mirror of
https://github.com/python/cpython.git
synced 2025-08-04 00:48:58 +00:00
bpo-39218: Improve accuracy of variance calculation (GH-27960)
This commit is contained in:
parent
044e8d866f
commit
793f55bde9
3 changed files with 23 additions and 14 deletions
|
@ -728,15 +728,19 @@ def _ss(data, c=None):
|
|||
lead to garbage results.
|
||||
"""
|
||||
if c is not None:
|
||||
T, total, count = _sum((x-c)**2 for x in data)
|
||||
T, total, count = _sum((d := x - c) * d for x in data)
|
||||
return (T, total)
|
||||
# Compute the mean accurate to within 1/2 ulp
|
||||
c = mean(data)
|
||||
T, total, count = _sum((x-c)**2 for x in data)
|
||||
# The following sum should mathematically equal zero, but due to rounding
|
||||
# error may not.
|
||||
U, total2, count2 = _sum((x - c) for x in data)
|
||||
assert T == U and count == count2
|
||||
total -= total2 ** 2 / len(data)
|
||||
# Initial computation for the sum of square deviations
|
||||
T, total, count = _sum((d := x - c) * d for x in data)
|
||||
# Correct any remaining inaccuracy in the mean c.
|
||||
# The following sum should mathematically equal zero,
|
||||
# but due to the final rounding of the mean, it may not.
|
||||
U, error, count2 = _sum((x - c) for x in data)
|
||||
assert count == count2
|
||||
correction = error * error / len(data)
|
||||
total -= correction
|
||||
assert not total < 0, 'negative sum of square deviations: %f' % total
|
||||
return (T, total)
|
||||
|
||||
|
@ -924,8 +928,8 @@ def correlation(x, y, /):
|
|||
xbar = fsum(x) / n
|
||||
ybar = fsum(y) / n
|
||||
sxy = fsum((xi - xbar) * (yi - ybar) for xi, yi in zip(x, y))
|
||||
sxx = fsum((xi - xbar) ** 2.0 for xi in x)
|
||||
syy = fsum((yi - ybar) ** 2.0 for yi in y)
|
||||
sxx = fsum((d := xi - xbar) * d for xi in x)
|
||||
syy = fsum((d := yi - ybar) * d for yi in y)
|
||||
try:
|
||||
return sxy / sqrt(sxx * syy)
|
||||
except ZeroDivisionError:
|
||||
|
@ -968,7 +972,7 @@ def linear_regression(x, y, /):
|
|||
xbar = fsum(x) / n
|
||||
ybar = fsum(y) / n
|
||||
sxy = fsum((xi - xbar) * (yi - ybar) for xi, yi in zip(x, y))
|
||||
sxx = fsum((xi - xbar) ** 2.0 for xi in x)
|
||||
sxx = fsum((d := xi - xbar) * d for xi in x)
|
||||
try:
|
||||
slope = sxy / sxx # equivalent to: covariance(x, y) / variance(x)
|
||||
except ZeroDivisionError:
|
||||
|
@ -1094,10 +1098,11 @@ class NormalDist:
|
|||
|
||||
def pdf(self, x):
|
||||
"Probability density function. P(x <= X < x+dx) / dx"
|
||||
variance = self._sigma ** 2.0
|
||||
variance = self._sigma * self._sigma
|
||||
if not variance:
|
||||
raise StatisticsError('pdf() not defined when sigma is zero')
|
||||
return exp((x - self._mu)**2.0 / (-2.0*variance)) / sqrt(tau*variance)
|
||||
diff = x - self._mu
|
||||
return exp(diff * diff / (-2.0 * variance)) / sqrt(tau * variance)
|
||||
|
||||
def cdf(self, x):
|
||||
"Cumulative distribution function. P(X <= x)"
|
||||
|
@ -1161,7 +1166,7 @@ class NormalDist:
|
|||
if not dv:
|
||||
return 1.0 - erf(dm / (2.0 * X._sigma * sqrt(2.0)))
|
||||
a = X._mu * Y_var - Y._mu * X_var
|
||||
b = X._sigma * Y._sigma * sqrt(dm**2.0 + dv * log(Y_var / X_var))
|
||||
b = X._sigma * Y._sigma * sqrt(dm * dm + dv * log(Y_var / X_var))
|
||||
x1 = (a + b) / dv
|
||||
x2 = (a - b) / dv
|
||||
return 1.0 - (fabs(Y.cdf(x1) - X.cdf(x1)) + fabs(Y.cdf(x2) - X.cdf(x2)))
|
||||
|
@ -1204,7 +1209,7 @@ class NormalDist:
|
|||
@property
|
||||
def variance(self):
|
||||
"Square of the standard deviation."
|
||||
return self._sigma ** 2.0
|
||||
return self._sigma * self._sigma
|
||||
|
||||
def __add__(x1, x2):
|
||||
"""Add a constant or another NormalDist instance.
|
||||
|
|
|
@ -1210,6 +1210,9 @@ class UnivariateTypeMixin:
|
|||
def __add__(self, other):
|
||||
return type(self)(super().__add__(other))
|
||||
__radd__ = __add__
|
||||
def __mul__(self, other):
|
||||
return type(self)(super().__mul__(other))
|
||||
__rmul__ = __mul__
|
||||
return (float, Decimal, Fraction, MyFloat)
|
||||
|
||||
def test_types_conserved(self):
|
||||
|
|
|
@ -0,0 +1 @@
|
|||
Improve accuracy of variance calculations by using x*x instead of x**2.
|
Loading…
Add table
Add a link
Reference in a new issue