mirror of
https://github.com/python/cpython.git
synced 2025-10-10 00:43:41 +00:00
Moved SequenceMatcher from ndiff into new std library module difflib.py.
Guido told me to do this <wink>. Greatly expanded docstrings, and fleshed out with examples. New std test. Added new get_close_matches() function for ESR. Needs docs, but LaTeXification of the module docstring is all it needs. \CVS: ----------------------------------------------------------------------
This commit is contained in:
parent
6db54c69a4
commit
9ae2148ada
4 changed files with 1065 additions and 292 deletions
|
@ -97,6 +97,8 @@ __version__ = 1, 5, 0
|
|||
# is sent to stdout. Or you can call main(args), passing what would
|
||||
# have been in sys.argv[1:] had the cmd-line form been used.
|
||||
|
||||
from difflib import SequenceMatcher
|
||||
|
||||
import string
|
||||
TRACE = 0
|
||||
|
||||
|
@ -111,298 +113,6 @@ def IS_CHARACTER_JUNK(ch, ws=" \t"):
|
|||
|
||||
del re
|
||||
|
||||
class SequenceMatcher:
|
||||
def __init__(self, isjunk=None, a='', b=''):
|
||||
# Members:
|
||||
# a
|
||||
# first sequence
|
||||
# b
|
||||
# second sequence; differences are computed as "what do
|
||||
# we need to do to 'a' to change it into 'b'?"
|
||||
# b2j
|
||||
# for x in b, b2j[x] is a list of the indices (into b)
|
||||
# at which x appears; junk elements do not appear
|
||||
# b2jhas
|
||||
# b2j.has_key
|
||||
# fullbcount
|
||||
# for x in b, fullbcount[x] == the number of times x
|
||||
# appears in b; only materialized if really needed (used
|
||||
# only for computing quick_ratio())
|
||||
# matching_blocks
|
||||
# a list of (i, j, k) triples, where a[i:i+k] == b[j:j+k];
|
||||
# ascending & non-overlapping in i and in j; terminated by
|
||||
# a dummy (len(a), len(b), 0) sentinel
|
||||
# opcodes
|
||||
# a list of (tag, i1, i2, j1, j2) tuples, where tag is
|
||||
# one of
|
||||
# 'replace' a[i1:i2] should be replaced by b[j1:j2]
|
||||
# 'delete' a[i1:i2] should be deleted
|
||||
# 'insert' b[j1:j2] should be inserted
|
||||
# 'equal' a[i1:i2] == b[j1:j2]
|
||||
# isjunk
|
||||
# a user-supplied function taking a sequence element and
|
||||
# returning true iff the element is "junk" -- this has
|
||||
# subtle but helpful effects on the algorithm, which I'll
|
||||
# get around to writing up someday <0.9 wink>.
|
||||
# DON'T USE! Only __chain_b uses this. Use isbjunk.
|
||||
# isbjunk
|
||||
# for x in b, isbjunk(x) == isjunk(x) but much faster;
|
||||
# it's really the has_key method of a hidden dict.
|
||||
# DOES NOT WORK for x in a!
|
||||
|
||||
self.isjunk = isjunk
|
||||
self.a = self.b = None
|
||||
self.set_seqs(a, b)
|
||||
|
||||
def set_seqs(self, a, b):
|
||||
self.set_seq1(a)
|
||||
self.set_seq2(b)
|
||||
|
||||
def set_seq1(self, a):
|
||||
if a is self.a:
|
||||
return
|
||||
self.a = a
|
||||
self.matching_blocks = self.opcodes = None
|
||||
|
||||
def set_seq2(self, b):
|
||||
if b is self.b:
|
||||
return
|
||||
self.b = b
|
||||
self.matching_blocks = self.opcodes = None
|
||||
self.fullbcount = None
|
||||
self.__chain_b()
|
||||
|
||||
# For each element x in b, set b2j[x] to a list of the indices in
|
||||
# b where x appears; the indices are in increasing order; note that
|
||||
# the number of times x appears in b is len(b2j[x]) ...
|
||||
# when self.isjunk is defined, junk elements don't show up in this
|
||||
# map at all, which stops the central find_longest_match method
|
||||
# from starting any matching block at a junk element ...
|
||||
# also creates the fast isbjunk function ...
|
||||
# note that this is only called when b changes; so for cross-product
|
||||
# kinds of matches, it's best to call set_seq2 once, then set_seq1
|
||||
# repeatedly
|
||||
|
||||
def __chain_b(self):
|
||||
# Because isjunk is a user-defined (not C) function, and we test
|
||||
# for junk a LOT, it's important to minimize the number of calls.
|
||||
# Before the tricks described here, __chain_b was by far the most
|
||||
# time-consuming routine in the whole module! If anyone sees
|
||||
# Jim Roskind, thank him again for profile.py -- I never would
|
||||
# have guessed that.
|
||||
# The first trick is to build b2j ignoring the possibility
|
||||
# of junk. I.e., we don't call isjunk at all yet. Throwing
|
||||
# out the junk later is much cheaper than building b2j "right"
|
||||
# from the start.
|
||||
b = self.b
|
||||
self.b2j = b2j = {}
|
||||
self.b2jhas = b2jhas = b2j.has_key
|
||||
for i in xrange(len(b)):
|
||||
elt = b[i]
|
||||
if b2jhas(elt):
|
||||
b2j[elt].append(i)
|
||||
else:
|
||||
b2j[elt] = [i]
|
||||
|
||||
# Now b2j.keys() contains elements uniquely, and especially when
|
||||
# the sequence is a string, that's usually a good deal smaller
|
||||
# than len(string). The difference is the number of isjunk calls
|
||||
# saved.
|
||||
isjunk, junkdict = self.isjunk, {}
|
||||
if isjunk:
|
||||
for elt in b2j.keys():
|
||||
if isjunk(elt):
|
||||
junkdict[elt] = 1 # value irrelevant; it's a set
|
||||
del b2j[elt]
|
||||
|
||||
# Now for x in b, isjunk(x) == junkdict.has_key(x), but the
|
||||
# latter is much faster. Note too that while there may be a
|
||||
# lot of junk in the sequence, the number of *unique* junk
|
||||
# elements is probably small. So the memory burden of keeping
|
||||
# this dict alive is likely trivial compared to the size of b2j.
|
||||
self.isbjunk = junkdict.has_key
|
||||
|
||||
def find_longest_match(self, alo, ahi, blo, bhi):
|
||||
"""Find longest matching block in a[alo:ahi] and b[blo:bhi].
|
||||
|
||||
If isjunk is not defined:
|
||||
|
||||
Return (i,j,k) such that a[i:i+k] is equal to b[j:j+k], where
|
||||
alo <= i <= i+k <= ahi
|
||||
blo <= j <= j+k <= bhi
|
||||
and for all (i',j',k') meeting those conditions,
|
||||
k >= k'
|
||||
i <= i'
|
||||
and if i == i', j <= j'
|
||||
In other words, of all maximal matching blocks, return one
|
||||
that starts earliest in a, and of all those maximal matching
|
||||
blocks that start earliest in a, return the one that starts
|
||||
earliest in b.
|
||||
|
||||
If isjunk is defined, first the longest matching block is
|
||||
determined as above, but with the additional restriction that
|
||||
no junk element appears in the block. Then that block is
|
||||
extended as far as possible by matching (only) junk elements on
|
||||
both sides. So the resulting block never matches on junk except
|
||||
as identical junk happens to be adjacent to an "interesting"
|
||||
match.
|
||||
|
||||
If no blocks match, return (alo, blo, 0).
|
||||
"""
|
||||
|
||||
# CAUTION: stripping common prefix or suffix would be incorrect.
|
||||
# E.g.,
|
||||
# ab
|
||||
# acab
|
||||
# Longest matching block is "ab", but if common prefix is
|
||||
# stripped, it's "a" (tied with "b"). UNIX(tm) diff does so
|
||||
# strip, so ends up claiming that ab is changed to acab by
|
||||
# inserting "ca" in the middle. That's minimal but unintuitive:
|
||||
# "it's obvious" that someone inserted "ac" at the front.
|
||||
# Windiff ends up at the same place as diff, but by pairing up
|
||||
# the unique 'b's and then matching the first two 'a's.
|
||||
|
||||
a, b, b2j, isbjunk = self.a, self.b, self.b2j, self.isbjunk
|
||||
besti, bestj, bestsize = alo, blo, 0
|
||||
# find longest junk-free match
|
||||
# during an iteration of the loop, j2len[j] = length of longest
|
||||
# junk-free match ending with a[i-1] and b[j]
|
||||
j2len = {}
|
||||
nothing = []
|
||||
for i in xrange(alo, ahi):
|
||||
# look at all instances of a[i] in b; note that because
|
||||
# b2j has no junk keys, the loop is skipped if a[i] is junk
|
||||
j2lenget = j2len.get
|
||||
newj2len = {}
|
||||
for j in b2j.get(a[i], nothing):
|
||||
# a[i] matches b[j]
|
||||
if j < blo:
|
||||
continue
|
||||
if j >= bhi:
|
||||
break
|
||||
k = newj2len[j] = j2lenget(j-1, 0) + 1
|
||||
if k > bestsize:
|
||||
besti, bestj, bestsize = i-k+1, j-k+1, k
|
||||
j2len = newj2len
|
||||
|
||||
# Now that we have a wholly interesting match (albeit possibly
|
||||
# empty!), we may as well suck up the matching junk on each
|
||||
# side of it too. Can't think of a good reason not to, and it
|
||||
# saves post-processing the (possibly considerable) expense of
|
||||
# figuring out what to do with it. In the case of an empty
|
||||
# interesting match, this is clearly the right thing to do,
|
||||
# because no other kind of match is possible in the regions.
|
||||
while besti > alo and bestj > blo and \
|
||||
isbjunk(b[bestj-1]) and \
|
||||
a[besti-1] == b[bestj-1]:
|
||||
besti, bestj, bestsize = besti-1, bestj-1, bestsize+1
|
||||
while besti+bestsize < ahi and bestj+bestsize < bhi and \
|
||||
isbjunk(b[bestj+bestsize]) and \
|
||||
a[besti+bestsize] == b[bestj+bestsize]:
|
||||
bestsize = bestsize + 1
|
||||
|
||||
if TRACE:
|
||||
print "get_matching_blocks", alo, ahi, blo, bhi
|
||||
print " returns", besti, bestj, bestsize
|
||||
return besti, bestj, bestsize
|
||||
|
||||
def get_matching_blocks(self):
|
||||
if self.matching_blocks is not None:
|
||||
return self.matching_blocks
|
||||
self.matching_blocks = []
|
||||
la, lb = len(self.a), len(self.b)
|
||||
self.__helper(0, la, 0, lb, self.matching_blocks)
|
||||
self.matching_blocks.append( (la, lb, 0) )
|
||||
if TRACE:
|
||||
print '*** matching blocks', self.matching_blocks
|
||||
return self.matching_blocks
|
||||
|
||||
# builds list of matching blocks covering a[alo:ahi] and
|
||||
# b[blo:bhi], appending them in increasing order to answer
|
||||
|
||||
def __helper(self, alo, ahi, blo, bhi, answer):
|
||||
i, j, k = x = self.find_longest_match(alo, ahi, blo, bhi)
|
||||
# a[alo:i] vs b[blo:j] unknown
|
||||
# a[i:i+k] same as b[j:j+k]
|
||||
# a[i+k:ahi] vs b[j+k:bhi] unknown
|
||||
if k:
|
||||
if alo < i and blo < j:
|
||||
self.__helper(alo, i, blo, j, answer)
|
||||
answer.append(x)
|
||||
if i+k < ahi and j+k < bhi:
|
||||
self.__helper(i+k, ahi, j+k, bhi, answer)
|
||||
|
||||
def ratio(self):
|
||||
"""Return a measure of the sequences' similarity (float in [0,1]).
|
||||
|
||||
Where T is the total number of elements in both sequences, and
|
||||
M is the number of matches, this is 2*M / T.
|
||||
Note that this is 1 if the sequences are identical, and 0 if
|
||||
they have nothing in common.
|
||||
"""
|
||||
|
||||
matches = reduce(lambda sum, triple: sum + triple[-1],
|
||||
self.get_matching_blocks(), 0)
|
||||
return 2.0 * matches / (len(self.a) + len(self.b))
|
||||
|
||||
def quick_ratio(self):
|
||||
"""Return an upper bound on ratio() relatively quickly."""
|
||||
# viewing a and b as multisets, set matches to the cardinality
|
||||
# of their intersection; this counts the number of matches
|
||||
# without regard to order, so is clearly an upper bound
|
||||
if self.fullbcount is None:
|
||||
self.fullbcount = fullbcount = {}
|
||||
for elt in self.b:
|
||||
fullbcount[elt] = fullbcount.get(elt, 0) + 1
|
||||
fullbcount = self.fullbcount
|
||||
# avail[x] is the number of times x appears in 'b' less the
|
||||
# number of times we've seen it in 'a' so far ... kinda
|
||||
avail = {}
|
||||
availhas, matches = avail.has_key, 0
|
||||
for elt in self.a:
|
||||
if availhas(elt):
|
||||
numb = avail[elt]
|
||||
else:
|
||||
numb = fullbcount.get(elt, 0)
|
||||
avail[elt] = numb - 1
|
||||
if numb > 0:
|
||||
matches = matches + 1
|
||||
return 2.0 * matches / (len(self.a) + len(self.b))
|
||||
|
||||
def real_quick_ratio(self):
|
||||
"""Return an upper bound on ratio() very quickly"""
|
||||
la, lb = len(self.a), len(self.b)
|
||||
# can't have more matches than the number of elements in the
|
||||
# shorter sequence
|
||||
return 2.0 * min(la, lb) / (la + lb)
|
||||
|
||||
def get_opcodes(self):
|
||||
if self.opcodes is not None:
|
||||
return self.opcodes
|
||||
i = j = 0
|
||||
self.opcodes = answer = []
|
||||
for ai, bj, size in self.get_matching_blocks():
|
||||
# invariant: we've pumped out correct diffs to change
|
||||
# a[:i] into b[:j], and the next matching block is
|
||||
# a[ai:ai+size] == b[bj:bj+size]. So we need to pump
|
||||
# out a diff to change a[i:ai] into b[j:bj], pump out
|
||||
# the matching block, and move (i,j) beyond the match
|
||||
tag = ''
|
||||
if i < ai and j < bj:
|
||||
tag = 'replace'
|
||||
elif i < ai:
|
||||
tag = 'delete'
|
||||
elif j < bj:
|
||||
tag = 'insert'
|
||||
if tag:
|
||||
answer.append( (tag, i, ai, j, bj) )
|
||||
i, j = ai+size, bj+size
|
||||
# the list of matching blocks is terminated by a
|
||||
# sentinel with size 0
|
||||
if size:
|
||||
answer.append( ('equal', ai, i, bj, j) )
|
||||
return answer
|
||||
|
||||
# meant for dumping lines
|
||||
def dump(tag, x, lo, hi):
|
||||
for i in xrange(lo, hi):
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue