mirror of
https://github.com/python/cpython.git
synced 2025-08-04 08:59:19 +00:00
bpo-38530: Refactor and improve AttributeError suggestions (GH-25776)
- Make case-swaps half the cost of any other edit - Refactor Levenshtein code to not use memory allocator, and to bail early on no match. - Add comments to Levenshtein distance code - Add test cases for Levenshtein distance behind a debug macro - Set threshold to `(name_size + item_size + 3) * MOVE_COST / 6`. - Reasoning: similar to `difflib.SequenceMatcher.ratio()` >= 2/3: ``` "Multiset Jaccard similarity" >= 2/3 matching letters / total letters >= 2/3 (name_size - distance + item_size - distance) / (name_size + item_size) >= 2/3 1 - (2*distance) / (name_size + item_size) >= 2/3 1/3 >= (2*distance) / (name_size + item_size) (name_size + item_size) / 6 >= distance With rounding: (name_size + item_size + 3) // 6 >= distance ``` Co-authored-by: Pablo Galindo <pablogsal@gmail.com>
This commit is contained in:
parent
c715b52421
commit
80a2a4ed7d
4 changed files with 303 additions and 77 deletions
|
@ -3,78 +3,129 @@
|
|||
|
||||
#include "pycore_pyerrors.h"
|
||||
|
||||
#define MAX_DISTANCE 3
|
||||
#define MAX_CANDIDATE_ITEMS 160
|
||||
#define MAX_STRING_SIZE 25
|
||||
#define MAX_CANDIDATE_ITEMS 750
|
||||
#define MAX_STRING_SIZE 40
|
||||
|
||||
#define MOVE_COST 2
|
||||
#define CASE_COST 1
|
||||
|
||||
#define LEAST_FIVE_BITS(n) ((n) & 31)
|
||||
|
||||
static inline int
|
||||
substitution_cost(char a, char b)
|
||||
{
|
||||
if (LEAST_FIVE_BITS(a) != LEAST_FIVE_BITS(b)) {
|
||||
// Not the same, not a case flip.
|
||||
return MOVE_COST;
|
||||
}
|
||||
if (a == b) {
|
||||
return 0;
|
||||
}
|
||||
if ('A' <= a && a <= 'Z') {
|
||||
a += ('a' - 'A');
|
||||
}
|
||||
if ('A' <= b && b <= 'Z') {
|
||||
b += ('a' - 'A');
|
||||
}
|
||||
if (a == b) {
|
||||
return CASE_COST;
|
||||
}
|
||||
return MOVE_COST;
|
||||
}
|
||||
|
||||
/* Calculate the Levenshtein distance between string1 and string2 */
|
||||
static Py_ssize_t
|
||||
levenshtein_distance(const char *a, size_t a_size,
|
||||
const char *b, size_t b_size) {
|
||||
|
||||
if (a_size > MAX_STRING_SIZE || b_size > MAX_STRING_SIZE) {
|
||||
return 0;
|
||||
}
|
||||
const char *b, size_t b_size,
|
||||
size_t max_cost)
|
||||
{
|
||||
static size_t buffer[MAX_STRING_SIZE];
|
||||
|
||||
// Both strings are the same (by identity)
|
||||
if (a == b) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
// The first string is empty
|
||||
if (a_size == 0) {
|
||||
return b_size;
|
||||
// Trim away common affixes.
|
||||
while (a_size && b_size && a[0] == b[0]) {
|
||||
a++; a_size--;
|
||||
b++; b_size--;
|
||||
}
|
||||
while (a_size && b_size && a[a_size-1] == b[b_size-1]) {
|
||||
a_size--;
|
||||
b_size--;
|
||||
}
|
||||
if (a_size == 0 || b_size == 0) {
|
||||
return (a_size + b_size) * MOVE_COST;
|
||||
}
|
||||
if (a_size > MAX_STRING_SIZE || b_size > MAX_STRING_SIZE) {
|
||||
return max_cost + 1;
|
||||
}
|
||||
|
||||
// The second string is empty
|
||||
if (b_size == 0) {
|
||||
return a_size;
|
||||
// Prefer shorter buffer
|
||||
if (b_size < a_size) {
|
||||
const char *t = a; a = b; b = t;
|
||||
size_t t_size = a_size; a_size = b_size; b_size = t_size;
|
||||
}
|
||||
|
||||
size_t *buffer = PyMem_Calloc(a_size, sizeof(size_t));
|
||||
if (buffer == NULL) {
|
||||
return -1;
|
||||
// quick fail when a match is impossible.
|
||||
if ((b_size - a_size) * MOVE_COST > max_cost) {
|
||||
return max_cost + 1;
|
||||
}
|
||||
|
||||
// Instead of producing the whole traditional len(a)-by-len(b)
|
||||
// matrix, we can update just one row in place.
|
||||
// Initialize the buffer row
|
||||
size_t index = 0;
|
||||
while (index < a_size) {
|
||||
buffer[index] = index + 1;
|
||||
index++;
|
||||
for (size_t i = 0; i < a_size; i++) {
|
||||
// cost from b[:0] to a[:i+1]
|
||||
buffer[i] = (i + 1) * MOVE_COST;
|
||||
}
|
||||
|
||||
size_t b_index = 0;
|
||||
size_t result = 0;
|
||||
while (b_index < b_size) {
|
||||
for (size_t b_index = 0; b_index < b_size; b_index++) {
|
||||
char code = b[b_index];
|
||||
size_t distance = result = b_index++;
|
||||
index = SIZE_MAX;
|
||||
while (++index < a_size) {
|
||||
size_t b_distance = code == a[index] ? distance : distance + 1;
|
||||
// cost(b[:b_index], a[:0]) == b_index * MOVE_COST
|
||||
size_t distance = result = b_index * MOVE_COST;
|
||||
size_t minimum = SIZE_MAX;
|
||||
for (size_t index = 0; index < a_size; index++) {
|
||||
|
||||
// cost(b[:b_index+1], a[:index+1]) = min(
|
||||
// // 1) substitute
|
||||
// cost(b[:b_index], a[:index])
|
||||
// + substitution_cost(b[b_index], a[index]),
|
||||
// // 2) delete from b
|
||||
// cost(b[:b_index], a[:index+1]) + MOVE_COST,
|
||||
// // 3) delete from a
|
||||
// cost(b[:b_index+1], a[index]) + MOVE_COST
|
||||
// )
|
||||
|
||||
// 1) Previous distance in this row is cost(b[:b_index], a[:index])
|
||||
size_t substitute = distance + substitution_cost(code, a[index]);
|
||||
// 2) cost(b[:b_index], a[:index+1]) from previous row
|
||||
distance = buffer[index];
|
||||
if (distance > result) {
|
||||
if (b_distance > result) {
|
||||
result = result + 1;
|
||||
} else {
|
||||
result = b_distance;
|
||||
}
|
||||
} else {
|
||||
if (b_distance > distance) {
|
||||
result = distance + 1;
|
||||
} else {
|
||||
result = b_distance;
|
||||
}
|
||||
}
|
||||
// 3) existing result is cost(b[:b_index+1], a[index])
|
||||
|
||||
size_t insert_delete = Py_MIN(result, distance) + MOVE_COST;
|
||||
result = Py_MIN(insert_delete, substitute);
|
||||
|
||||
// cost(b[:b_index+1], a[:index+1])
|
||||
buffer[index] = result;
|
||||
if (result < minimum) {
|
||||
minimum = result;
|
||||
}
|
||||
}
|
||||
if (minimum > max_cost) {
|
||||
// Everything in this row is too big, so bail early.
|
||||
return max_cost + 1;
|
||||
}
|
||||
}
|
||||
PyMem_Free(buffer);
|
||||
return result;
|
||||
}
|
||||
|
||||
static inline PyObject *
|
||||
calculate_suggestions(PyObject *dir,
|
||||
PyObject *name) {
|
||||
PyObject *name)
|
||||
{
|
||||
assert(!PyErr_Occurred());
|
||||
assert(PyList_CheckExact(dir));
|
||||
|
||||
|
@ -83,13 +134,14 @@ calculate_suggestions(PyObject *dir,
|
|||
return NULL;
|
||||
}
|
||||
|
||||
Py_ssize_t suggestion_distance = PyUnicode_GetLength(name);
|
||||
Py_ssize_t suggestion_distance = PY_SSIZE_T_MAX;
|
||||
PyObject *suggestion = NULL;
|
||||
Py_ssize_t name_size;
|
||||
const char *name_str = PyUnicode_AsUTF8AndSize(name, &name_size);
|
||||
if (name_str == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
for (int i = 0; i < dir_size; ++i) {
|
||||
PyObject *item = PyList_GET_ITEM(dir, i);
|
||||
Py_ssize_t item_size;
|
||||
|
@ -97,15 +149,14 @@ calculate_suggestions(PyObject *dir,
|
|||
if (item_str == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
Py_ssize_t current_distance = levenshtein_distance(
|
||||
name_str, name_size, item_str, item_size);
|
||||
if (current_distance == -1) {
|
||||
return NULL;
|
||||
}
|
||||
if (current_distance == 0 ||
|
||||
current_distance > MAX_DISTANCE ||
|
||||
current_distance * 2 > name_size)
|
||||
{
|
||||
// No more than 1/3 of the involved characters should need changed.
|
||||
Py_ssize_t max_distance = (name_size + item_size + 3) * MOVE_COST / 6;
|
||||
// Don't take matches we've already beaten.
|
||||
max_distance = Py_MIN(max_distance, suggestion_distance - 1);
|
||||
Py_ssize_t current_distance =
|
||||
levenshtein_distance(name_str, name_size,
|
||||
item_str, item_size, max_distance);
|
||||
if (current_distance > max_distance) {
|
||||
continue;
|
||||
}
|
||||
if (!suggestion || current_distance < suggestion_distance) {
|
||||
|
@ -113,15 +164,13 @@ calculate_suggestions(PyObject *dir,
|
|||
suggestion_distance = current_distance;
|
||||
}
|
||||
}
|
||||
if (!suggestion) {
|
||||
return NULL;
|
||||
}
|
||||
Py_INCREF(suggestion);
|
||||
Py_XINCREF(suggestion);
|
||||
return suggestion;
|
||||
}
|
||||
|
||||
static PyObject *
|
||||
offer_suggestions_for_attribute_error(PyAttributeErrorObject *exc) {
|
||||
offer_suggestions_for_attribute_error(PyAttributeErrorObject *exc)
|
||||
{
|
||||
PyObject *name = exc->name; // borrowed reference
|
||||
PyObject *obj = exc->obj; // borrowed reference
|
||||
|
||||
|
@ -142,7 +191,8 @@ offer_suggestions_for_attribute_error(PyAttributeErrorObject *exc) {
|
|||
|
||||
|
||||
static PyObject *
|
||||
offer_suggestions_for_name_error(PyNameErrorObject *exc) {
|
||||
offer_suggestions_for_name_error(PyNameErrorObject *exc)
|
||||
{
|
||||
PyObject *name = exc->name; // borrowed reference
|
||||
PyTracebackObject *traceback = (PyTracebackObject *) exc->traceback; // borrowed reference
|
||||
// Abort if we don't have a variable name or we have an invalid one
|
||||
|
@ -194,7 +244,9 @@ offer_suggestions_for_name_error(PyNameErrorObject *exc) {
|
|||
// Offer suggestions for a given exception. Returns a python string object containing the
|
||||
// suggestions. This function returns NULL if no suggestion was found or if an exception happened,
|
||||
// users must call PyErr_Occurred() to disambiguate.
|
||||
PyObject *_Py_Offer_Suggestions(PyObject *exception) {
|
||||
PyObject *
|
||||
_Py_Offer_Suggestions(PyObject *exception)
|
||||
{
|
||||
PyObject *result = NULL;
|
||||
assert(!PyErr_Occurred());
|
||||
if (Py_IS_TYPE(exception, (PyTypeObject*)PyExc_AttributeError)) {
|
||||
|
@ -205,3 +257,22 @@ PyObject *_Py_Offer_Suggestions(PyObject *exception) {
|
|||
return result;
|
||||
}
|
||||
|
||||
Py_ssize_t
|
||||
_Py_UTF8_Edit_Cost(PyObject *a, PyObject *b, Py_ssize_t max_cost)
|
||||
{
|
||||
assert(PyUnicode_Check(a) && PyUnicode_Check(b));
|
||||
Py_ssize_t size_a, size_b;
|
||||
const char *utf8_a = PyUnicode_AsUTF8AndSize(a, &size_a);
|
||||
if (utf8_a == NULL) {
|
||||
return -1;
|
||||
}
|
||||
const char *utf8_b = PyUnicode_AsUTF8AndSize(b, &size_b);
|
||||
if (utf8_b == NULL) {
|
||||
return -1;
|
||||
}
|
||||
if (max_cost == -1) {
|
||||
max_cost = MOVE_COST * Py_MAX(size_a, size_b);
|
||||
}
|
||||
return levenshtein_distance(utf8_a, size_a, utf8_b, size_b, max_cost);
|
||||
}
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue