- Issue #10181: New memoryview implementation fixes multiple ownership

and lifetime issues of dynamically allocated Py_buffer members (#9990)
  as well as crashes (#8305, #7433). Many new features have been added
  (See whatsnew/3.3), and the documentation has been updated extensively.
  The ndarray test object from _testbuffer.c implements all aspects of
  PEP-3118, so further development towards the complete implementation
  of the PEP can proceed in a test-driven manner.

  Thanks to Nick Coghlan, Antoine Pitrou and Pauli Virtanen for review
  and many ideas.

- Issue #12834: Fix incorrect results of memoryview.tobytes() for
  non-contiguous arrays.

- Issue #5231: Introduce memoryview.cast() method that allows changing
  format and shape without making a copy of the underlying memory.
This commit is contained in:
Stefan Krah 2012-02-25 12:24:21 +01:00
parent 5a3d04623b
commit 9a2d99e28a
24 changed files with 10011 additions and 1171 deletions

View file

@ -6,70 +6,64 @@
extern "C" {
#endif
#ifndef Py_LIMITED_API
PyAPI_DATA(PyTypeObject) _PyManagedBuffer_Type;
#endif
PyAPI_DATA(PyTypeObject) PyMemoryView_Type;
#define PyMemoryView_Check(op) (Py_TYPE(op) == &PyMemoryView_Type)
#ifndef Py_LIMITED_API
/* Get a pointer to the underlying Py_buffer of a memoryview object. */
/* Get a pointer to the memoryview's private copy of the exporter's buffer. */
#define PyMemoryView_GET_BUFFER(op) (&((PyMemoryViewObject *)(op))->view)
/* Get a pointer to the PyObject from which originates a memoryview object. */
/* Get a pointer to the exporting object (this may be NULL!). */
#define PyMemoryView_GET_BASE(op) (((PyMemoryViewObject *)(op))->view.obj)
#endif
PyAPI_FUNC(PyObject *) PyMemoryView_GetContiguous(PyObject *base,
int buffertype,
char fort);
/* Return a contiguous chunk of memory representing the buffer
from an object in a memory view object. If a copy is made then the
base object for the memory view will be a *new* bytes object.
Otherwise, the base-object will be the object itself and no
data-copying will be done.
The buffertype argument can be PyBUF_READ, PyBUF_WRITE,
PyBUF_SHADOW to determine whether the returned buffer
should be READONLY, WRITABLE, or set to update the
original buffer if a copy must be made. If buffertype is
PyBUF_WRITE and the buffer is not contiguous an error will
be raised. In this circumstance, the user can use
PyBUF_SHADOW to ensure that a a writable temporary
contiguous buffer is returned. The contents of this
contiguous buffer will be copied back into the original
object after the memoryview object is deleted as long as
the original object is writable and allows setting an
exclusive write lock. If this is not allowed by the
original object, then a BufferError is raised.
If the object is multi-dimensional and if fortran is 'F',
the first dimension of the underlying array will vary the
fastest in the buffer. If fortran is 'C', then the last
dimension will vary the fastest (C-style contiguous). If
fortran is 'A', then it does not matter and you will get
whatever the object decides is more efficient.
A new reference is returned that must be DECREF'd when finished.
*/
PyAPI_FUNC(PyObject *) PyMemoryView_FromObject(PyObject *base);
PyAPI_FUNC(PyObject *) PyMemoryView_FromMemory(char *mem, Py_ssize_t size,
int flags);
#ifndef Py_LIMITED_API
PyAPI_FUNC(PyObject *) PyMemoryView_FromBuffer(Py_buffer *info);
/* create new if bufptr is NULL
will be a new bytesobject in base */
#endif
PyAPI_FUNC(PyObject *) PyMemoryView_GetContiguous(PyObject *base,
int buffertype,
char order);
/* The struct is declared here so that macros can work, but it shouldn't
be considered public. Don't access those fields directly, use the macros
/* The structs are declared here so that macros can work, but they shouldn't
be considered public. Don't access their fields directly, use the macros
and functions instead! */
#ifndef Py_LIMITED_API
#define _Py_MANAGED_BUFFER_RELEASED 0x001 /* access to exporter blocked */
#define _Py_MANAGED_BUFFER_FREE_FORMAT 0x002 /* free format */
typedef struct {
PyObject_HEAD
Py_buffer view;
Py_hash_t hash;
int flags; /* state flags */
Py_ssize_t exports; /* number of direct memoryview exports */
Py_buffer master; /* snapshot buffer obtained from the original exporter */
} _PyManagedBufferObject;
/* static storage used for casting between formats */
#define _Py_MEMORYVIEW_MAX_FORMAT 3 /* must be >= 3 */
/* memoryview state flags */
#define _Py_MEMORYVIEW_RELEASED 0x001 /* access to master buffer blocked */
#define _Py_MEMORYVIEW_C 0x002 /* C-contiguous layout */
#define _Py_MEMORYVIEW_FORTRAN 0x004 /* Fortran contiguous layout */
#define _Py_MEMORYVIEW_SCALAR 0x008 /* scalar: ndim = 0 */
#define _Py_MEMORYVIEW_PIL 0x010 /* PIL-style layout */
typedef struct {
PyObject_VAR_HEAD
_PyManagedBufferObject *mbuf; /* managed buffer */
Py_hash_t hash; /* hash value for read-only views */
int flags; /* state flags */
Py_ssize_t exports; /* number of buffer re-exports */
Py_buffer view; /* private copy of the exporter's view */
char format[_Py_MEMORYVIEW_MAX_FORMAT]; /* used for casting */
Py_ssize_t ob_array[1]; /* shape, strides, suboffsets */
} PyMemoryViewObject;
#endif