- Issue 4816: itertools.combinations() and itertools.product were raising

a ValueError for values of *r* larger than the input iterable.  They now
  correctly return an empty iterator.
This commit is contained in:
Raymond Hettinger 2009-01-08 05:20:19 +00:00
parent cd610ae7f2
commit 825758c50b
4 changed files with 51 additions and 20 deletions

View file

@ -71,11 +71,11 @@ class TestBasicOps(unittest.TestCase):
self.assertRaises(TypeError, list, chain.from_iterable([2, 3]))
def test_combinations(self):
self.assertRaises(TypeError, combinations, 'abc') # missing r argument
self.assertRaises(TypeError, combinations, 'abc') # missing r argument
self.assertRaises(TypeError, combinations, 'abc', 2, 1) # too many arguments
self.assertRaises(TypeError, combinations, None) # pool is not iterable
self.assertRaises(ValueError, combinations, 'abc', -2) # r is negative
self.assertRaises(ValueError, combinations, 'abc', 32) # r is too big
self.assertEqual(list(combinations('abc', 32)), []) # r > n
self.assertEqual(list(combinations(range(4), 3)),
[(0,1,2), (0,1,3), (0,2,3), (1,2,3)])
@ -83,6 +83,8 @@ class TestBasicOps(unittest.TestCase):
'Pure python version shown in the docs'
pool = tuple(iterable)
n = len(pool)
if r > n:
return
indices = range(r)
yield tuple(pool[i] for i in indices)
while 1:
@ -106,9 +108,9 @@ class TestBasicOps(unittest.TestCase):
for n in range(7):
values = [5*x-12 for x in range(n)]
for r in range(n+1):
for r in range(n+2):
result = list(combinations(values, r))
self.assertEqual(len(result), fact(n) / fact(r) / fact(n-r)) # right number of combs
self.assertEqual(len(result), 0 if r>n else fact(n) / fact(r) / fact(n-r)) # right number of combs
self.assertEqual(len(result), len(set(result))) # no repeats
self.assertEqual(result, sorted(result)) # lexicographic order
for c in result:
@ -119,7 +121,7 @@ class TestBasicOps(unittest.TestCase):
self.assertEqual(list(c),
[e for e in values if e in c]) # comb is a subsequence of the input iterable
self.assertEqual(result, list(combinations1(values, r))) # matches first pure python version
self.assertEqual(result, list(combinations2(values, r))) # matches first pure python version
self.assertEqual(result, list(combinations2(values, r))) # matches second pure python version
# Test implementation detail: tuple re-use
self.assertEqual(len(set(map(id, combinations('abcde', 3)))), 1)
@ -130,7 +132,7 @@ class TestBasicOps(unittest.TestCase):
self.assertRaises(TypeError, permutations, 'abc', 2, 1) # too many arguments
self.assertRaises(TypeError, permutations, None) # pool is not iterable
self.assertRaises(ValueError, permutations, 'abc', -2) # r is negative
self.assertRaises(ValueError, permutations, 'abc', 32) # r is too big
self.assertEqual(list(permutations('abc', 32)), []) # r > n
self.assertRaises(TypeError, permutations, 'abc', 's') # r is not an int or None
self.assertEqual(list(permutations(range(3), 2)),
[(0,1), (0,2), (1,0), (1,2), (2,0), (2,1)])
@ -140,6 +142,8 @@ class TestBasicOps(unittest.TestCase):
pool = tuple(iterable)
n = len(pool)
r = n if r is None else r
if r > n:
return
indices = range(n)
cycles = range(n, n-r, -1)
yield tuple(pool[i] for i in indices[:r])
@ -168,9 +172,9 @@ class TestBasicOps(unittest.TestCase):
for n in range(7):
values = [5*x-12 for x in range(n)]
for r in range(n+1):
for r in range(n+2):
result = list(permutations(values, r))
self.assertEqual(len(result), fact(n) / fact(n-r)) # right number of perms
self.assertEqual(len(result), 0 if r>n else fact(n) / fact(n-r)) # right number of perms
self.assertEqual(len(result), len(set(result))) # no repeats
self.assertEqual(result, sorted(result)) # lexicographic order
for p in result:
@ -178,7 +182,7 @@ class TestBasicOps(unittest.TestCase):
self.assertEqual(len(set(p)), r) # no duplicate elements
self.assert_(all(e in values for e in p)) # elements taken from input iterable
self.assertEqual(result, list(permutations1(values, r))) # matches first pure python version
self.assertEqual(result, list(permutations2(values, r))) # matches first pure python version
self.assertEqual(result, list(permutations2(values, r))) # matches second pure python version
if r == n:
self.assertEqual(result, list(permutations(values, None))) # test r as None
self.assertEqual(result, list(permutations(values))) # test default r
@ -1363,6 +1367,26 @@ perform as purported.
>>> list(combinations_with_replacement('abc', 2))
[('a', 'a'), ('a', 'b'), ('a', 'c'), ('b', 'b'), ('b', 'c'), ('c', 'c')]
>>> list(combinations_with_replacement('01', 3))
[('0', '0', '0'), ('0', '0', '1'), ('0', '1', '1'), ('1', '1', '1')]
>>> def combinations_with_replacement2(iterable, r):
... 'Alternate version that filters from product()'
... pool = tuple(iterable)
... n = len(pool)
... for indices in product(range(n), repeat=r):
... if sorted(indices) == list(indices):
... yield tuple(pool[i] for i in indices)
>>> list(combinations_with_replacement('abc', 2)) == list(combinations_with_replacement2('abc', 2))
True
>>> list(combinations_with_replacement('01', 3)) == list(combinations_with_replacement2('01', 3))
True
>>> list(combinations_with_replacement('2310', 6)) == list(combinations_with_replacement2('2310', 6))
True
>>> list(unique_everseen('AAAABBBCCDAABBB'))
['A', 'B', 'C', 'D']