
|
Return the harmonic mean of *data*, a sequence or iterator of
|
||||||
|
|
|
@ -254,6 +254,15 @@ Added :attr:`SSLContext.post_handshake_auth` to enable and
|
||||||
post-handshake authentication.
|
post-handshake authentication.
|
||||||
(Contributed by Christian Heimes in :issue:`34670`.)
|
(Contributed by Christian Heimes in :issue:`34670`.)
|
||||||
|
|
||||||
|
|
||||||
|
statistics
|
||||||
|
----------
|
||||||
|
|
||||||
|
Added :func:`statistics.fmean` as a faster, floating point variant of
|
||||||
|
:func:`statistics.mean()`. (Contributed by Raymond Hettinger and
|
||||||
|
Steven D'Aprano in :issue:`35904`.)
|
||||||
|
|
||||||
|
|
||||||
tokenize
|
tokenize
|
||||||
--------
|
--------
|
||||||
|
|
||||||
|
|
|
@ -79,7 +79,7 @@ A single exception is defined: StatisticsError is a subclass of ValueError.
|
||||||
__all__ = [ 'StatisticsError',
|
__all__ = [ 'StatisticsError',
|
||||||
'pstdev', 'pvariance', 'stdev', 'variance',
|
'pstdev', 'pvariance', 'stdev', 'variance',
|
||||||
'median', 'median_low', 'median_high', 'median_grouped',
|
'median', 'median_low', 'median_high', 'median_grouped',
|
||||||
'mean', 'mode', 'harmonic_mean',
|
'mean', 'mode', 'harmonic_mean', 'fmean',
|
||||||
]
|
]
|
||||||
|
|
||||||
import collections
|
import collections
|
||||||
|
@ -312,6 +312,33 @@ def mean(data):
|
||||||
assert count == n
|
assert count == n
|
||||||
return _convert(total/n, T)
|
return _convert(total/n, T)
|
||||||
|
|
||||||
|
def fmean(data):
|
||||||
|
""" Convert data to floats and compute the arithmetic mean.
|
||||||
|
|
||||||
|
This runs faster than the mean() function and it always returns a float.
|
||||||
|
The result is highly accurate but not as perfect as mean().
|
||||||
|
If the input dataset is empty, it raises a StatisticsError.
|
||||||
|
|
||||||
|
>>> fmean([3.5, 4.0, 5.25])
|
||||||
|
4.25
|
||||||
|
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
n = len(data)
|
||||||
|
except TypeError:
|
||||||
|
# Handle iterators that do not define __len__().
|
||||||
|
n = 0
|
||||||
|
def count(x):
|
||||||
|
nonlocal n
|
||||||
|
n += 1
|
||||||
|
return x
|
||||||
|
total = math.fsum(map(count, data))
|
||||||
|
else:
|
||||||
|
total = math.fsum(data)
|
||||||
|
try:
|
||||||
|
return total / n
|
||||||
|
except ZeroDivisionError:
|
||||||
|
raise StatisticsError('fmean requires at least one data point') from None
|
||||||
|
|
||||||
def harmonic_mean(data):
|
def harmonic_mean(data):
|
||||||
"""Return the harmonic mean of data.
|
"""Return the harmonic mean of data.
|
||||||
|
|
|
@ -1810,6 +1810,51 @@ class TestMode(NumericTestCase, AverageMixin, UnivariateTypeMixin):
|
||||||
# counts, this should raise.
|
# counts, this should raise.
|
||||||
self.assertRaises(statistics.StatisticsError, self.func, data)
|
self.assertRaises(statistics.StatisticsError, self.func, data)
|
||||||
|
|
||||||
|
class TestFMean(unittest.TestCase):
|
||||||
|
|
||||||
|
def test_basics(self):
|
||||||
|
fmean = statistics.fmean
|
||||||
|
D = Decimal
|
||||||
|
F = Fraction
|
||||||
|
for data, expected_mean, kind in [
|
||||||
|
([3.5, 4.0, 5.25], 4.25, 'floats'),
|
||||||
|
([D('3.5'), D('4.0'), D('5.25')], 4.25, 'decimals'),
|
||||||
|
([F(7, 2), F(4, 1), F(21, 4)], 4.25, 'fractions'),
|
||||||
|
([True, False, True, True, False], 0.60, 'booleans'),
|
||||||
|
([3.5, 4, F(21, 4)], 4.25, 'mixed types'),
|
||||||
|
((3.5, 4.0, 5.25), 4.25, 'tuple'),
|
||||||
|
(iter([3.5, 4.0, 5.25]), 4.25, 'iterator'),
|
||||||
|
]:
|
||||||
|
actual_mean = fmean(data)
|
||||||
|
self.assertIs(type(actual_mean), float, kind)
|
||||||
|
self.assertEqual(actual_mean, expected_mean, kind)
|
||||||
|
|
||||||
|
def test_error_cases(self):
|
||||||
|
fmean = statistics.fmean
|
||||||
|
StatisticsError = statistics.StatisticsError
|
||||||
|
with self.assertRaises(StatisticsError):
|
||||||
|
fmean([]) # empty input
|
||||||
|
with self.assertRaises(StatisticsError):
|
||||||
|
fmean(iter([])) # empty iterator
|
||||||
|
with self.assertRaises(TypeError):
|
||||||
|
fmean(None) # non-iterable input
|
||||||
|
with self.assertRaises(TypeError):
|
||||||
|
fmean([10, None, 20]) # non-numeric input
|
||||||
|
with self.assertRaises(TypeError):
|
||||||
|
fmean() # missing data argument
|
||||||
|
with self.assertRaises(TypeError):
|
||||||
|
fmean([10, 20, 60], 70) # too many arguments
|
||||||
|
|
||||||
|
def test_special_values(self):
|
||||||
|
# Rules for special values are inherited from math.fsum()
|
||||||
|
fmean = statistics.fmean
|
||||||
|
NaN = float('Nan')
|
||||||
|
Inf = float('Inf')
|
||||||
|
self.assertTrue(math.isnan(fmean([10, NaN])), 'nan')
|
||||||
|
self.assertTrue(math.isnan(fmean([NaN, Inf])), 'nan and infinity')
|
||||||
|
self.assertTrue(math.isinf(fmean([10, Inf])), 'infinity')
|
||||||
|
with self.assertRaises(ValueError):
|
||||||
|
fmean([Inf, -Inf])
|
||||||
|
|
||||||
|
|
||||||
# === Tests for variances and standard deviations ===
|
# === Tests for variances and standard deviations ===
|
||||||
|
|
|
@ -0,0 +1,2 @@
|
||||||
|
Added statistics.fmean() as a faster, floating point variant of the existing
|
||||||
|
mean() function.
|
Loading…
Add table
Add a link
Reference in a new issue