Backport of several functions from Python 3.0 to 2.6 including PyUnicode_FromString, PyUnicode_Format and PyLong_From/AsSsize_t. The functions are partly required for the backport of the bytearray type and _fileio module. They should also make it easier to port C to 3.0.

First chapter of the Python 3.0 io framework back port: _fileio
The next step depends on a working bytearray type which itself depends on a backport of the nwe buffer API.
This commit is contained in:
Christian Heimes 2008-01-25 12:18:43 +00:00
parent 5f95a79b2b
commit 7f39c9fcbb
8 changed files with 1599 additions and 173 deletions

View file

@ -11,7 +11,7 @@
/* For long multiplication, use the O(N**2) school algorithm unless
* both operands contain more than KARATSUBA_CUTOFF digits (this
* being an internal Python long digit, in base BASE).
* being an internal Python long digit, in base PyLong_BASE).
*/
#define KARATSUBA_CUTOFF 70
#define KARATSUBA_SQUARE_CUTOFF (2 * KARATSUBA_CUTOFF)
@ -115,7 +115,7 @@ PyLong_FromLong(long ival)
t = (unsigned long)ival;
while (t) {
++ndigits;
t >>= SHIFT;
t >>= PyLong_SHIFT;
}
v = _PyLong_New(ndigits);
if (v != NULL) {
@ -123,8 +123,8 @@ PyLong_FromLong(long ival)
v->ob_size = negative ? -ndigits : ndigits;
t = (unsigned long)ival;
while (t) {
*p++ = (digit)(t & MASK);
t >>= SHIFT;
*p++ = (digit)(t & PyLong_MASK);
t >>= PyLong_SHIFT;
}
}
return (PyObject *)v;
@ -143,15 +143,15 @@ PyLong_FromUnsignedLong(unsigned long ival)
t = (unsigned long)ival;
while (t) {
++ndigits;
t >>= SHIFT;
t >>= PyLong_SHIFT;
}
v = _PyLong_New(ndigits);
if (v != NULL) {
digit *p = v->ob_digit;
Py_SIZE(v) = ndigits;
while (ival) {
*p++ = (digit)(ival & MASK);
ival >>= SHIFT;
*p++ = (digit)(ival & PyLong_MASK);
ival >>= PyLong_SHIFT;
}
}
return (PyObject *)v;
@ -181,16 +181,16 @@ PyLong_FromDouble(double dval)
frac = frexp(dval, &expo); /* dval = frac*2**expo; 0.0 <= frac < 1.0 */
if (expo <= 0)
return PyLong_FromLong(0L);
ndig = (expo-1) / SHIFT + 1; /* Number of 'digits' in result */
ndig = (expo-1) / PyLong_SHIFT + 1; /* Number of 'digits' in result */
v = _PyLong_New(ndig);
if (v == NULL)
return NULL;
frac = ldexp(frac, (expo-1) % SHIFT + 1);
frac = ldexp(frac, (expo-1) % PyLong_SHIFT + 1);
for (i = ndig; --i >= 0; ) {
long bits = (long)frac;
v->ob_digit[i] = (digit) bits;
frac = frac - (double)bits;
frac = ldexp(frac, SHIFT);
frac = ldexp(frac, PyLong_SHIFT);
}
if (neg)
Py_SIZE(v) = -(Py_SIZE(v));
@ -237,8 +237,8 @@ PyLong_AsLong(PyObject *vv)
}
while (--i >= 0) {
prev = x;
x = (x << SHIFT) + v->ob_digit[i];
if ((x >> SHIFT) != prev)
x = (x << PyLong_SHIFT) + v->ob_digit[i];
if ((x >> PyLong_SHIFT) != prev)
goto overflow;
}
/* Haven't lost any bits, but casting to long requires extra care
@ -262,7 +262,7 @@ PyLong_AsLong(PyObject *vv)
Returns -1 and sets an error condition if overflow occurs. */
Py_ssize_t
_PyLong_AsSsize_t(PyObject *vv) {
PyLong_AsSsize_t(PyObject *vv) {
register PyLongObject *v;
size_t x, prev;
Py_ssize_t i;
@ -282,8 +282,8 @@ _PyLong_AsSsize_t(PyObject *vv) {
}
while (--i >= 0) {
prev = x;
x = (x << SHIFT) + v->ob_digit[i];
if ((x >> SHIFT) != prev)
x = (x << PyLong_SHIFT) + v->ob_digit[i];
if ((x >> PyLong_SHIFT) != prev)
goto overflow;
}
/* Haven't lost any bits, but casting to a signed type requires
@ -336,8 +336,8 @@ PyLong_AsUnsignedLong(PyObject *vv)
}
while (--i >= 0) {
prev = x;
x = (x << SHIFT) + v->ob_digit[i];
if ((x >> SHIFT) != prev) {
x = (x << PyLong_SHIFT) + v->ob_digit[i];
if ((x >> PyLong_SHIFT) != prev) {
PyErr_SetString(PyExc_OverflowError,
"long int too large to convert");
return (unsigned long) -1;
@ -372,7 +372,7 @@ PyLong_AsUnsignedLongMask(PyObject *vv)
i = -i;
}
while (--i >= 0) {
x = (x << SHIFT) + v->ob_digit[i];
x = (x << PyLong_SHIFT) + v->ob_digit[i];
}
return x * sign;
}
@ -402,8 +402,8 @@ _PyLong_NumBits(PyObject *vv)
if (ndigits > 0) {
digit msd = v->ob_digit[ndigits - 1];
result = (ndigits - 1) * SHIFT;
if (result / SHIFT != (size_t)(ndigits - 1))
result = (ndigits - 1) * PyLong_SHIFT;
if (result / PyLong_SHIFT != (size_t)(ndigits - 1))
goto Overflow;
do {
++result;
@ -473,9 +473,9 @@ _PyLong_FromByteArray(const unsigned char* bytes, size_t n,
}
/* How many Python long digits do we need? We have
8*numsignificantbytes bits, and each Python long digit has SHIFT
8*numsignificantbytes bits, and each Python long digit has PyLong_SHIFT
bits, so it's the ceiling of the quotient. */
ndigits = (numsignificantbytes * 8 + SHIFT - 1) / SHIFT;
ndigits = (numsignificantbytes * 8 + PyLong_SHIFT - 1) / PyLong_SHIFT;
if (ndigits > (size_t)INT_MAX)
return PyErr_NoMemory();
v = _PyLong_New((int)ndigits);
@ -505,17 +505,17 @@ _PyLong_FromByteArray(const unsigned char* bytes, size_t n,
so needs to be prepended to accum. */
accum |= thisbyte << accumbits;
accumbits += 8;
if (accumbits >= SHIFT) {
if (accumbits >= PyLong_SHIFT) {
/* There's enough to fill a Python digit. */
assert(idigit < (int)ndigits);
v->ob_digit[idigit] = (digit)(accum & MASK);
v->ob_digit[idigit] = (digit)(accum & PyLong_MASK);
++idigit;
accum >>= SHIFT;
accumbits -= SHIFT;
assert(accumbits < SHIFT);
accum >>= PyLong_SHIFT;
accumbits -= PyLong_SHIFT;
assert(accumbits < PyLong_SHIFT);
}
}
assert(accumbits < SHIFT);
assert(accumbits < PyLong_SHIFT);
if (accumbits) {
assert(idigit < (int)ndigits);
v->ob_digit[idigit] = (digit)accum;
@ -569,7 +569,7 @@ _PyLong_AsByteArray(PyLongObject* v,
/* Copy over all the Python digits.
It's crucial that every Python digit except for the MSD contribute
exactly SHIFT bits to the total, so first assert that the long is
exactly PyLong_SHIFT bits to the total, so first assert that the long is
normalized. */
assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0);
j = 0;
@ -579,15 +579,15 @@ _PyLong_AsByteArray(PyLongObject* v,
for (i = 0; i < ndigits; ++i) {
twodigits thisdigit = v->ob_digit[i];
if (do_twos_comp) {
thisdigit = (thisdigit ^ MASK) + carry;
carry = thisdigit >> SHIFT;
thisdigit &= MASK;
thisdigit = (thisdigit ^ PyLong_MASK) + carry;
carry = thisdigit >> PyLong_SHIFT;
thisdigit &= PyLong_MASK;
}
/* Because we're going LSB to MSB, thisdigit is more
significant than what's already in accum, so needs to be
prepended to accum. */
accum |= thisdigit << accumbits;
accumbits += SHIFT;
accumbits += PyLong_SHIFT;
/* The most-significant digit may be (probably is) at least
partly empty. */
@ -598,9 +598,9 @@ _PyLong_AsByteArray(PyLongObject* v,
* First shift conceptual sign bit to real sign bit.
*/
stwodigits s = (stwodigits)(thisdigit <<
(8*sizeof(stwodigits) - SHIFT));
(8*sizeof(stwodigits) - PyLong_SHIFT));
unsigned int nsignbits = 0;
while ((s < 0) == do_twos_comp && nsignbits < SHIFT) {
while ((s < 0) == do_twos_comp && nsignbits < PyLong_SHIFT) {
++nsignbits;
s <<= 1;
}
@ -680,7 +680,7 @@ _PyLong_AsScaledDouble(PyObject *vv, int *exponent)
#define NBITS_WANTED 57
PyLongObject *v;
double x;
const double multiplier = (double)(1L << SHIFT);
const double multiplier = (double)(1L << PyLong_SHIFT);
Py_ssize_t i;
int sign;
int nbitsneeded;
@ -707,10 +707,10 @@ _PyLong_AsScaledDouble(PyObject *vv, int *exponent)
while (i > 0 && nbitsneeded > 0) {
--i;
x = x * multiplier + (double)v->ob_digit[i];
nbitsneeded -= SHIFT;
nbitsneeded -= PyLong_SHIFT;
}
/* There are i digits we didn't shift in. Pretending they're all
zeroes, the true value is x * 2**(i*SHIFT). */
zeroes, the true value is x * 2**(i*PyLong_SHIFT). */
*exponent = i;
assert(x > 0.0);
return x * sign;
@ -735,10 +735,10 @@ PyLong_AsDouble(PyObject *vv)
/* 'e' initialized to -1 to silence gcc-4.0.x, but it should be
set correctly after a successful _PyLong_AsScaledDouble() call */
assert(e >= 0);
if (e > INT_MAX / SHIFT)
if (e > INT_MAX / PyLong_SHIFT)
goto overflow;
errno = 0;
x = ldexp(x, e * SHIFT);
x = ldexp(x, e * PyLong_SHIFT);
if (Py_OVERFLOWED(x))
goto overflow;
return x;
@ -846,7 +846,7 @@ PyLong_FromLongLong(PY_LONG_LONG ival)
t = (unsigned PY_LONG_LONG)ival;
while (t) {
++ndigits;
t >>= SHIFT;
t >>= PyLong_SHIFT;
}
v = _PyLong_New(ndigits);
if (v != NULL) {
@ -854,8 +854,8 @@ PyLong_FromLongLong(PY_LONG_LONG ival)
Py_SIZE(v) = negative ? -ndigits : ndigits;
t = (unsigned PY_LONG_LONG)ival;
while (t) {
*p++ = (digit)(t & MASK);
t >>= SHIFT;
*p++ = (digit)(t & PyLong_MASK);
t >>= PyLong_SHIFT;
}
}
return (PyObject *)v;
@ -874,15 +874,15 @@ PyLong_FromUnsignedLongLong(unsigned PY_LONG_LONG ival)
t = (unsigned PY_LONG_LONG)ival;
while (t) {
++ndigits;
t >>= SHIFT;
t >>= PyLong_SHIFT;
}
v = _PyLong_New(ndigits);
if (v != NULL) {
digit *p = v->ob_digit;
Py_SIZE(v) = ndigits;
while (ival) {
*p++ = (digit)(ival & MASK);
ival >>= SHIFT;
*p++ = (digit)(ival & PyLong_MASK);
ival >>= PyLong_SHIFT;
}
}
return (PyObject *)v;
@ -891,7 +891,7 @@ PyLong_FromUnsignedLongLong(unsigned PY_LONG_LONG ival)
/* Create a new long int object from a C Py_ssize_t. */
PyObject *
_PyLong_FromSsize_t(Py_ssize_t ival)
PyLong_FromSsize_t(Py_ssize_t ival)
{
Py_ssize_t bytes = ival;
int one = 1;
@ -903,7 +903,7 @@ _PyLong_FromSsize_t(Py_ssize_t ival)
/* Create a new long int object from a C size_t. */
PyObject *
_PyLong_FromSize_t(size_t ival)
PyLong_FromSize_t(size_t ival)
{
size_t bytes = ival;
int one = 1;
@ -1015,7 +1015,7 @@ PyLong_AsUnsignedLongLongMask(PyObject *vv)
i = -i;
}
while (--i >= 0) {
x = (x << SHIFT) + v->ob_digit[i];
x = (x << PyLong_SHIFT) + v->ob_digit[i];
}
return x * sign;
}
@ -1069,14 +1069,14 @@ v_iadd(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n)
assert(m >= n);
for (i = 0; i < n; ++i) {
carry += x[i] + y[i];
x[i] = carry & MASK;
carry >>= SHIFT;
x[i] = carry & PyLong_MASK;
carry >>= PyLong_SHIFT;
assert((carry & 1) == carry);
}
for (; carry && i < m; ++i) {
carry += x[i];
x[i] = carry & MASK;
carry >>= SHIFT;
x[i] = carry & PyLong_MASK;
carry >>= PyLong_SHIFT;
assert((carry & 1) == carry);
}
return carry;
@ -1095,14 +1095,14 @@ v_isub(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n)
assert(m >= n);
for (i = 0; i < n; ++i) {
borrow = x[i] - y[i] - borrow;
x[i] = borrow & MASK;
borrow >>= SHIFT;
x[i] = borrow & PyLong_MASK;
borrow >>= PyLong_SHIFT;
borrow &= 1; /* keep only 1 sign bit */
}
for (; borrow && i < m; ++i) {
borrow = x[i] - borrow;
x[i] = borrow & MASK;
borrow >>= SHIFT;
x[i] = borrow & PyLong_MASK;
borrow >>= PyLong_SHIFT;
borrow &= 1;
}
return borrow;
@ -1130,8 +1130,8 @@ muladd1(PyLongObject *a, wdigit n, wdigit extra)
return NULL;
for (i = 0; i < size_a; ++i) {
carry += (twodigits)a->ob_digit[i] * n;
z->ob_digit[i] = (digit) (carry & MASK);
carry >>= SHIFT;
z->ob_digit[i] = (digit) (carry & PyLong_MASK);
carry >>= PyLong_SHIFT;
}
z->ob_digit[i] = (digit) carry;
return long_normalize(z);
@ -1148,12 +1148,12 @@ inplace_divrem1(digit *pout, digit *pin, Py_ssize_t size, digit n)
{
twodigits rem = 0;
assert(n > 0 && n <= MASK);
assert(n > 0 && n <= PyLong_MASK);
pin += size;
pout += size;
while (--size >= 0) {
digit hi;
rem = (rem << SHIFT) + *--pin;
rem = (rem << PyLong_SHIFT) + *--pin;
*--pout = hi = (digit)(rem / n);
rem -= hi * n;
}
@ -1170,7 +1170,7 @@ divrem1(PyLongObject *a, digit n, digit *prem)
const Py_ssize_t size = ABS(Py_SIZE(a));
PyLongObject *z;
assert(n > 0 && n <= MASK);
assert(n > 0 && n <= PyLong_MASK);
z = _PyLong_New(size);
if (z == NULL)
return NULL;
@ -1208,9 +1208,9 @@ long_format(PyObject *aa, int base, int addL)
i >>= 1;
}
i = 5 + (addL ? 1 : 0);
j = size_a*SHIFT + bits-1;
j = size_a*PyLong_SHIFT + bits-1;
sz = i + j / bits;
if (j / SHIFT < size_a || sz < i) {
if (j / PyLong_SHIFT < size_a || sz < i) {
PyErr_SetString(PyExc_OverflowError,
"long is too large to format");
return NULL;
@ -1239,7 +1239,7 @@ long_format(PyObject *aa, int base, int addL)
for (i = 0; i < size_a; ++i) {
accum |= (twodigits)a->ob_digit[i] << accumbits;
accumbits += SHIFT;
accumbits += PyLong_SHIFT;
assert(accumbits >= basebits);
do {
char cdigit = (char)(accum & (base - 1));
@ -1264,7 +1264,7 @@ long_format(PyObject *aa, int base, int addL)
int power = 1;
for (;;) {
unsigned long newpow = powbase * (unsigned long)base;
if (newpow >> SHIFT) /* doesn't fit in a digit */
if (newpow >> PyLong_SHIFT) /* doesn't fit in a digit */
break;
powbase = (digit)newpow;
++power;
@ -1390,14 +1390,14 @@ long_from_binary_base(char **str, int base)
while (_PyLong_DigitValue[Py_CHARMASK(*p)] < base)
++p;
*str = p;
/* n <- # of Python digits needed, = ceiling(n/SHIFT). */
n = (p - start) * bits_per_char + SHIFT - 1;
/* n <- # of Python digits needed, = ceiling(n/PyLong_SHIFT). */
n = (p - start) * bits_per_char + PyLong_SHIFT - 1;
if (n / bits_per_char < p - start) {
PyErr_SetString(PyExc_ValueError,
"long string too large to convert");
return NULL;
}
n = n / SHIFT;
n = n / PyLong_SHIFT;
z = _PyLong_New(n);
if (z == NULL)
return NULL;
@ -1412,16 +1412,16 @@ long_from_binary_base(char **str, int base)
assert(k >= 0 && k < base);
accum |= (twodigits)(k << bits_in_accum);
bits_in_accum += bits_per_char;
if (bits_in_accum >= SHIFT) {
*pdigit++ = (digit)(accum & MASK);
if (bits_in_accum >= PyLong_SHIFT) {
*pdigit++ = (digit)(accum & PyLong_MASK);
assert(pdigit - z->ob_digit <= (int)n);
accum >>= SHIFT;
bits_in_accum -= SHIFT;
assert(bits_in_accum < SHIFT);
accum >>= PyLong_SHIFT;
bits_in_accum -= PyLong_SHIFT;
assert(bits_in_accum < PyLong_SHIFT);
}
}
if (bits_in_accum) {
assert(bits_in_accum <= SHIFT);
assert(bits_in_accum <= PyLong_SHIFT);
*pdigit++ = (digit)accum;
assert(pdigit - z->ob_digit <= (int)n);
}
@ -1478,18 +1478,18 @@ First some math: the largest integer that can be expressed in N base-B digits
is B**N-1. Consequently, if we have an N-digit input in base B, the worst-
case number of Python digits needed to hold it is the smallest integer n s.t.
BASE**n-1 >= B**N-1 [or, adding 1 to both sides]
BASE**n >= B**N [taking logs to base BASE]
n >= log(B**N)/log(BASE) = N * log(B)/log(BASE)
PyLong_BASE**n-1 >= B**N-1 [or, adding 1 to both sides]
PyLong_BASE**n >= B**N [taking logs to base PyLong_BASE]
n >= log(B**N)/log(PyLong_BASE) = N * log(B)/log(PyLong_BASE)
The static array log_base_BASE[base] == log(base)/log(BASE) so we can compute
The static array log_base_PyLong_BASE[base] == log(base)/log(PyLong_BASE) so we can compute
this quickly. A Python long with that much space is reserved near the start,
and the result is computed into it.
The input string is actually treated as being in base base**i (i.e., i digits
are processed at a time), where two more static arrays hold:
convwidth_base[base] = the largest integer i such that base**i <= BASE
convwidth_base[base] = the largest integer i such that base**i <= PyLong_BASE
convmultmax_base[base] = base ** convwidth_base[base]
The first of these is the largest i such that i consecutive input digits
@ -1506,37 +1506,37 @@ where B = convmultmax_base[base].
Error analysis: as above, the number of Python digits `n` needed is worst-
case
n >= N * log(B)/log(BASE)
n >= N * log(B)/log(PyLong_BASE)
where `N` is the number of input digits in base `B`. This is computed via
size_z = (Py_ssize_t)((scan - str) * log_base_BASE[base]) + 1;
size_z = (Py_ssize_t)((scan - str) * log_base_PyLong_BASE[base]) + 1;
below. Two numeric concerns are how much space this can waste, and whether
the computed result can be too small. To be concrete, assume BASE = 2**15,
the computed result can be too small. To be concrete, assume PyLong_BASE = 2**15,
which is the default (and it's unlikely anyone changes that).
Waste isn't a problem: provided the first input digit isn't 0, the difference
between the worst-case input with N digits and the smallest input with N
digits is about a factor of B, but B is small compared to BASE so at most
digits is about a factor of B, but B is small compared to PyLong_BASE so at most
one allocated Python digit can remain unused on that count. If
N*log(B)/log(BASE) is mathematically an exact integer, then truncating that
N*log(B)/log(PyLong_BASE) is mathematically an exact integer, then truncating that
and adding 1 returns a result 1 larger than necessary. However, that can't
happen: whenever B is a power of 2, long_from_binary_base() is called
instead, and it's impossible for B**i to be an integer power of 2**15 when
B is not a power of 2 (i.e., it's impossible for N*log(B)/log(BASE) to be
B is not a power of 2 (i.e., it's impossible for N*log(B)/log(PyLong_BASE) to be
an exact integer when B is not a power of 2, since B**i has a prime factor
other than 2 in that case, but (2**15)**j's only prime factor is 2).
The computed result can be too small if the true value of N*log(B)/log(BASE)
The computed result can be too small if the true value of N*log(B)/log(PyLong_BASE)
is a little bit larger than an exact integer, but due to roundoff errors (in
computing log(B), log(BASE), their quotient, and/or multiplying that by N)
computing log(B), log(PyLong_BASE), their quotient, and/or multiplying that by N)
yields a numeric result a little less than that integer. Unfortunately, "how
close can a transcendental function get to an integer over some range?"
questions are generally theoretically intractable. Computer analysis via
continued fractions is practical: expand log(B)/log(BASE) via continued
continued fractions is practical: expand log(B)/log(PyLong_BASE) via continued
fractions, giving a sequence i/j of "the best" rational approximations. Then
j*log(B)/log(BASE) is approximately equal to (the integer) i. This shows that
j*log(B)/log(PyLong_BASE) is approximately equal to (the integer) i. This shows that
we can get very close to being in trouble, but very rarely. For example,
76573 is a denominator in one of the continued-fraction approximations to
log(10)/log(2**15), and indeed:
@ -1562,19 +1562,19 @@ digit beyond the first.
digit *pz, *pzstop;
char* scan;
static double log_base_BASE[37] = {0.0e0,};
static double log_base_PyLong_BASE[37] = {0.0e0,};
static int convwidth_base[37] = {0,};
static twodigits convmultmax_base[37] = {0,};
if (log_base_BASE[base] == 0.0) {
if (log_base_PyLong_BASE[base] == 0.0) {
twodigits convmax = base;
int i = 1;
log_base_BASE[base] = log((double)base) /
log((double)BASE);
log_base_PyLong_BASE[base] = log((double)base) /
log((double)PyLong_BASE);
for (;;) {
twodigits next = convmax * base;
if (next > BASE)
if (next > PyLong_BASE)
break;
convmax = next;
++i;
@ -1594,7 +1594,7 @@ digit beyond the first.
* need to initialize z->ob_digit -- no slot is read up before
* being stored into.
*/
size_z = (Py_ssize_t)((scan - str) * log_base_BASE[base]) + 1;
size_z = (Py_ssize_t)((scan - str) * log_base_PyLong_BASE[base]) + 1;
/* Uncomment next line to test exceedingly rare copy code */
/* size_z = 1; */
assert(size_z > 0);
@ -1616,7 +1616,7 @@ digit beyond the first.
for (i = 1; i < convwidth && str != scan; ++i, ++str) {
c = (twodigits)(c * base +
_PyLong_DigitValue[Py_CHARMASK(*str)]);
assert(c < BASE);
assert(c < PyLong_BASE);
}
convmult = convmultmax;
@ -1634,12 +1634,12 @@ digit beyond the first.
pzstop = pz + Py_SIZE(z);
for (; pz < pzstop; ++pz) {
c += (twodigits)*pz * convmult;
*pz = (digit)(c & MASK);
c >>= SHIFT;
*pz = (digit)(c & PyLong_MASK);
c >>= PyLong_SHIFT;
}
/* carry off the current end? */
if (c) {
assert(c < BASE);
assert(c < PyLong_BASE);
if (Py_SIZE(z) < size_z) {
*pz = (digit)c;
++Py_SIZE(z);
@ -1783,7 +1783,7 @@ static PyLongObject *
x_divrem(PyLongObject *v1, PyLongObject *w1, PyLongObject **prem)
{
Py_ssize_t size_v = ABS(Py_SIZE(v1)), size_w = ABS(Py_SIZE(w1));
digit d = (digit) ((twodigits)BASE / (w1->ob_digit[size_w-1] + 1));
digit d = (digit) ((twodigits)PyLong_BASE / (w1->ob_digit[size_w-1] + 1));
PyLongObject *v = mul1(v1, d);
PyLongObject *w = mul1(w1, d);
PyLongObject *a;
@ -1815,28 +1815,28 @@ x_divrem(PyLongObject *v1, PyLongObject *w1, PyLongObject **prem)
break;
})
if (vj == w->ob_digit[size_w-1])
q = MASK;
q = PyLong_MASK;
else
q = (((twodigits)vj << SHIFT) + v->ob_digit[j-1]) /
q = (((twodigits)vj << PyLong_SHIFT) + v->ob_digit[j-1]) /
w->ob_digit[size_w-1];
while (w->ob_digit[size_w-2]*q >
((
((twodigits)vj << SHIFT)
((twodigits)vj << PyLong_SHIFT)
+ v->ob_digit[j-1]
- q*w->ob_digit[size_w-1]
) << SHIFT)
) << PyLong_SHIFT)
+ v->ob_digit[j-2])
--q;
for (i = 0; i < size_w && i+k < size_v; ++i) {
twodigits z = w->ob_digit[i] * q;
digit zz = (digit) (z >> SHIFT);
digit zz = (digit) (z >> PyLong_SHIFT);
carry += v->ob_digit[i+k] - z
+ ((twodigits)zz << SHIFT);
v->ob_digit[i+k] = (digit)(carry & MASK);
carry = Py_ARITHMETIC_RIGHT_SHIFT(BASE_TWODIGITS_TYPE,
carry, SHIFT);
+ ((twodigits)zz << PyLong_SHIFT);
v->ob_digit[i+k] = (digit)(carry & PyLong_MASK);
carry = Py_ARITHMETIC_RIGHT_SHIFT(PyLong_BASE_TWODIGITS_TYPE,
carry, PyLong_SHIFT);
carry -= zz;
}
@ -1853,10 +1853,10 @@ x_divrem(PyLongObject *v1, PyLongObject *w1, PyLongObject **prem)
carry = 0;
for (i = 0; i < size_w && i+k < size_v; ++i) {
carry += v->ob_digit[i+k] + w->ob_digit[i];
v->ob_digit[i+k] = (digit)(carry & MASK);
v->ob_digit[i+k] = (digit)(carry & PyLong_MASK);
carry = Py_ARITHMETIC_RIGHT_SHIFT(
BASE_TWODIGITS_TYPE,
carry, SHIFT);
PyLong_BASE_TWODIGITS_TYPE,
carry, PyLong_SHIFT);
}
}
} /* for j, k */
@ -1940,13 +1940,13 @@ long_hash(PyLongObject *v)
sign = -1;
i = -(i);
}
#define LONG_BIT_SHIFT (8*sizeof(long) - SHIFT)
#define LONG_BIT_PyLong_SHIFT (8*sizeof(long) - PyLong_SHIFT)
/* The following loop produces a C long x such that (unsigned long)x
is congruent to the absolute value of v modulo ULONG_MAX. The
resulting x is nonzero if and only if v is. */
while (--i >= 0) {
/* Force a native long #-bits (32 or 64) circular shift */
x = ((x << SHIFT) & ~MASK) | ((x >> LONG_BIT_SHIFT) & MASK);
x = ((x << PyLong_SHIFT) & ~PyLong_MASK) | ((x >> LONG_BIT_PyLong_SHIFT) & PyLong_MASK);
x += v->ob_digit[i];
/* If the addition above overflowed (thinking of x as
unsigned), we compensate by incrementing. This preserves
@ -1954,7 +1954,7 @@ long_hash(PyLongObject *v)
if ((unsigned long)x < v->ob_digit[i])
x++;
}
#undef LONG_BIT_SHIFT
#undef LONG_BIT_PyLong_SHIFT
x = x * sign;
if (x == -1)
x = -2;
@ -1984,13 +1984,13 @@ x_add(PyLongObject *a, PyLongObject *b)
return NULL;
for (i = 0; i < size_b; ++i) {
carry += a->ob_digit[i] + b->ob_digit[i];
z->ob_digit[i] = carry & MASK;
carry >>= SHIFT;
z->ob_digit[i] = carry & PyLong_MASK;
carry >>= PyLong_SHIFT;
}
for (; i < size_a; ++i) {
carry += a->ob_digit[i];
z->ob_digit[i] = carry & MASK;
carry >>= SHIFT;
z->ob_digit[i] = carry & PyLong_MASK;
carry >>= PyLong_SHIFT;
}
z->ob_digit[i] = carry;
return long_normalize(z);
@ -2033,16 +2033,16 @@ x_sub(PyLongObject *a, PyLongObject *b)
return NULL;
for (i = 0; i < size_b; ++i) {
/* The following assumes unsigned arithmetic
works module 2**N for some N>SHIFT. */
works module 2**N for some N>PyLong_SHIFT. */
borrow = a->ob_digit[i] - b->ob_digit[i] - borrow;
z->ob_digit[i] = borrow & MASK;
borrow >>= SHIFT;
z->ob_digit[i] = borrow & PyLong_MASK;
borrow >>= PyLong_SHIFT;
borrow &= 1; /* Keep only one sign bit */
}
for (; i < size_a; ++i) {
borrow = a->ob_digit[i] - borrow;
z->ob_digit[i] = borrow & MASK;
borrow >>= SHIFT;
z->ob_digit[i] = borrow & PyLong_MASK;
borrow >>= PyLong_SHIFT;
borrow &= 1; /* Keep only one sign bit */
}
assert(borrow == 0);
@ -2140,9 +2140,9 @@ x_mul(PyLongObject *a, PyLongObject *b)
})
carry = *pz + f * f;
*pz++ = (digit)(carry & MASK);
carry >>= SHIFT;
assert(carry <= MASK);
*pz++ = (digit)(carry & PyLong_MASK);
carry >>= PyLong_SHIFT;
assert(carry <= PyLong_MASK);
/* Now f is added in twice in each column of the
* pyramid it appears. Same as adding f<<1 once.
@ -2150,18 +2150,18 @@ x_mul(PyLongObject *a, PyLongObject *b)
f <<= 1;
while (pa < paend) {
carry += *pz + *pa++ * f;
*pz++ = (digit)(carry & MASK);
carry >>= SHIFT;
assert(carry <= (MASK << 1));
*pz++ = (digit)(carry & PyLong_MASK);
carry >>= PyLong_SHIFT;
assert(carry <= (PyLong_MASK << 1));
}
if (carry) {
carry += *pz;
*pz++ = (digit)(carry & MASK);
carry >>= SHIFT;
*pz++ = (digit)(carry & PyLong_MASK);
carry >>= PyLong_SHIFT;
}
if (carry)
*pz += (digit)(carry & MASK);
assert((carry >> SHIFT) == 0);
*pz += (digit)(carry & PyLong_MASK);
assert((carry >> PyLong_SHIFT) == 0);
}
}
else { /* a is not the same as b -- gradeschool long mult */
@ -2179,13 +2179,13 @@ x_mul(PyLongObject *a, PyLongObject *b)
while (pb < pbend) {
carry += *pz + *pb++ * f;
*pz++ = (digit)(carry & MASK);
carry >>= SHIFT;
assert(carry <= MASK);
*pz++ = (digit)(carry & PyLong_MASK);
carry >>= PyLong_SHIFT;
assert(carry <= PyLong_MASK);
}
if (carry)
*pz += (digit)(carry & MASK);
assert((carry >> SHIFT) == 0);
*pz += (digit)(carry & PyLong_MASK);
assert((carry >> PyLong_SHIFT) == 0);
}
}
return long_normalize(z);
@ -2304,7 +2304,7 @@ k_mul(PyLongObject *a, PyLongObject *b)
* 4. Subtract al*bl from the result, starting at shift. This may
* underflow (borrow out of the high digit), but we don't care:
* we're effectively doing unsigned arithmetic mod
* BASE**(sizea + sizeb), and so long as the *final* result fits,
* PyLong_BASE**(sizea + sizeb), and so long as the *final* result fits,
* borrows and carries out of the high digit can be ignored.
* 5. Subtract ah*bh from the result, starting at shift.
* 6. Compute (ah+al)*(bh+bl), and add it into the result starting
@ -2431,7 +2431,7 @@ the question reduces to whether asize digits is enough to hold
(asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits. If asize < bsize,
then we're asking whether asize digits >= f(bsize/2) digits + 2 bits. By #4,
asize is at least f(bsize/2)+1 digits, so this in turn reduces to whether 1
digit is enough to hold 2 bits. This is so since SHIFT=15 >= 2. If
digit is enough to hold 2 bits. This is so since PyLong_SHIFT=15 >= 2. If
asize == bsize, then we're asking whether bsize digits is enough to hold
c(bsize/2) digits + 2 bits, or equivalently (by #1) whether f(bsize/2) digits
is enough to hold 2 bits. This is so if bsize >= 2, which holds because
@ -2643,15 +2643,15 @@ long_true_divide(PyObject *v, PyObject *w)
return NULL;
}
/* True value is very close to ad/bd * 2**(SHIFT*(aexp-bexp)) */
/* True value is very close to ad/bd * 2**(PyLong_SHIFT*(aexp-bexp)) */
ad /= bd; /* overflow/underflow impossible here */
aexp -= bexp;
if (aexp > INT_MAX / SHIFT)
if (aexp > INT_MAX / PyLong_SHIFT)
goto overflow;
else if (aexp < -(INT_MAX / SHIFT))
else if (aexp < -(INT_MAX / PyLong_SHIFT))
return PyFloat_FromDouble(0.0); /* underflow to 0 */
errno = 0;
ad = ldexp(ad, aexp * SHIFT);
ad = ldexp(ad, aexp * PyLong_SHIFT);
if (Py_OVERFLOWED(ad)) /* ignore underflow to 0.0 */
goto overflow;
return PyFloat_FromDouble(ad);
@ -2837,7 +2837,7 @@ long_pow(PyObject *v, PyObject *w, PyObject *x)
for (i = Py_SIZE(b) - 1; i >= 0; --i) {
digit bi = b->ob_digit[i];
for (j = 1 << (SHIFT-1); j != 0; j >>= 1) {
for (j = 1 << (PyLong_SHIFT-1); j != 0; j >>= 1) {
MULT(z, z, z)
if (bi & j)
MULT(z, a, z)
@ -2854,7 +2854,7 @@ long_pow(PyObject *v, PyObject *w, PyObject *x)
for (i = Py_SIZE(b) - 1; i >= 0; --i) {
const digit bi = b->ob_digit[i];
for (j = SHIFT - 5; j >= 0; j -= 5) {
for (j = PyLong_SHIFT - 5; j >= 0; j -= 5) {
const int index = (bi >> j) & 0x1f;
for (k = 0; k < 5; ++k)
MULT(z, z, z)
@ -2973,7 +2973,7 @@ long_rshift(PyLongObject *v, PyLongObject *w)
"negative shift count");
goto rshift_error;
}
wordshift = shiftby / SHIFT;
wordshift = shiftby / PyLong_SHIFT;
newsize = ABS(Py_SIZE(a)) - wordshift;
if (newsize <= 0) {
z = _PyLong_New(0);
@ -2981,10 +2981,10 @@ long_rshift(PyLongObject *v, PyLongObject *w)
Py_DECREF(b);
return (PyObject *)z;
}
loshift = shiftby % SHIFT;
hishift = SHIFT - loshift;
loshift = shiftby % PyLong_SHIFT;
hishift = PyLong_SHIFT - loshift;
lomask = ((digit)1 << hishift) - 1;
himask = MASK ^ lomask;
himask = PyLong_MASK ^ lomask;
z = _PyLong_New(newsize);
if (z == NULL)
goto rshift_error;
@ -3029,9 +3029,9 @@ long_lshift(PyObject *v, PyObject *w)
"outrageous left shift count");
goto lshift_error;
}
/* wordshift, remshift = divmod(shiftby, SHIFT) */
wordshift = (int)shiftby / SHIFT;
remshift = (int)shiftby - wordshift * SHIFT;
/* wordshift, remshift = divmod(shiftby, PyLong_SHIFT) */
wordshift = (int)shiftby / PyLong_SHIFT;
remshift = (int)shiftby - wordshift * PyLong_SHIFT;
oldsize = ABS(a->ob_size);
newsize = oldsize + wordshift;
@ -3047,8 +3047,8 @@ long_lshift(PyObject *v, PyObject *w)
accum = 0;
for (i = wordshift, j = 0; j < oldsize; i++, j++) {
accum |= (twodigits)a->ob_digit[j] << remshift;
z->ob_digit[i] = (digit)(accum & MASK);
accum >>= SHIFT;
z->ob_digit[i] = (digit)(accum & PyLong_MASK);
accum >>= PyLong_SHIFT;
}
if (remshift)
z->ob_digit[newsize-1] = (digit)accum;
@ -3069,7 +3069,7 @@ long_bitwise(PyLongObject *a,
int op, /* '&', '|', '^' */
PyLongObject *b)
{
digit maska, maskb; /* 0 or MASK */
digit maska, maskb; /* 0 or PyLong_MASK */
int negz;
Py_ssize_t size_a, size_b, size_z;
PyLongObject *z;
@ -3081,7 +3081,7 @@ long_bitwise(PyLongObject *a,
a = (PyLongObject *) long_invert(a);
if (a == NULL)
return NULL;
maska = MASK;
maska = PyLong_MASK;
}
else {
Py_INCREF(a);
@ -3093,7 +3093,7 @@ long_bitwise(PyLongObject *a,
Py_DECREF(a);
return NULL;
}
maskb = MASK;
maskb = PyLong_MASK;
}
else {
Py_INCREF(b);
@ -3104,23 +3104,23 @@ long_bitwise(PyLongObject *a,
switch (op) {
case '^':
if (maska != maskb) {
maska ^= MASK;
maska ^= PyLong_MASK;
negz = -1;
}
break;
case '&':
if (maska && maskb) {
op = '|';
maska ^= MASK;
maskb ^= MASK;
maska ^= PyLong_MASK;
maskb ^= PyLong_MASK;
negz = -1;
}
break;
case '|':
if (maska || maskb) {
op = '&';
maska ^= MASK;
maskb ^= MASK;
maska ^= PyLong_MASK;
maskb ^= PyLong_MASK;
negz = -1;
}
break;