Run these demo scripts through reindent.py to give them 4-space indents. I've verified that their output is unchanged.

This commit is contained in:
Andrew M. Kuchling 2003-04-24 17:13:18 +00:00
parent 4f237b6870
commit 946c53ed7f
10 changed files with 981 additions and 981 deletions

View file

@ -16,8 +16,8 @@
# ToComplex(z) -> a complex number equal to z; z itself if IsComplex(z) is true
# if z is a tuple(re, im) it will also be converted
# PolarToComplex([r [,phi [,fullcircle]]]) ->
# the complex number z for which r == z.radius() and phi == z.angle(fullcircle)
# (r and phi default to 0)
# the complex number z for which r == z.radius() and phi == z.angle(fullcircle)
# (r and phi default to 0)
# exp(z) -> returns the complex exponential of z. Equivalent to pow(math.e,z).
#
# Complex numbers have the following methods:
@ -69,230 +69,230 @@ twopi = math.pi*2.0
halfpi = math.pi/2.0
def IsComplex(obj):
return hasattr(obj, 're') and hasattr(obj, 'im')
return hasattr(obj, 're') and hasattr(obj, 'im')
def ToComplex(obj):
if IsComplex(obj):
return obj
elif type(obj) == types.TupleType:
return apply(Complex, obj)
else:
return Complex(obj)
if IsComplex(obj):
return obj
elif type(obj) == types.TupleType:
return apply(Complex, obj)
else:
return Complex(obj)
def PolarToComplex(r = 0, phi = 0, fullcircle = twopi):
phi = phi * (twopi / fullcircle)
return Complex(math.cos(phi)*r, math.sin(phi)*r)
phi = phi * (twopi / fullcircle)
return Complex(math.cos(phi)*r, math.sin(phi)*r)
def Re(obj):
if IsComplex(obj):
return obj.re
else:
return obj
if IsComplex(obj):
return obj.re
else:
return obj
def Im(obj):
if IsComplex(obj):
return obj.im
else:
return obj
if IsComplex(obj):
return obj.im
else:
return obj
class Complex:
def __init__(self, re=0, im=0):
if IsComplex(re):
im = i + Complex(0, re.im)
re = re.re
if IsComplex(im):
re = re - im.im
im = im.re
self.__dict__['re'] = re
self.__dict__['im'] = im
def __setattr__(self, name, value):
raise TypeError, 'Complex numbers are immutable'
def __init__(self, re=0, im=0):
if IsComplex(re):
im = i + Complex(0, re.im)
re = re.re
if IsComplex(im):
re = re - im.im
im = im.re
self.__dict__['re'] = re
self.__dict__['im'] = im
def __hash__(self):
if not self.im: return hash(self.re)
mod = sys.maxint + 1L
return int((hash(self.re) + 2L*hash(self.im) + mod) % (2L*mod) - mod)
def __setattr__(self, name, value):
raise TypeError, 'Complex numbers are immutable'
def __repr__(self):
if not self.im:
return 'Complex(%s)' % `self.re`
else:
return 'Complex(%s, %s)' % (`self.re`, `self.im`)
def __hash__(self):
if not self.im: return hash(self.re)
mod = sys.maxint + 1L
return int((hash(self.re) + 2L*hash(self.im) + mod) % (2L*mod) - mod)
def __str__(self):
if not self.im:
return `self.re`
else:
return 'Complex(%s, %s)' % (`self.re`, `self.im`)
def __repr__(self):
if not self.im:
return 'Complex(%s)' % `self.re`
else:
return 'Complex(%s, %s)' % (`self.re`, `self.im`)
def __neg__(self):
return Complex(-self.re, -self.im)
def __str__(self):
if not self.im:
return `self.re`
else:
return 'Complex(%s, %s)' % (`self.re`, `self.im`)
def __pos__(self):
return self
def __neg__(self):
return Complex(-self.re, -self.im)
def __abs__(self):
# XXX could be done differently to avoid overflow!
return math.sqrt(self.re*self.re + self.im*self.im)
def __pos__(self):
return self
def __int__(self):
if self.im:
raise ValueError, "can't convert Complex with nonzero im to int"
return int(self.re)
def __abs__(self):
# XXX could be done differently to avoid overflow!
return math.sqrt(self.re*self.re + self.im*self.im)
def __long__(self):
if self.im:
raise ValueError, "can't convert Complex with nonzero im to long"
return long(self.re)
def __int__(self):
if self.im:
raise ValueError, "can't convert Complex with nonzero im to int"
return int(self.re)
def __float__(self):
if self.im:
raise ValueError, "can't convert Complex with nonzero im to float"
return float(self.re)
def __long__(self):
if self.im:
raise ValueError, "can't convert Complex with nonzero im to long"
return long(self.re)
def __cmp__(self, other):
other = ToComplex(other)
return cmp((self.re, self.im), (other.re, other.im))
def __float__(self):
if self.im:
raise ValueError, "can't convert Complex with nonzero im to float"
return float(self.re)
def __rcmp__(self, other):
other = ToComplex(other)
return cmp(other, self)
def __nonzero__(self):
return not (self.re == self.im == 0)
def __cmp__(self, other):
other = ToComplex(other)
return cmp((self.re, self.im), (other.re, other.im))
abs = radius = __abs__
def __rcmp__(self, other):
other = ToComplex(other)
return cmp(other, self)
def angle(self, fullcircle = twopi):
return (fullcircle/twopi) * ((halfpi - math.atan2(self.re, self.im)) % twopi)
def __nonzero__(self):
return not (self.re == self.im == 0)
phi = angle
abs = radius = __abs__
def __add__(self, other):
other = ToComplex(other)
return Complex(self.re + other.re, self.im + other.im)
def angle(self, fullcircle = twopi):
return (fullcircle/twopi) * ((halfpi - math.atan2(self.re, self.im)) % twopi)
__radd__ = __add__
phi = angle
def __sub__(self, other):
other = ToComplex(other)
return Complex(self.re - other.re, self.im - other.im)
def __add__(self, other):
other = ToComplex(other)
return Complex(self.re + other.re, self.im + other.im)
def __rsub__(self, other):
other = ToComplex(other)
return other - self
__radd__ = __add__
def __mul__(self, other):
other = ToComplex(other)
return Complex(self.re*other.re - self.im*other.im,
self.re*other.im + self.im*other.re)
def __sub__(self, other):
other = ToComplex(other)
return Complex(self.re - other.re, self.im - other.im)
__rmul__ = __mul__
def __rsub__(self, other):
other = ToComplex(other)
return other - self
def __div__(self, other):
other = ToComplex(other)
d = float(other.re*other.re + other.im*other.im)
if not d: raise ZeroDivisionError, 'Complex division'
return Complex((self.re*other.re + self.im*other.im) / d,
(self.im*other.re - self.re*other.im) / d)
def __mul__(self, other):
other = ToComplex(other)
return Complex(self.re*other.re - self.im*other.im,
self.re*other.im + self.im*other.re)
def __rdiv__(self, other):
other = ToComplex(other)
return other / self
__rmul__ = __mul__
def __div__(self, other):
other = ToComplex(other)
d = float(other.re*other.re + other.im*other.im)
if not d: raise ZeroDivisionError, 'Complex division'
return Complex((self.re*other.re + self.im*other.im) / d,
(self.im*other.re - self.re*other.im) / d)
def __rdiv__(self, other):
other = ToComplex(other)
return other / self
def __pow__(self, n, z=None):
if z is not None:
raise TypeError, 'Complex does not support ternary pow()'
if IsComplex(n):
if n.im:
if self.im: raise TypeError, 'Complex to the Complex power'
else: return exp(math.log(self.re)*n)
n = n.re
r = pow(self.abs(), n)
phi = n*self.angle()
return Complex(math.cos(phi)*r, math.sin(phi)*r)
def __rpow__(self, base):
base = ToComplex(base)
return pow(base, self)
def __pow__(self, n, z=None):
if z is not None:
raise TypeError, 'Complex does not support ternary pow()'
if IsComplex(n):
if n.im:
if self.im: raise TypeError, 'Complex to the Complex power'
else: return exp(math.log(self.re)*n)
n = n.re
r = pow(self.abs(), n)
phi = n*self.angle()
return Complex(math.cos(phi)*r, math.sin(phi)*r)
def __rpow__(self, base):
base = ToComplex(base)
return pow(base, self)
def exp(z):
r = math.exp(z.re)
return Complex(math.cos(z.im)*r,math.sin(z.im)*r)
r = math.exp(z.re)
return Complex(math.cos(z.im)*r,math.sin(z.im)*r)
def checkop(expr, a, b, value, fuzz = 1e-6):
import sys
print ' ', a, 'and', b,
try:
result = eval(expr)
except:
result = sys.exc_type
print '->', result
if (type(result) == type('') or type(value) == type('')):
ok = result == value
else:
ok = abs(result - value) <= fuzz
if not ok:
print '!!\t!!\t!! should be', value, 'diff', abs(result - value)
import sys
print ' ', a, 'and', b,
try:
result = eval(expr)
except:
result = sys.exc_type
print '->', result
if (type(result) == type('') or type(value) == type('')):
ok = result == value
else:
ok = abs(result - value) <= fuzz
if not ok:
print '!!\t!!\t!! should be', value, 'diff', abs(result - value)
def test():
testsuite = {
'a+b': [
(1, 10, 11),
(1, Complex(0,10), Complex(1,10)),
(Complex(0,10), 1, Complex(1,10)),
(Complex(0,10), Complex(1), Complex(1,10)),
(Complex(1), Complex(0,10), Complex(1,10)),
],
'a-b': [
(1, 10, -9),
(1, Complex(0,10), Complex(1,-10)),
(Complex(0,10), 1, Complex(-1,10)),
(Complex(0,10), Complex(1), Complex(-1,10)),
(Complex(1), Complex(0,10), Complex(1,-10)),
],
'a*b': [
(1, 10, 10),
(1, Complex(0,10), Complex(0, 10)),
(Complex(0,10), 1, Complex(0,10)),
(Complex(0,10), Complex(1), Complex(0,10)),
(Complex(1), Complex(0,10), Complex(0,10)),
],
'a/b': [
(1., 10, 0.1),
(1, Complex(0,10), Complex(0, -0.1)),
(Complex(0, 10), 1, Complex(0, 10)),
(Complex(0, 10), Complex(1), Complex(0, 10)),
(Complex(1), Complex(0,10), Complex(0, -0.1)),
],
'pow(a,b)': [
(1, 10, 1),
(1, Complex(0,10), 1),
(Complex(0,10), 1, Complex(0,10)),
(Complex(0,10), Complex(1), Complex(0,10)),
(Complex(1), Complex(0,10), 1),
(2, Complex(4,0), 16),
],
'cmp(a,b)': [
(1, 10, -1),
(1, Complex(0,10), 1),
(Complex(0,10), 1, -1),
(Complex(0,10), Complex(1), -1),
(Complex(1), Complex(0,10), 1),
],
}
exprs = testsuite.keys()
exprs.sort()
for expr in exprs:
print expr + ':'
t = (expr,)
for item in testsuite[expr]:
apply(checkop, t+item)
testsuite = {
'a+b': [
(1, 10, 11),
(1, Complex(0,10), Complex(1,10)),
(Complex(0,10), 1, Complex(1,10)),
(Complex(0,10), Complex(1), Complex(1,10)),
(Complex(1), Complex(0,10), Complex(1,10)),
],
'a-b': [
(1, 10, -9),
(1, Complex(0,10), Complex(1,-10)),
(Complex(0,10), 1, Complex(-1,10)),
(Complex(0,10), Complex(1), Complex(-1,10)),
(Complex(1), Complex(0,10), Complex(1,-10)),
],
'a*b': [
(1, 10, 10),
(1, Complex(0,10), Complex(0, 10)),
(Complex(0,10), 1, Complex(0,10)),
(Complex(0,10), Complex(1), Complex(0,10)),
(Complex(1), Complex(0,10), Complex(0,10)),
],
'a/b': [
(1., 10, 0.1),
(1, Complex(0,10), Complex(0, -0.1)),
(Complex(0, 10), 1, Complex(0, 10)),
(Complex(0, 10), Complex(1), Complex(0, 10)),
(Complex(1), Complex(0,10), Complex(0, -0.1)),
],
'pow(a,b)': [
(1, 10, 1),
(1, Complex(0,10), 1),
(Complex(0,10), 1, Complex(0,10)),
(Complex(0,10), Complex(1), Complex(0,10)),
(Complex(1), Complex(0,10), 1),
(2, Complex(4,0), 16),
],
'cmp(a,b)': [
(1, 10, -1),
(1, Complex(0,10), 1),
(Complex(0,10), 1, -1),
(Complex(0,10), Complex(1), -1),
(Complex(1), Complex(0,10), 1),
],
}
exprs = testsuite.keys()
exprs.sort()
for expr in exprs:
print expr + ':'
t = (expr,)
for item in testsuite[expr]:
apply(checkop, t+item)
if __name__ == '__main__':
test()
test()