- simplify parsing and printing of complex numbers
 - make complex(repr(z)) round-tripping work for complex
   numbers involving nans, infs, or negative zeros
 - don't accept some of the stranger complex strings
   that were previously allowed---e.g., complex('1..1j')
This commit is contained in:
Mark Dickinson 2009-04-24 12:46:53 +00:00
parent 508c423fe1
commit 95bc980d9e
4 changed files with 233 additions and 179 deletions

View file

@ -9,7 +9,7 @@ warnings.filterwarnings(
)
from random import random
from math import atan2
from math import atan2, isnan, copysign
INF = float("inf")
NAN = float("nan")
@ -44,6 +44,29 @@ class ComplexTest(unittest.TestCase):
# check that relative difference < eps
self.assert_(abs((x-y)/y) < eps)
def assertFloatsAreIdentical(self, x, y):
"""assert that floats x and y are identical, in the sense that:
(1) both x and y are nans, or
(2) both x and y are infinities, with the same sign, or
(3) both x and y are zeros, with the same sign, or
(4) x and y are both finite and nonzero, and x == y
"""
msg = 'floats {!r} and {!r} are not identical'
if isnan(x) or isnan(y):
if isnan(x) and isnan(y):
return
elif x == y:
if x != 0.0:
return
# both zero; check that signs match
elif copysign(1.0, x) == copysign(1.0, y):
return
else:
msg += ': zeros have different signs'
self.fail(msg.format(x, y))
def assertClose(self, x, y, eps=1e-9):
"""Return true iff complexes x and y "are close\""""
self.assertCloseAbs(x.real, y.real, eps)
@ -220,6 +243,17 @@ class ComplexTest(unittest.TestCase):
self.assertAlmostEqual(complex("+1"), +1)
self.assertAlmostEqual(complex("(1+2j)"), 1+2j)
self.assertAlmostEqual(complex("(1.3+2.2j)"), 1.3+2.2j)
self.assertAlmostEqual(complex("3.14+1J"), 3.14+1j)
self.assertAlmostEqual(complex(" ( +3.14-6J )"), 3.14-6j)
self.assertAlmostEqual(complex(" ( +3.14-J )"), 3.14-1j)
self.assertAlmostEqual(complex(" ( +3.14+j )"), 3.14+1j)
self.assertAlmostEqual(complex("J"), 1j)
self.assertAlmostEqual(complex("( j )"), 1j)
self.assertAlmostEqual(complex("+J"), 1j)
self.assertAlmostEqual(complex("( -j)"), -1j)
self.assertAlmostEqual(complex('1e-500'), 0.0 + 0.0j)
self.assertAlmostEqual(complex('-1e-500j'), 0.0 - 0.0j)
self.assertAlmostEqual(complex('-1e-500+1e-500j'), -0.0 + 0.0j)
class complex2(complex): pass
self.assertAlmostEqual(complex(complex2(1+1j)), 1+1j)
@ -247,7 +281,6 @@ class ComplexTest(unittest.TestCase):
self.assertRaises(TypeError, complex, "1", "1")
self.assertRaises(TypeError, complex, 1, "1")
self.assertEqual(complex(" 3.14+J "), 3.14+1j)
if test_support.have_unicode:
self.assertEqual(complex(unicode(" 3.14+J ")), 3.14+1j)
@ -275,6 +308,14 @@ class ComplexTest(unittest.TestCase):
if test_support.have_unicode:
self.assertRaises(ValueError, complex, unicode("1"*500))
self.assertRaises(ValueError, complex, unicode("x"))
self.assertRaises(ValueError, complex, "1j+2")
self.assertRaises(ValueError, complex, "1e1ej")
self.assertRaises(ValueError, complex, "1e++1ej")
self.assertRaises(ValueError, complex, ")1+2j(")
# the following three are accepted by Python 2.6
self.assertRaises(ValueError, complex, "1..1j")
self.assertRaises(ValueError, complex, "1.11.1j")
self.assertRaises(ValueError, complex, "1e1.1j")
class EvilExc(Exception):
pass
@ -339,17 +380,17 @@ class ComplexTest(unittest.TestCase):
self.assertEqual(-6j,complex(repr(-6j)))
self.assertEqual(6j,complex(repr(6j)))
self.assertEqual(repr(complex(1., INF)), "(1+inf*j)")
self.assertEqual(repr(complex(1., -INF)), "(1-inf*j)")
self.assertEqual(repr(complex(1., INF)), "(1+infj)")
self.assertEqual(repr(complex(1., -INF)), "(1-infj)")
self.assertEqual(repr(complex(INF, 1)), "(inf+1j)")
self.assertEqual(repr(complex(-INF, INF)), "(-inf+inf*j)")
self.assertEqual(repr(complex(-INF, INF)), "(-inf+infj)")
self.assertEqual(repr(complex(NAN, 1)), "(nan+1j)")
self.assertEqual(repr(complex(1, NAN)), "(1+nan*j)")
self.assertEqual(repr(complex(NAN, NAN)), "(nan+nan*j)")
self.assertEqual(repr(complex(1, NAN)), "(1+nanj)")
self.assertEqual(repr(complex(NAN, NAN)), "(nan+nanj)")
self.assertEqual(repr(complex(0, INF)), "inf*j")
self.assertEqual(repr(complex(0, -INF)), "-inf*j")
self.assertEqual(repr(complex(0, NAN)), "nan*j")
self.assertEqual(repr(complex(0, INF)), "infj")
self.assertEqual(repr(complex(0, -INF)), "-infj")
self.assertEqual(repr(complex(0, NAN)), "nanj")
def test_neg(self):
self.assertEqual(-(1+6j), -1-6j)
@ -388,6 +429,21 @@ class ComplexTest(unittest.TestCase):
self.assertEquals(atan2(z1.imag, -1.), atan2(0., -1.))
self.assertEquals(atan2(z2.imag, -1.), atan2(-0., -1.))
@unittest.skipUnless(float.__getformat__("double").startswith("IEEE"),
"test requires IEEE 754 doubles")
def test_repr_roundtrip(self):
# complex(repr(z)) should recover z exactly, even for complex numbers
# involving an infinity, nan, or negative zero
vals = [0.0, 1e-200, 0.0123, 3.1415, 1e50, INF, NAN]
vals += [-v for v in vals]
for x in vals:
for y in vals:
z = complex(x, y)
roundtrip = complex(repr(z))
self.assertFloatsAreIdentical(z.real, roundtrip.real)
self.assertFloatsAreIdentical(z.imag, roundtrip.imag)
def test_main():
test_support.run_unittest(ComplexTest)