mirror of
https://github.com/python/cpython.git
synced 2025-08-03 16:39:00 +00:00
Merged revisions 77494 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/branches/py3k ................ r77494 | mark.dickinson | 2010-01-14 15:37:49 +0000 (Thu, 14 Jan 2010) | 41 lines Merged revisions 77477-77478,77481-77483,77490-77493 via svnmerge from svn+ssh://pythondev@svn.python.org/python/trunk ........ r77477 | mark.dickinson | 2010-01-13 18:21:53 +0000 (Wed, 13 Jan 2010) | 1 line Add comments explaining the role of the bigcomp function in dtoa.c. ........ r77478 | mark.dickinson | 2010-01-13 19:02:37 +0000 (Wed, 13 Jan 2010) | 1 line Clarify that sulp expects a nonnegative input, but that +0.0 is fine. ........ r77481 | mark.dickinson | 2010-01-13 20:55:03 +0000 (Wed, 13 Jan 2010) | 1 line Simplify and annotate the bigcomp function, removing unused special cases. ........ r77482 | mark.dickinson | 2010-01-13 22:15:53 +0000 (Wed, 13 Jan 2010) | 1 line Fix buggy comparison: LHS of comparison was being treated as unsigned. ........ r77483 | mark.dickinson | 2010-01-13 22:20:10 +0000 (Wed, 13 Jan 2010) | 1 line More dtoa.c cleanup; remove the need for bc.dplen, bc.dp0 and bc.dp1. ........ r77490 | mark.dickinson | 2010-01-14 13:02:36 +0000 (Thu, 14 Jan 2010) | 1 line Fix off-by-one error introduced in r77483. I have a test for this, but it currently fails due to a different dtoa.c bug; I'll add the test once that bug is fixed. ........ r77491 | mark.dickinson | 2010-01-14 13:14:49 +0000 (Thu, 14 Jan 2010) | 1 line Issue 7632: fix a dtoa.c bug (bug 6) causing incorrect rounding. Tests to follow. ........ r77492 | mark.dickinson | 2010-01-14 14:40:20 +0000 (Thu, 14 Jan 2010) | 1 line Issue 7632: fix incorrect rounding for long input strings with values very close to a power of 2. (See Bug 4 in the tracker discussion.) ........ r77493 | mark.dickinson | 2010-01-14 15:22:33 +0000 (Thu, 14 Jan 2010) | 1 line Issue #7632: add tests for bugs fixed so far. ........ ................
This commit is contained in:
parent
d16b2a121e
commit
9000c1614d
2 changed files with 418 additions and 117 deletions
266
Python/dtoa.c
266
Python/dtoa.c
|
@ -270,7 +270,7 @@ typedef union { double d; ULong L[2]; } U;
|
|||
typedef struct BCinfo BCinfo;
|
||||
struct
|
||||
BCinfo {
|
||||
int dp0, dp1, dplen, dsign, e0, nd, nd0, scale;
|
||||
int dsign, e0, nd, nd0, scale;
|
||||
};
|
||||
|
||||
#define FFFFFFFF 0xffffffffUL
|
||||
|
@ -437,7 +437,7 @@ multadd(Bigint *b, int m, int a) /* multiply by m and add a */
|
|||
NULL on failure. */
|
||||
|
||||
static Bigint *
|
||||
s2b(const char *s, int nd0, int nd, ULong y9, int dplen)
|
||||
s2b(const char *s, int nd0, int nd, ULong y9)
|
||||
{
|
||||
Bigint *b;
|
||||
int i, k;
|
||||
|
@ -451,18 +451,16 @@ s2b(const char *s, int nd0, int nd, ULong y9, int dplen)
|
|||
b->x[0] = y9;
|
||||
b->wds = 1;
|
||||
|
||||
i = 9;
|
||||
if (9 < nd0) {
|
||||
s += 9;
|
||||
do {
|
||||
b = multadd(b, 10, *s++ - '0');
|
||||
if (b == NULL)
|
||||
return NULL;
|
||||
} while(++i < nd0);
|
||||
s += dplen;
|
||||
if (nd <= 9)
|
||||
return b;
|
||||
|
||||
s += 9;
|
||||
for (i = 9; i < nd0; i++) {
|
||||
b = multadd(b, 10, *s++ - '0');
|
||||
if (b == NULL)
|
||||
return NULL;
|
||||
}
|
||||
else
|
||||
s += dplen + 9;
|
||||
s++;
|
||||
for(; i < nd; i++) {
|
||||
b = multadd(b, 10, *s++ - '0');
|
||||
if (b == NULL)
|
||||
|
@ -1130,76 +1128,120 @@ quorem(Bigint *b, Bigint *S)
|
|||
return q;
|
||||
}
|
||||
|
||||
/* version of ulp(x) that takes bc.scale into account.
|
||||
/* sulp(x) is a version of ulp(x) that takes bc.scale into account.
|
||||
|
||||
Assuming that x is finite and nonzero, and x / 2^bc.scale is exactly
|
||||
representable as a double, sulp(x) is equivalent to 2^bc.scale * ulp(x /
|
||||
2^bc.scale). */
|
||||
Assuming that x is finite and nonnegative (positive zero is fine
|
||||
here) and x / 2^bc.scale is exactly representable as a double,
|
||||
sulp(x) is equivalent to 2^bc.scale * ulp(x / 2^bc.scale). */
|
||||
|
||||
static double
|
||||
sulp(U *x, BCinfo *bc)
|
||||
{
|
||||
U u;
|
||||
|
||||
if (bc->scale && 2*P + 1 - ((word0(x) & Exp_mask) >> Exp_shift) > 0) {
|
||||
if (bc->scale && 2*P + 1 > (int)((word0(x) & Exp_mask) >> Exp_shift)) {
|
||||
/* rv/2^bc->scale is subnormal */
|
||||
word0(&u) = (P+2)*Exp_msk1;
|
||||
word1(&u) = 0;
|
||||
return u.d;
|
||||
}
|
||||
else
|
||||
else {
|
||||
assert(word0(x) || word1(x)); /* x != 0.0 */
|
||||
return ulp(x);
|
||||
}
|
||||
}
|
||||
|
||||
/* return 0 on success, -1 on failure */
|
||||
/* The bigcomp function handles some hard cases for strtod, for inputs
|
||||
with more than STRTOD_DIGLIM digits. It's called once an initial
|
||||
estimate for the double corresponding to the input string has
|
||||
already been obtained by the code in _Py_dg_strtod.
|
||||
|
||||
The bigcomp function is only called after _Py_dg_strtod has found a
|
||||
double value rv such that either rv or rv + 1ulp represents the
|
||||
correctly rounded value corresponding to the original string. It
|
||||
determines which of these two values is the correct one by
|
||||
computing the decimal digits of rv + 0.5ulp and comparing them with
|
||||
the corresponding digits of s0.
|
||||
|
||||
In the following, write dv for the absolute value of the number represented
|
||||
by the input string.
|
||||
|
||||
Inputs:
|
||||
|
||||
s0 points to the first significant digit of the input string.
|
||||
|
||||
rv is a (possibly scaled) estimate for the closest double value to the
|
||||
value represented by the original input to _Py_dg_strtod. If
|
||||
bc->scale is nonzero, then rv/2^(bc->scale) is the approximation to
|
||||
the input value.
|
||||
|
||||
bc is a struct containing information gathered during the parsing and
|
||||
estimation steps of _Py_dg_strtod. Description of fields follows:
|
||||
|
||||
bc->dsign is 1 if rv < decimal value, 0 if rv >= decimal value. In
|
||||
normal use, it should almost always be 1 when bigcomp is entered.
|
||||
|
||||
bc->e0 gives the exponent of the input value, such that dv = (integer
|
||||
given by the bd->nd digits of s0) * 10**e0
|
||||
|
||||
bc->nd gives the total number of significant digits of s0. It will
|
||||
be at least 1.
|
||||
|
||||
bc->nd0 gives the number of significant digits of s0 before the
|
||||
decimal separator. If there's no decimal separator, bc->nd0 ==
|
||||
bc->nd.
|
||||
|
||||
bc->scale is the value used to scale rv to avoid doing arithmetic with
|
||||
subnormal values. It's either 0 or 2*P (=106).
|
||||
|
||||
Outputs:
|
||||
|
||||
On successful exit, rv/2^(bc->scale) is the closest double to dv.
|
||||
|
||||
Returns 0 on success, -1 on failure (e.g., due to a failed malloc call). */
|
||||
|
||||
static int
|
||||
bigcomp(U *rv, const char *s0, BCinfo *bc)
|
||||
{
|
||||
Bigint *b, *d;
|
||||
int b2, bbits, d2, dd, dig, dsign, i, j, nd, nd0, p2, p5, speccase;
|
||||
int b2, bbits, d2, dd, i, nd, nd0, odd, p2, p5;
|
||||
|
||||
dsign = bc->dsign;
|
||||
dd = 0; /* silence compiler warning about possibly unused variable */
|
||||
nd = bc->nd;
|
||||
nd0 = bc->nd0;
|
||||
p5 = nd + bc->e0;
|
||||
speccase = 0;
|
||||
if (rv->d == 0.) { /* special case: value near underflow-to-zero */
|
||||
/* threshold was rounded to zero */
|
||||
b = i2b(1);
|
||||
if (rv->d == 0.) {
|
||||
/* special case because d2b doesn't handle 0.0 */
|
||||
b = i2b(0);
|
||||
if (b == NULL)
|
||||
return -1;
|
||||
p2 = Emin - P + 1;
|
||||
bbits = 1;
|
||||
word0(rv) = (P+2) << Exp_shift;
|
||||
i = 0;
|
||||
{
|
||||
speccase = 1;
|
||||
--p2;
|
||||
dsign = 0;
|
||||
goto have_i;
|
||||
}
|
||||
p2 = Emin - P + 1; /* = -1074 for IEEE 754 binary64 */
|
||||
bbits = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
else {
|
||||
b = d2b(rv, &p2, &bbits);
|
||||
if (b == NULL)
|
||||
return -1;
|
||||
p2 -= bc->scale;
|
||||
}
|
||||
p2 -= bc->scale;
|
||||
/* floor(log2(rv)) == bbits - 1 + p2 */
|
||||
/* Check for denormal case. */
|
||||
/* now rv/2^(bc->scale) = b * 2**p2, and b has bbits significant bits */
|
||||
|
||||
/* Replace (b, p2) by (b << i, p2 - i), with i the largest integer such
|
||||
that b << i has at most P significant bits and p2 - i >= Emin - P +
|
||||
1. */
|
||||
i = P - bbits;
|
||||
if (i > (j = P - Emin - 1 + p2)) {
|
||||
i = j;
|
||||
}
|
||||
{
|
||||
b = lshift(b, ++i);
|
||||
if (b == NULL)
|
||||
return -1;
|
||||
b->x[0] |= 1;
|
||||
}
|
||||
have_i:
|
||||
if (i > p2 - (Emin - P + 1))
|
||||
i = p2 - (Emin - P + 1);
|
||||
/* increment i so that we shift b by an extra bit; then or-ing a 1 into
|
||||
the lsb of b gives us rv/2^(bc->scale) + 0.5ulp. */
|
||||
b = lshift(b, ++i);
|
||||
if (b == NULL)
|
||||
return -1;
|
||||
/* record whether the lsb of rv/2^(bc->scale) is odd: in the exact halfway
|
||||
case, this is used for round to even. */
|
||||
odd = b->x[0] & 2;
|
||||
b->x[0] |= 1;
|
||||
|
||||
p2 -= p5 + i;
|
||||
d = i2b(1);
|
||||
if (d == NULL) {
|
||||
|
@ -1247,92 +1289,58 @@ bigcomp(U *rv, const char *s0, BCinfo *bc)
|
|||
}
|
||||
}
|
||||
|
||||
/* Now 10*b/d = exactly half-way between the two floating-point values
|
||||
on either side of the input string. If b >= d, round down. */
|
||||
/* if b >= d, round down */
|
||||
if (cmp(b, d) >= 0) {
|
||||
dd = -1;
|
||||
goto ret;
|
||||
}
|
||||
|
||||
/* Compute first digit of 10*b/d. */
|
||||
b = multadd(b, 10, 0);
|
||||
if (b == NULL) {
|
||||
Bfree(d);
|
||||
return -1;
|
||||
}
|
||||
dig = quorem(b, d);
|
||||
assert(dig < 10);
|
||||
|
||||
/* Compare b/d with s0 */
|
||||
|
||||
assert(nd > 0);
|
||||
dd = 9999; /* silence gcc compiler warning */
|
||||
for(i = 0; i < nd0; ) {
|
||||
if ((dd = s0[i++] - '0' - dig))
|
||||
goto ret;
|
||||
if (!b->x[0] && b->wds == 1) {
|
||||
if (i < nd)
|
||||
dd = 1;
|
||||
goto ret;
|
||||
}
|
||||
for(i = 0; i < nd0; i++) {
|
||||
b = multadd(b, 10, 0);
|
||||
if (b == NULL) {
|
||||
Bfree(d);
|
||||
return -1;
|
||||
}
|
||||
dig = quorem(b,d);
|
||||
dd = *s0++ - '0' - quorem(b, d);
|
||||
if (dd)
|
||||
goto ret;
|
||||
if (!b->x[0] && b->wds == 1) {
|
||||
if (i < nd - 1)
|
||||
dd = 1;
|
||||
goto ret;
|
||||
}
|
||||
}
|
||||
for(j = bc->dp1; i++ < nd;) {
|
||||
if ((dd = s0[j++] - '0' - dig))
|
||||
goto ret;
|
||||
if (!b->x[0] && b->wds == 1) {
|
||||
if (i < nd)
|
||||
dd = 1;
|
||||
goto ret;
|
||||
}
|
||||
s0++;
|
||||
for(; i < nd; i++) {
|
||||
b = multadd(b, 10, 0);
|
||||
if (b == NULL) {
|
||||
Bfree(d);
|
||||
return -1;
|
||||
}
|
||||
dig = quorem(b,d);
|
||||
dd = *s0++ - '0' - quorem(b, d);
|
||||
if (dd)
|
||||
goto ret;
|
||||
if (!b->x[0] && b->wds == 1) {
|
||||
if (i < nd - 1)
|
||||
dd = 1;
|
||||
goto ret;
|
||||
}
|
||||
}
|
||||
if (b->x[0] || b->wds > 1)
|
||||
dd = -1;
|
||||
ret:
|
||||
Bfree(b);
|
||||
Bfree(d);
|
||||
if (speccase) {
|
||||
if (dd <= 0)
|
||||
rv->d = 0.;
|
||||
}
|
||||
else if (dd < 0) {
|
||||
if (!dsign) /* does not happen for round-near */
|
||||
retlow1:
|
||||
dval(rv) -= sulp(rv, bc);
|
||||
}
|
||||
else if (dd > 0) {
|
||||
if (dsign) {
|
||||
rethi1:
|
||||
dval(rv) += sulp(rv, bc);
|
||||
}
|
||||
}
|
||||
else {
|
||||
/* Exact half-way case: apply round-even rule. */
|
||||
if (word1(rv) & 1) {
|
||||
if (dsign)
|
||||
goto rethi1;
|
||||
goto retlow1;
|
||||
}
|
||||
}
|
||||
|
||||
if (dd > 0 || (dd == 0 && odd))
|
||||
dval(rv) += sulp(rv, bc);
|
||||
return 0;
|
||||
}
|
||||
|
||||
double
|
||||
_Py_dg_strtod(const char *s00, char **se)
|
||||
{
|
||||
int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, e, e1, error;
|
||||
int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dp0, dp1, dplen, e, e1, error;
|
||||
int esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
|
||||
const char *s, *s0, *s1;
|
||||
double aadj, aadj1;
|
||||
|
@ -1341,7 +1349,7 @@ _Py_dg_strtod(const char *s00, char **se)
|
|||
BCinfo bc;
|
||||
Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
|
||||
|
||||
sign = nz0 = nz = bc.dplen = 0;
|
||||
sign = nz0 = nz = dplen = 0;
|
||||
dval(&rv) = 0.;
|
||||
for(s = s00;;s++) switch(*s) {
|
||||
case '-':
|
||||
|
@ -1380,11 +1388,11 @@ _Py_dg_strtod(const char *s00, char **se)
|
|||
else if (nd < 16)
|
||||
z = 10*z + c - '0';
|
||||
nd0 = nd;
|
||||
bc.dp0 = bc.dp1 = s - s0;
|
||||
dp0 = dp1 = s - s0;
|
||||
if (c == '.') {
|
||||
c = *++s;
|
||||
bc.dp1 = s - s0;
|
||||
bc.dplen = bc.dp1 - bc.dp0;
|
||||
dp1 = s - s0;
|
||||
dplen = 1;
|
||||
if (!nd) {
|
||||
for(; c == '0'; c = *++s)
|
||||
nz++;
|
||||
|
@ -1587,10 +1595,10 @@ _Py_dg_strtod(const char *s00, char **se)
|
|||
/* in IEEE arithmetic. */
|
||||
i = j = 18;
|
||||
if (i > nd0)
|
||||
j += bc.dplen;
|
||||
j += dplen;
|
||||
for(;;) {
|
||||
if (--j <= bc.dp1 && j >= bc.dp0)
|
||||
j = bc.dp0 - 1;
|
||||
if (--j <= dp1 && j >= dp0)
|
||||
j = dp0 - 1;
|
||||
if (s0[j] != '0')
|
||||
break;
|
||||
--i;
|
||||
|
@ -1603,11 +1611,11 @@ _Py_dg_strtod(const char *s00, char **se)
|
|||
y = 0;
|
||||
for(i = 0; i < nd0; ++i)
|
||||
y = 10*y + s0[i] - '0';
|
||||
for(j = bc.dp1; i < nd; ++i)
|
||||
for(j = dp1; i < nd; ++i)
|
||||
y = 10*y + s0[j++] - '0';
|
||||
}
|
||||
}
|
||||
bd0 = s2b(s0, nd0, nd, y, bc.dplen);
|
||||
bd0 = s2b(s0, nd0, nd, y);
|
||||
if (bd0 == NULL)
|
||||
goto failed_malloc;
|
||||
|
||||
|
@ -1730,6 +1738,30 @@ _Py_dg_strtod(const char *s00, char **se)
|
|||
if (bc.nd > nd && i <= 0) {
|
||||
if (bc.dsign)
|
||||
break; /* Must use bigcomp(). */
|
||||
|
||||
/* Here rv overestimates the truncated decimal value by at most
|
||||
0.5 ulp(rv). Hence rv either overestimates the true decimal
|
||||
value by <= 0.5 ulp(rv), or underestimates it by some small
|
||||
amount (< 0.1 ulp(rv)); either way, rv is within 0.5 ulps of
|
||||
the true decimal value, so it's possible to exit.
|
||||
|
||||
Exception: if scaled rv is a normal exact power of 2, but not
|
||||
DBL_MIN, then rv - 0.5 ulp(rv) takes us all the way down to the
|
||||
next double, so the correctly rounded result is either rv - 0.5
|
||||
ulp(rv) or rv; in this case, use bigcomp to distinguish. */
|
||||
|
||||
if (!word1(&rv) && !(word0(&rv) & Bndry_mask)) {
|
||||
/* rv can't be 0, since it's an overestimate for some
|
||||
nonzero value. So rv is a normal power of 2. */
|
||||
j = (int)(word0(&rv) & Exp_mask) >> Exp_shift;
|
||||
/* rv / 2^bc.scale = 2^(j - 1023 - bc.scale); use bigcomp if
|
||||
rv / 2^bc.scale >= 2^-1021. */
|
||||
if (j - bc.scale >= 2) {
|
||||
dval(&rv) -= 0.5 * sulp(&rv, &bc);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
bc.nd = nd;
|
||||
i = -1; /* Discarded digits make delta smaller. */
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue