mirror of
https://github.com/python/cpython.git
synced 2025-08-03 16:39:00 +00:00
totally redone for new overloading scheme
This commit is contained in:
parent
72eb83ca25
commit
81a12bceb6
1 changed files with 262 additions and 59 deletions
|
@ -1,85 +1,288 @@
|
|||
# Complex numbers
|
||||
# ---------------
|
||||
|
||||
# This module represents complex numbers as instances of the class Complex.
|
||||
# A Complex instance z has two data attribues, z.re (the real part) and z.im
|
||||
# (the imaginary part). In fact, z.re and z.im can have any value -- all
|
||||
# arithmetic operators work regardless of the type of z.re and z.im (as long
|
||||
# as they support numerical operations).
|
||||
#
|
||||
# The following functions exist (Complex is actually a class):
|
||||
# Complex([re [,im]) -> creates a complex number from a real and an imaginary part
|
||||
# IsComplex(z) -> true iff z is a complex number (== has .re and .im attributes)
|
||||
# ToComplex(z) -> a complex number equal to z; z itself if IsComplex(z) is true
|
||||
# if z is a tuple(re, im) it will also be converted
|
||||
# PolarToComplex([r [,phi [,fullcircle]]]) ->
|
||||
# the complex number z for which r == z.radius() and phi == z.angle(fullcircle)
|
||||
# (r and phi default to 0)
|
||||
#
|
||||
# Complex numbers have the following methods:
|
||||
# z.abs() -> absolute value of z
|
||||
# z.radius() == z.abs()
|
||||
# z.angle([fullcircle]) -> angle from positive X axis; fullcircle gives units
|
||||
# z.phi([fullcircle]) == z.angle(fullcircle)
|
||||
#
|
||||
# These standard functions and unary operators accept complex arguments:
|
||||
# abs(z)
|
||||
# -z
|
||||
# +z
|
||||
# not z
|
||||
# repr(z) == `z`
|
||||
# str(z)
|
||||
# hash(z) -> a combination of hash(z.re) and hash(z.im) such that if z.im is zero
|
||||
# the result equals hash(z.re)
|
||||
# Note that hex(z) and oct(z) are not defined.
|
||||
#
|
||||
# These conversions accept complex arguments only if their imaginary part is zero:
|
||||
# int(z)
|
||||
# long(z)
|
||||
# float(z)
|
||||
#
|
||||
# The following operators accept two complex numbers, or one complex number
|
||||
# and one real number (int, long or float):
|
||||
# z1 + z2
|
||||
# z1 - z2
|
||||
# z1 * z2
|
||||
# z1 / z2
|
||||
# pow(z1, z2)
|
||||
# cmp(z1, z2)
|
||||
# Note that z1 % z2 and divmod(z1, z2) are not defined,
|
||||
# nor are shift and mask operations.
|
||||
#
|
||||
# The standard module math does not support complex numbers.
|
||||
# (I suppose it would be easy to implement a cmath module.)
|
||||
#
|
||||
# Idea:
|
||||
# add a class Polar(r, phi) and mixed-mode arithmetic which
|
||||
# chooses the most appropriate type for the result:
|
||||
# Complex for +,-,cmp
|
||||
# Polar for *,/,pow
|
||||
|
||||
|
||||
from math import sqrt
|
||||
import types, math
|
||||
|
||||
twopi = math.pi*2.0
|
||||
halfpi = math.pi/2.0
|
||||
|
||||
class complex:
|
||||
def IsComplex(obj):
|
||||
return hasattr(obj, 're') and hasattr(obj, 'im')
|
||||
|
||||
def __init__(self, re, im):
|
||||
self.re = float(re)
|
||||
self.im = float(im)
|
||||
def ToComplex(obj):
|
||||
if IsComplex(obj):
|
||||
return obj
|
||||
elif type(obj) == types.TupleType:
|
||||
return apply(Complex, obj)
|
||||
else:
|
||||
return Complex(obj)
|
||||
|
||||
def __coerce__(self, other):
|
||||
if type(other) == type(self):
|
||||
if other.__class__ == self.__class__:
|
||||
return self, other
|
||||
else:
|
||||
raise TypeError, 'cannot coerce to complex'
|
||||
else:
|
||||
# The cast to float() may raise an exception!
|
||||
return self, complex(float(other), 0.0)
|
||||
def PolarToComplex(r = 0, phi = 0, fullcircle = twopi):
|
||||
phi = phi * (twopi / fullcircle)
|
||||
return Complex(math.cos(phi)*r, math.sin(phi)*r)
|
||||
|
||||
def Re(obj):
|
||||
if IsComplex(obj):
|
||||
return obj.re
|
||||
else:
|
||||
return obj
|
||||
|
||||
def Im(obj):
|
||||
if IsComplex(obj):
|
||||
return obj.im
|
||||
else:
|
||||
return obj
|
||||
|
||||
class Complex:
|
||||
|
||||
def __init__(self, re=0, im=0):
|
||||
if IsComplex(re):
|
||||
im = i + Complex(0, re.im)
|
||||
re = re.re
|
||||
if IsComplex(im):
|
||||
re = re - im.im
|
||||
im = im.re
|
||||
self.__dict__['re'] = re
|
||||
self.__dict__['im'] = im
|
||||
|
||||
def __setattr__(self, name, value):
|
||||
raise TypeError, 'Complex numbers are immutable'
|
||||
|
||||
def __hash__(self):
|
||||
if not self.im: return hash(self.re)
|
||||
mod = sys.maxint + 1L
|
||||
return int((hash(self.re) + 2L*hash(self.im) + mod) % (2L*mod) - mod)
|
||||
|
||||
def __repr__(self):
|
||||
return 'complex' + `self.re, self.im`
|
||||
if not self.im:
|
||||
return 'Complex(%s)' % `self.re`
|
||||
else:
|
||||
return 'Complex(%s, %s)' % (`self.re`, `self.im`)
|
||||
|
||||
def __cmp__(a, b):
|
||||
a = a.__abs__()
|
||||
b = b.__abs__()
|
||||
return (a > b) - (a < b)
|
||||
def __str__(self):
|
||||
if not self.im:
|
||||
return `self.re`
|
||||
else:
|
||||
return 'Complex(%s, %s)' % (`self.re`, `self.im`)
|
||||
|
||||
def __neg__(self):
|
||||
return Complex(-self.re, -self.im)
|
||||
|
||||
def __pos__(self):
|
||||
return self
|
||||
|
||||
def __abs__(self):
|
||||
# XXX could be done differently to avoid overflow!
|
||||
return math.sqrt(self.re*self.re + self.im*self.im)
|
||||
|
||||
def __int__(self):
|
||||
if self.im:
|
||||
raise ValueError, "can't convert Complex with nonzero im to int"
|
||||
return int(self.re)
|
||||
|
||||
def __long__(self):
|
||||
if self.im:
|
||||
raise ValueError, "can't convert Complex with nonzero im to long"
|
||||
return long(self.re)
|
||||
|
||||
def __float__(self):
|
||||
if self.im:
|
||||
raise ValueError, 'cannot convert complex to float'
|
||||
raise ValueError, "can't convert Complex with nonzero im to float"
|
||||
return float(self.re)
|
||||
|
||||
def __long__(self):
|
||||
return long(float(self))
|
||||
def __cmp__(self, other):
|
||||
other = ToComplex(other)
|
||||
return cmp((self.re, self.im), (other.re, other.im))
|
||||
|
||||
def __int__(self):
|
||||
return int(float(self))
|
||||
def __rcmp__(self, other):
|
||||
other = ToComplex(other)
|
||||
return cmp(other, self)
|
||||
|
||||
def __nonzero__(self):
|
||||
return not (self.re == self.im == 0)
|
||||
|
||||
def __abs__(self):
|
||||
# XXX overflow?
|
||||
return sqrt(self.re*self.re + self.im*self.im)
|
||||
abs = radius = __abs__
|
||||
|
||||
def __add__(a, b):
|
||||
return complex(a.re + b.re, a.im + b.im)
|
||||
def angle(self, fullcircle = twopi):
|
||||
return (fullcircle/twopi) * ((halfpi - math.atan2(self.re, self.im)) % twopi)
|
||||
|
||||
def __sub__(a, b):
|
||||
return complex(a.re - b.re, a.im - b.im)
|
||||
phi = angle
|
||||
|
||||
def __mul__(a, b):
|
||||
return complex(a.re*b.re - a.im*b.im, a.re*b.im + a.im*b.re)
|
||||
def __add__(self, other):
|
||||
other = ToComplex(other)
|
||||
return Complex(self.re + other.re, self.im + other.im)
|
||||
|
||||
def __div__(a, b):
|
||||
q = (b.re*b.re + b.im*b.im)
|
||||
re = (a.re*b.re + a.im*b.im) / q
|
||||
im = (a.im*b.re - b.im*a.re) / q
|
||||
return complex(re, im)
|
||||
__radd__ = __add__
|
||||
|
||||
def __neg__(self):
|
||||
return complex(-self.re, -self.im)
|
||||
def __sub__(self, other):
|
||||
other = ToComplex(other)
|
||||
return Complex(self.re - other.re, self.im - other.im)
|
||||
|
||||
def __rsub__(self, other):
|
||||
other = ToComplex(other)
|
||||
return other - self
|
||||
|
||||
def __mul__(self, other):
|
||||
other = ToComplex(other)
|
||||
return Complex(self.re*other.re - self.im*other.im,
|
||||
self.re*other.im + self.im*other.re)
|
||||
|
||||
__rmul__ = __mul__
|
||||
|
||||
def __div__(self, other):
|
||||
other = ToComplex(other)
|
||||
d = float(other.re*other.re + other.im*other.im)
|
||||
if not d: raise ZeroDivisionError, 'Complex division'
|
||||
return Complex((self.re*other.re + self.im*other.im) / d,
|
||||
(self.im*other.re - self.re*other.im) / d)
|
||||
|
||||
def __rdiv__(self, other):
|
||||
other = ToComplex(other)
|
||||
return other / self
|
||||
|
||||
def __pow__(self, n, z=None):
|
||||
if z is not None:
|
||||
raise TypeError, 'Complex does not support ternary pow()'
|
||||
if IsComplex(n):
|
||||
if n.im: raise TypeError, 'Complex to the Complex power'
|
||||
n = n.re
|
||||
r = pow(self.abs(), n)
|
||||
phi = n*self.angle()
|
||||
return Complex(math.cos(phi)*r, math.sin(phi)*r)
|
||||
|
||||
def __rpow__(self, base):
|
||||
base = ToComplex(base)
|
||||
return pow(base, self)
|
||||
|
||||
|
||||
def checkop(expr, a, b, value, fuzz = 1e-6):
|
||||
import sys
|
||||
print ' ', a, 'and', b,
|
||||
try:
|
||||
result = eval(expr)
|
||||
except:
|
||||
result = sys.exc_type
|
||||
print '->', result
|
||||
if (type(result) == type('') or type(value) == type('')):
|
||||
ok = result == value
|
||||
else:
|
||||
ok = abs(result - value) <= fuzz
|
||||
if not ok:
|
||||
print '!!\t!!\t!! should be', value, 'diff', abs(result - value)
|
||||
|
||||
|
||||
def test():
|
||||
a = complex(2, 0)
|
||||
b = complex(3, 4)
|
||||
print a
|
||||
print b
|
||||
print a+b
|
||||
print a-b
|
||||
print a*b
|
||||
print a/b
|
||||
print b+a
|
||||
print b-a
|
||||
print b*a
|
||||
print b/a
|
||||
i = complex(0, 1)
|
||||
print i, i*i, i*i*i, i*i*i*i
|
||||
j = complex(1, 1)
|
||||
print j, j*j, j*j*j, j*j*j*j
|
||||
print abs(j), abs(j*j), abs(j*j*j), abs(j*j*j*j)
|
||||
print i/-i
|
||||
testsuite = {
|
||||
'a+b': [
|
||||
(1, 10, 11),
|
||||
(1, Complex(0,10), Complex(1,10)),
|
||||
(Complex(0,10), 1, Complex(1,10)),
|
||||
(Complex(0,10), Complex(1), Complex(1,10)),
|
||||
(Complex(1), Complex(0,10), Complex(1,10)),
|
||||
],
|
||||
'a-b': [
|
||||
(1, 10, -9),
|
||||
(1, Complex(0,10), Complex(1,-10)),
|
||||
(Complex(0,10), 1, Complex(-1,10)),
|
||||
(Complex(0,10), Complex(1), Complex(-1,10)),
|
||||
(Complex(1), Complex(0,10), Complex(1,-10)),
|
||||
],
|
||||
'a*b': [
|
||||
(1, 10, 10),
|
||||
(1, Complex(0,10), Complex(0, 10)),
|
||||
(Complex(0,10), 1, Complex(0,10)),
|
||||
(Complex(0,10), Complex(1), Complex(0,10)),
|
||||
(Complex(1), Complex(0,10), Complex(0,10)),
|
||||
],
|
||||
'a/b': [
|
||||
(1., 10, 0.1),
|
||||
(1, Complex(0,10), Complex(0, -0.1)),
|
||||
(Complex(0, 10), 1, Complex(0, 10)),
|
||||
(Complex(0, 10), Complex(1), Complex(0, 10)),
|
||||
(Complex(1), Complex(0,10), Complex(0, -0.1)),
|
||||
],
|
||||
'pow(a,b)': [
|
||||
(1, 10, 1),
|
||||
(1, Complex(0,10), 'TypeError'),
|
||||
(Complex(0,10), 1, Complex(0,10)),
|
||||
(Complex(0,10), Complex(1), Complex(0,10)),
|
||||
(Complex(1), Complex(0,10), 'TypeError'),
|
||||
(2, Complex(4,0), 16),
|
||||
],
|
||||
'cmp(a,b)': [
|
||||
(1, 10, -1),
|
||||
(1, Complex(0,10), 1),
|
||||
(Complex(0,10), 1, -1),
|
||||
(Complex(0,10), Complex(1), -1),
|
||||
(Complex(1), Complex(0,10), 1),
|
||||
],
|
||||
}
|
||||
exprs = testsuite.keys()
|
||||
exprs.sort()
|
||||
for expr in exprs:
|
||||
print expr + ':'
|
||||
t = (expr,)
|
||||
for item in testsuite[expr]:
|
||||
apply(checkop, t+item)
|
||||
|
||||
|
||||
test()
|
||||
if __name__ == '__main__':
|
||||
test()
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue