Moved SequenceMatcher from ndiff into new std library module difflib.py.

Guido told me to do this <wink>.
Greatly expanded docstrings, and fleshed out with examples.
New std test.
Added new get_close_matches() function for ESR.
Needs docs, but LaTeXification of the module docstring is all it needs.
\CVS: ----------------------------------------------------------------------
This commit is contained in:
Tim Peters 2001-02-10 08:00:53 +00:00
parent 6db54c69a4
commit 9ae2148ada
4 changed files with 1065 additions and 292 deletions

View file

@ -97,6 +97,8 @@ __version__ = 1, 5, 0
# is sent to stdout. Or you can call main(args), passing what would
# have been in sys.argv[1:] had the cmd-line form been used.
from difflib import SequenceMatcher
import string
TRACE = 0
@ -111,298 +113,6 @@ def IS_CHARACTER_JUNK(ch, ws=" \t"):
del re
class SequenceMatcher:
def __init__(self, isjunk=None, a='', b=''):
# Members:
# a
# first sequence
# b
# second sequence; differences are computed as "what do
# we need to do to 'a' to change it into 'b'?"
# b2j
# for x in b, b2j[x] is a list of the indices (into b)
# at which x appears; junk elements do not appear
# b2jhas
# b2j.has_key
# fullbcount
# for x in b, fullbcount[x] == the number of times x
# appears in b; only materialized if really needed (used
# only for computing quick_ratio())
# matching_blocks
# a list of (i, j, k) triples, where a[i:i+k] == b[j:j+k];
# ascending & non-overlapping in i and in j; terminated by
# a dummy (len(a), len(b), 0) sentinel
# opcodes
# a list of (tag, i1, i2, j1, j2) tuples, where tag is
# one of
# 'replace' a[i1:i2] should be replaced by b[j1:j2]
# 'delete' a[i1:i2] should be deleted
# 'insert' b[j1:j2] should be inserted
# 'equal' a[i1:i2] == b[j1:j2]
# isjunk
# a user-supplied function taking a sequence element and
# returning true iff the element is "junk" -- this has
# subtle but helpful effects on the algorithm, which I'll
# get around to writing up someday <0.9 wink>.
# DON'T USE! Only __chain_b uses this. Use isbjunk.
# isbjunk
# for x in b, isbjunk(x) == isjunk(x) but much faster;
# it's really the has_key method of a hidden dict.
# DOES NOT WORK for x in a!
self.isjunk = isjunk
self.a = self.b = None
self.set_seqs(a, b)
def set_seqs(self, a, b):
self.set_seq1(a)
self.set_seq2(b)
def set_seq1(self, a):
if a is self.a:
return
self.a = a
self.matching_blocks = self.opcodes = None
def set_seq2(self, b):
if b is self.b:
return
self.b = b
self.matching_blocks = self.opcodes = None
self.fullbcount = None
self.__chain_b()
# For each element x in b, set b2j[x] to a list of the indices in
# b where x appears; the indices are in increasing order; note that
# the number of times x appears in b is len(b2j[x]) ...
# when self.isjunk is defined, junk elements don't show up in this
# map at all, which stops the central find_longest_match method
# from starting any matching block at a junk element ...
# also creates the fast isbjunk function ...
# note that this is only called when b changes; so for cross-product
# kinds of matches, it's best to call set_seq2 once, then set_seq1
# repeatedly
def __chain_b(self):
# Because isjunk is a user-defined (not C) function, and we test
# for junk a LOT, it's important to minimize the number of calls.
# Before the tricks described here, __chain_b was by far the most
# time-consuming routine in the whole module! If anyone sees
# Jim Roskind, thank him again for profile.py -- I never would
# have guessed that.
# The first trick is to build b2j ignoring the possibility
# of junk. I.e., we don't call isjunk at all yet. Throwing
# out the junk later is much cheaper than building b2j "right"
# from the start.
b = self.b
self.b2j = b2j = {}
self.b2jhas = b2jhas = b2j.has_key
for i in xrange(len(b)):
elt = b[i]
if b2jhas(elt):
b2j[elt].append(i)
else:
b2j[elt] = [i]
# Now b2j.keys() contains elements uniquely, and especially when
# the sequence is a string, that's usually a good deal smaller
# than len(string). The difference is the number of isjunk calls
# saved.
isjunk, junkdict = self.isjunk, {}
if isjunk:
for elt in b2j.keys():
if isjunk(elt):
junkdict[elt] = 1 # value irrelevant; it's a set
del b2j[elt]
# Now for x in b, isjunk(x) == junkdict.has_key(x), but the
# latter is much faster. Note too that while there may be a
# lot of junk in the sequence, the number of *unique* junk
# elements is probably small. So the memory burden of keeping
# this dict alive is likely trivial compared to the size of b2j.
self.isbjunk = junkdict.has_key
def find_longest_match(self, alo, ahi, blo, bhi):
"""Find longest matching block in a[alo:ahi] and b[blo:bhi].
If isjunk is not defined:
Return (i,j,k) such that a[i:i+k] is equal to b[j:j+k], where
alo <= i <= i+k <= ahi
blo <= j <= j+k <= bhi
and for all (i',j',k') meeting those conditions,
k >= k'
i <= i'
and if i == i', j <= j'
In other words, of all maximal matching blocks, return one
that starts earliest in a, and of all those maximal matching
blocks that start earliest in a, return the one that starts
earliest in b.
If isjunk is defined, first the longest matching block is
determined as above, but with the additional restriction that
no junk element appears in the block. Then that block is
extended as far as possible by matching (only) junk elements on
both sides. So the resulting block never matches on junk except
as identical junk happens to be adjacent to an "interesting"
match.
If no blocks match, return (alo, blo, 0).
"""
# CAUTION: stripping common prefix or suffix would be incorrect.
# E.g.,
# ab
# acab
# Longest matching block is "ab", but if common prefix is
# stripped, it's "a" (tied with "b"). UNIX(tm) diff does so
# strip, so ends up claiming that ab is changed to acab by
# inserting "ca" in the middle. That's minimal but unintuitive:
# "it's obvious" that someone inserted "ac" at the front.
# Windiff ends up at the same place as diff, but by pairing up
# the unique 'b's and then matching the first two 'a's.
a, b, b2j, isbjunk = self.a, self.b, self.b2j, self.isbjunk
besti, bestj, bestsize = alo, blo, 0
# find longest junk-free match
# during an iteration of the loop, j2len[j] = length of longest
# junk-free match ending with a[i-1] and b[j]
j2len = {}
nothing = []
for i in xrange(alo, ahi):
# look at all instances of a[i] in b; note that because
# b2j has no junk keys, the loop is skipped if a[i] is junk
j2lenget = j2len.get
newj2len = {}
for j in b2j.get(a[i], nothing):
# a[i] matches b[j]
if j < blo:
continue
if j >= bhi:
break
k = newj2len[j] = j2lenget(j-1, 0) + 1
if k > bestsize:
besti, bestj, bestsize = i-k+1, j-k+1, k
j2len = newj2len
# Now that we have a wholly interesting match (albeit possibly
# empty!), we may as well suck up the matching junk on each
# side of it too. Can't think of a good reason not to, and it
# saves post-processing the (possibly considerable) expense of
# figuring out what to do with it. In the case of an empty
# interesting match, this is clearly the right thing to do,
# because no other kind of match is possible in the regions.
while besti > alo and bestj > blo and \
isbjunk(b[bestj-1]) and \
a[besti-1] == b[bestj-1]:
besti, bestj, bestsize = besti-1, bestj-1, bestsize+1
while besti+bestsize < ahi and bestj+bestsize < bhi and \
isbjunk(b[bestj+bestsize]) and \
a[besti+bestsize] == b[bestj+bestsize]:
bestsize = bestsize + 1
if TRACE:
print "get_matching_blocks", alo, ahi, blo, bhi
print " returns", besti, bestj, bestsize
return besti, bestj, bestsize
def get_matching_blocks(self):
if self.matching_blocks is not None:
return self.matching_blocks
self.matching_blocks = []
la, lb = len(self.a), len(self.b)
self.__helper(0, la, 0, lb, self.matching_blocks)
self.matching_blocks.append( (la, lb, 0) )
if TRACE:
print '*** matching blocks', self.matching_blocks
return self.matching_blocks
# builds list of matching blocks covering a[alo:ahi] and
# b[blo:bhi], appending them in increasing order to answer
def __helper(self, alo, ahi, blo, bhi, answer):
i, j, k = x = self.find_longest_match(alo, ahi, blo, bhi)
# a[alo:i] vs b[blo:j] unknown
# a[i:i+k] same as b[j:j+k]
# a[i+k:ahi] vs b[j+k:bhi] unknown
if k:
if alo < i and blo < j:
self.__helper(alo, i, blo, j, answer)
answer.append(x)
if i+k < ahi and j+k < bhi:
self.__helper(i+k, ahi, j+k, bhi, answer)
def ratio(self):
"""Return a measure of the sequences' similarity (float in [0,1]).
Where T is the total number of elements in both sequences, and
M is the number of matches, this is 2*M / T.
Note that this is 1 if the sequences are identical, and 0 if
they have nothing in common.
"""
matches = reduce(lambda sum, triple: sum + triple[-1],
self.get_matching_blocks(), 0)
return 2.0 * matches / (len(self.a) + len(self.b))
def quick_ratio(self):
"""Return an upper bound on ratio() relatively quickly."""
# viewing a and b as multisets, set matches to the cardinality
# of their intersection; this counts the number of matches
# without regard to order, so is clearly an upper bound
if self.fullbcount is None:
self.fullbcount = fullbcount = {}
for elt in self.b:
fullbcount[elt] = fullbcount.get(elt, 0) + 1
fullbcount = self.fullbcount
# avail[x] is the number of times x appears in 'b' less the
# number of times we've seen it in 'a' so far ... kinda
avail = {}
availhas, matches = avail.has_key, 0
for elt in self.a:
if availhas(elt):
numb = avail[elt]
else:
numb = fullbcount.get(elt, 0)
avail[elt] = numb - 1
if numb > 0:
matches = matches + 1
return 2.0 * matches / (len(self.a) + len(self.b))
def real_quick_ratio(self):
"""Return an upper bound on ratio() very quickly"""
la, lb = len(self.a), len(self.b)
# can't have more matches than the number of elements in the
# shorter sequence
return 2.0 * min(la, lb) / (la + lb)
def get_opcodes(self):
if self.opcodes is not None:
return self.opcodes
i = j = 0
self.opcodes = answer = []
for ai, bj, size in self.get_matching_blocks():
# invariant: we've pumped out correct diffs to change
# a[:i] into b[:j], and the next matching block is
# a[ai:ai+size] == b[bj:bj+size]. So we need to pump
# out a diff to change a[i:ai] into b[j:bj], pump out
# the matching block, and move (i,j) beyond the match
tag = ''
if i < ai and j < bj:
tag = 'replace'
elif i < ai:
tag = 'delete'
elif j < bj:
tag = 'insert'
if tag:
answer.append( (tag, i, ai, j, bj) )
i, j = ai+size, bj+size
# the list of matching blocks is terminated by a
# sentinel with size 0
if size:
answer.append( ('equal', ai, i, bj, j) )
return answer
# meant for dumping lines
def dump(tag, x, lo, hi):
for i in xrange(lo, hi):