mirror of
https://github.com/python/cpython.git
synced 2025-09-28 03:13:48 +00:00
[3.12] gh-101100: Fix Sphinx warnings in library/random.rst (GH-112981) (#113551)
Co-authored-by: Hugo van Kemenade <hugovk@users.noreply.github.com> Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
This commit is contained in:
parent
0e3cf5bcac
commit
5a122ad7e7
2 changed files with 44 additions and 16 deletions
|
@ -34,10 +34,8 @@ instance of the :class:`random.Random` class. You can instantiate your own
|
||||||
instances of :class:`Random` to get generators that don't share state.
|
instances of :class:`Random` to get generators that don't share state.
|
||||||
|
|
||||||
Class :class:`Random` can also be subclassed if you want to use a different
|
Class :class:`Random` can also be subclassed if you want to use a different
|
||||||
basic generator of your own devising: in that case, override the :meth:`~Random.random`,
|
basic generator of your own devising: see the documentation on that class for
|
||||||
:meth:`~Random.seed`, :meth:`~Random.getstate`, and :meth:`~Random.setstate` methods.
|
more details.
|
||||||
Optionally, a new generator can supply a :meth:`~Random.getrandbits` method --- this
|
|
||||||
allows :meth:`randrange` to produce selections over an arbitrarily large range.
|
|
||||||
|
|
||||||
The :mod:`random` module also provides the :class:`SystemRandom` class which
|
The :mod:`random` module also provides the :class:`SystemRandom` class which
|
||||||
uses the system function :func:`os.urandom` to generate random numbers
|
uses the system function :func:`os.urandom` to generate random numbers
|
||||||
|
@ -88,7 +86,7 @@ Bookkeeping functions
|
||||||
|
|
||||||
.. versionchanged:: 3.11
|
.. versionchanged:: 3.11
|
||||||
The *seed* must be one of the following types:
|
The *seed* must be one of the following types:
|
||||||
*NoneType*, :class:`int`, :class:`float`, :class:`str`,
|
``None``, :class:`int`, :class:`float`, :class:`str`,
|
||||||
:class:`bytes`, or :class:`bytearray`.
|
:class:`bytes`, or :class:`bytearray`.
|
||||||
|
|
||||||
.. function:: getstate()
|
.. function:: getstate()
|
||||||
|
@ -412,6 +410,37 @@ Alternative Generator
|
||||||
``None``, :class:`int`, :class:`float`, :class:`str`,
|
``None``, :class:`int`, :class:`float`, :class:`str`,
|
||||||
:class:`bytes`, or :class:`bytearray`.
|
:class:`bytes`, or :class:`bytearray`.
|
||||||
|
|
||||||
|
Subclasses of :class:`!Random` should override the following methods if they
|
||||||
|
wish to make use of a different basic generator:
|
||||||
|
|
||||||
|
.. method:: Random.seed(a=None, version=2)
|
||||||
|
|
||||||
|
Override this method in subclasses to customise the :meth:`~random.seed`
|
||||||
|
behaviour of :class:`!Random` instances.
|
||||||
|
|
||||||
|
.. method:: Random.getstate()
|
||||||
|
|
||||||
|
Override this method in subclasses to customise the :meth:`~random.getstate`
|
||||||
|
behaviour of :class:`!Random` instances.
|
||||||
|
|
||||||
|
.. method:: Random.setstate(state)
|
||||||
|
|
||||||
|
Override this method in subclasses to customise the :meth:`~random.setstate`
|
||||||
|
behaviour of :class:`!Random` instances.
|
||||||
|
|
||||||
|
.. method:: Random.random()
|
||||||
|
|
||||||
|
Override this method in subclasses to customise the :meth:`~random.random`
|
||||||
|
behaviour of :class:`!Random` instances.
|
||||||
|
|
||||||
|
Optionally, a custom generator subclass can also supply the following method:
|
||||||
|
|
||||||
|
.. method:: Random.getrandbits(k)
|
||||||
|
|
||||||
|
Override this method in subclasses to customise the
|
||||||
|
:meth:`~random.getrandbits` behaviour of :class:`!Random` instances.
|
||||||
|
|
||||||
|
|
||||||
.. class:: SystemRandom([seed])
|
.. class:: SystemRandom([seed])
|
||||||
|
|
||||||
Class that uses the :func:`os.urandom` function for generating random numbers
|
Class that uses the :func:`os.urandom` function for generating random numbers
|
||||||
|
@ -572,14 +601,14 @@ Simulation of arrival times and service deliveries for a multiserver queue::
|
||||||
including simulation, sampling, shuffling, and cross-validation.
|
including simulation, sampling, shuffling, and cross-validation.
|
||||||
|
|
||||||
`Economics Simulation
|
`Economics Simulation
|
||||||
<https://nbviewer.jupyter.org/url/norvig.com/ipython/Economics.ipynb>`_
|
<https://nbviewer.org/url/norvig.com/ipython/Economics.ipynb>`_
|
||||||
a simulation of a marketplace by
|
a simulation of a marketplace by
|
||||||
`Peter Norvig <https://norvig.com/bio.html>`_ that shows effective
|
`Peter Norvig <https://norvig.com/bio.html>`_ that shows effective
|
||||||
use of many of the tools and distributions provided by this module
|
use of many of the tools and distributions provided by this module
|
||||||
(gauss, uniform, sample, betavariate, choice, triangular, and randrange).
|
(gauss, uniform, sample, betavariate, choice, triangular, and randrange).
|
||||||
|
|
||||||
`A Concrete Introduction to Probability (using Python)
|
`A Concrete Introduction to Probability (using Python)
|
||||||
<https://nbviewer.jupyter.org/url/norvig.com/ipython/Probability.ipynb>`_
|
<https://nbviewer.org/url/norvig.com/ipython/Probability.ipynb>`_
|
||||||
a tutorial by `Peter Norvig <https://norvig.com/bio.html>`_ covering
|
a tutorial by `Peter Norvig <https://norvig.com/bio.html>`_ covering
|
||||||
the basics of probability theory, how to write simulations, and
|
the basics of probability theory, how to write simulations, and
|
||||||
how to perform data analysis using Python.
|
how to perform data analysis using Python.
|
||||||
|
|
|
@ -82,7 +82,6 @@ Doc/library/profile.rst
|
||||||
Doc/library/pyclbr.rst
|
Doc/library/pyclbr.rst
|
||||||
Doc/library/pydoc.rst
|
Doc/library/pydoc.rst
|
||||||
Doc/library/pyexpat.rst
|
Doc/library/pyexpat.rst
|
||||||
Doc/library/random.rst
|
|
||||||
Doc/library/readline.rst
|
Doc/library/readline.rst
|
||||||
Doc/library/resource.rst
|
Doc/library/resource.rst
|
||||||
Doc/library/select.rst
|
Doc/library/select.rst
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue