mirror of
https://github.com/python/cpython.git
synced 2025-11-12 23:16:47 +00:00
bpo-47189: What's New in 3.11: Faster CPython (GH-32235)
Co-authored-by: Kumar Aditya <59607654+kumaraditya303@users.noreply.github.com> Co-authored-by: Jelle Zijlstra <jelle.zijlstra@gmail.com> Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com> Co-authored-by: Guido van Rossum <gvanrossum@users.noreply.github.com> Co-authored-by: Irit Katriel <1055913+iritkatriel@users.noreply.github.com>
This commit is contained in:
parent
074da78802
commit
9ffe47df54
3 changed files with 223 additions and 7 deletions
|
|
@ -211,6 +211,8 @@ directory. This is an error unless the replacement is intended. See section
|
||||||
.. %
|
.. %
|
||||||
Do we need stuff on zip files etc. ? DUBOIS
|
Do we need stuff on zip files etc. ? DUBOIS
|
||||||
|
|
||||||
|
.. _tut-pycache:
|
||||||
|
|
||||||
"Compiled" Python files
|
"Compiled" Python files
|
||||||
-----------------------
|
-----------------------
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -62,6 +62,8 @@ Summary -- Release highlights
|
||||||
.. This section singles out the most important changes in Python 3.11.
|
.. This section singles out the most important changes in Python 3.11.
|
||||||
Brevity is key.
|
Brevity is key.
|
||||||
|
|
||||||
|
- Python 3.11 is up to 10-60% faster than Python 3.10. On average, we measured a
|
||||||
|
1.22x speedup on the standard benchmark suite. See `Faster CPython`_ for details.
|
||||||
|
|
||||||
.. PEP-sized items next.
|
.. PEP-sized items next.
|
||||||
|
|
||||||
|
|
@ -477,13 +479,6 @@ Optimizations
|
||||||
almost eliminated when no exception is raised.
|
almost eliminated when no exception is raised.
|
||||||
(Contributed by Mark Shannon in :issue:`40222`.)
|
(Contributed by Mark Shannon in :issue:`40222`.)
|
||||||
|
|
||||||
* Method calls with keywords are now faster due to bytecode
|
|
||||||
changes which avoid creating bound method instances. Previously, this
|
|
||||||
optimization was applied only to method calls with purely positional
|
|
||||||
arguments.
|
|
||||||
(Contributed by Ken Jin and Mark Shannon in :issue:`26110`, based on ideas
|
|
||||||
implemented in PyPy.)
|
|
||||||
|
|
||||||
* Pure ASCII strings are now normalized in constant time by :func:`unicodedata.normalize`.
|
* Pure ASCII strings are now normalized in constant time by :func:`unicodedata.normalize`.
|
||||||
(Contributed by Dong-hee Na in :issue:`44987`.)
|
(Contributed by Dong-hee Na in :issue:`44987`.)
|
||||||
|
|
||||||
|
|
@ -498,6 +493,223 @@ Optimizations
|
||||||
(Contributed by Inada Naoki in :issue:`46845`.)
|
(Contributed by Inada Naoki in :issue:`46845`.)
|
||||||
|
|
||||||
|
|
||||||
|
Faster CPython
|
||||||
|
==============
|
||||||
|
|
||||||
|
CPython 3.11 is on average `1.22x faster <https://github.com/faster-cpython/ideas/blob/main/main-vs-310.rst>`_
|
||||||
|
than CPython 3.10 when measured with the
|
||||||
|
`pyperformance <https://github.com/python/pyperformance>`_ benchmark suite,
|
||||||
|
and compiled with GCC on Ubuntu Linux. Depending on your workload, the speedup
|
||||||
|
could be up to 10-60% faster.
|
||||||
|
|
||||||
|
This project focuses on two major areas in Python: faster startup and faster
|
||||||
|
runtime. Other optimizations not under this project are listed in `Optimizations`_.
|
||||||
|
|
||||||
|
Faster Startup
|
||||||
|
--------------
|
||||||
|
|
||||||
|
Frozen imports / Static code objects
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
Python caches bytecode in the :ref:`__pycache__<tut-pycache>` directory to
|
||||||
|
speed up module loading.
|
||||||
|
|
||||||
|
Previously in 3.10, Python module execution looked like this:
|
||||||
|
|
||||||
|
.. code-block:: text
|
||||||
|
|
||||||
|
Read __pycache__ -> Unmarshal -> Heap allocated code object -> Evaluate
|
||||||
|
|
||||||
|
In Python 3.11, the core modules essential for Python startup are "frozen".
|
||||||
|
This means that their code objects (and bytecode) are statically allocated
|
||||||
|
by the interpreter. This reduces the steps in module execution process to this:
|
||||||
|
|
||||||
|
.. code-block:: text
|
||||||
|
|
||||||
|
Statically allocated code object -> Evaluate
|
||||||
|
|
||||||
|
Interpreter startup is now 10-15% faster in Python 3.11. This has a big
|
||||||
|
impact for short-running programs using Python.
|
||||||
|
|
||||||
|
(Contributed by Eric Snow, Guido van Rossum and Kumar Aditya in numerous issues.)
|
||||||
|
|
||||||
|
|
||||||
|
Faster Runtime
|
||||||
|
--------------
|
||||||
|
|
||||||
|
Cheaper, lazy Python frames
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
Python frames are created whenever Python calls a Python function. This frame
|
||||||
|
holds execution information. The following are new frame optimizations:
|
||||||
|
|
||||||
|
- Streamlined the frame creation process.
|
||||||
|
- Avoided memory allocation by generously re-using frame space on the C stack.
|
||||||
|
- Streamlined the internal frame struct to contain only essential information.
|
||||||
|
Frames previously held extra debugging and memory management information.
|
||||||
|
|
||||||
|
Old-style frame objects are now created only when required by debuggers. For
|
||||||
|
most user code, no frame objects are created at all. As a result, nearly all
|
||||||
|
Python functions calls have sped up significantly. We measured a 3-7% speedup
|
||||||
|
in pyperformance.
|
||||||
|
|
||||||
|
(Contributed by Mark Shannon in :issue:`44590`.)
|
||||||
|
|
||||||
|
.. _inline-calls:
|
||||||
|
|
||||||
|
Inlined Python function calls
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
During a Python function call, Python will call an evaluating C function to
|
||||||
|
interpret that function's code. This effectively limits pure Python recursion to
|
||||||
|
what's safe for the C stack.
|
||||||
|
|
||||||
|
In 3.11, when CPython detects Python code calling another Python function,
|
||||||
|
it sets up a new frame, and "jumps" to the new code inside the new frame. This
|
||||||
|
avoids calling the C interpreting function altogether.
|
||||||
|
|
||||||
|
Most Python function calls now consume no C stack space. This speeds up
|
||||||
|
most of such calls. In simple recursive functions like fibonacci or
|
||||||
|
factorial, a 1.7x speedup was observed. This also means recursive functions
|
||||||
|
can recurse significantly deeper (if the user increases the recursion limit).
|
||||||
|
We measured a 1-3% improvement in pyperformance.
|
||||||
|
|
||||||
|
(Contributed by Pablo Galindo and Mark Shannon in :issue:`45256`.)
|
||||||
|
|
||||||
|
PEP 659: Specializing Adaptive Interpreter
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
:pep:`659` is one of the key parts of the faster CPython project. The general
|
||||||
|
idea is that while Python is a dynamic language, most code has regions where
|
||||||
|
objects and types rarely change. This concept is known as *type stability*.
|
||||||
|
|
||||||
|
At runtime, Python will try to look for common patterns and type stability
|
||||||
|
in the executing code. Python will then replace the current operation with a
|
||||||
|
more specialized one. This specialized operation uses fast paths available only
|
||||||
|
to those use cases/types, which generally outperform their generic
|
||||||
|
counterparts. This also brings in another concept called *inline caching*, where
|
||||||
|
Python caches the results of expensive operations directly in the bytecode.
|
||||||
|
|
||||||
|
The specializer will also combine certain common instruction pairs into one
|
||||||
|
superinstruction. This reduces the overhead during execution.
|
||||||
|
|
||||||
|
Python will only specialize
|
||||||
|
when it sees code that is "hot" (executed multiple times). This prevents Python
|
||||||
|
from wasting time for run-once code. Python can also de-specialize when code is
|
||||||
|
too dynamic or when the use changes. Specialization is attempted periodically,
|
||||||
|
and specialization attempts are not too expensive. This allows specialization
|
||||||
|
to adapt to new circumstances.
|
||||||
|
|
||||||
|
(PEP written by Mark Shannon, with ideas inspired by Stefan Brunthaler.
|
||||||
|
See :pep:`659` for more information.)
|
||||||
|
|
||||||
|
..
|
||||||
|
If I missed out anyone, please add them.
|
||||||
|
|
||||||
|
+---------------+--------------------+-------------------------------------------------------+-------------------+-------------------+
|
||||||
|
| Operation | Form | Specialization | Operation speedup | Contributor(s) |
|
||||||
|
| | | | (up to) | |
|
||||||
|
+===============+====================+=======================================================+===================+===================+
|
||||||
|
| Binary | ``x+x; x*x; x-x;`` | Binary add, multiply and subtract for common types | 10% | Mark Shannon, |
|
||||||
|
| operations | | such as ``int``, ``float``, and ``str`` take custom | | Dong-hee Na, |
|
||||||
|
| | | fast paths for their underlying types. | | Brandt Bucher, |
|
||||||
|
| | | | | Dennis Sweeney |
|
||||||
|
+---------------+--------------------+-------------------------------------------------------+-------------------+-------------------+
|
||||||
|
| Subscript | ``a[i]`` | Subscripting container types such as ``list``, | 10-25% | Irit Katriel, |
|
||||||
|
| | | ``tuple`` and ``dict`` directly index the underlying | | Mark Shannon |
|
||||||
|
| | | data structures. | | |
|
||||||
|
| | | | | |
|
||||||
|
| | | Subscripting custom ``__getitem__`` | | |
|
||||||
|
| | | is also inlined similar to :ref:`inline-calls`. | | |
|
||||||
|
+---------------+--------------------+-------------------------------------------------------+-------------------+-------------------+
|
||||||
|
| Store | ``a[i] = z`` | Similar to subscripting specialization above. | 10-25% | Dennis Sweeney |
|
||||||
|
| subscript | | | | |
|
||||||
|
+---------------+--------------------+-------------------------------------------------------+-------------------+-------------------+
|
||||||
|
| Calls | ``f(arg)`` | Calls to common builtin (C) functions and types such | 20% | Mark Shannon, |
|
||||||
|
| | ``C(arg)`` | as ``len`` and ``str`` directly call their underlying | | Ken Jin |
|
||||||
|
| | | C version. This avoids going through the internal | | |
|
||||||
|
| | | calling convention. | | |
|
||||||
|
| | | | | |
|
||||||
|
+---------------+--------------------+-------------------------------------------------------+-------------------+-------------------+
|
||||||
|
| Load | ``print`` | The object's index in the globals/builtins namespace | [1]_ | Mark Shannon |
|
||||||
|
| global | ``len`` | is cached. Loading globals and builtins require | | |
|
||||||
|
| variable | | zero namespace lookups. | | |
|
||||||
|
+---------------+--------------------+-------------------------------------------------------+-------------------+-------------------+
|
||||||
|
| Load | ``o.attr`` | Similar to loading global variables. The attribute's | [2]_ | Mark Shannon |
|
||||||
|
| attribute | | index inside the class/object's namespace is cached. | | |
|
||||||
|
| | | In most cases, attribute loading will require zero | | |
|
||||||
|
| | | namespace lookups. | | |
|
||||||
|
+---------------+--------------------+-------------------------------------------------------+-------------------+-------------------+
|
||||||
|
| Load | ``o.meth()`` | The actual address of the method is cached. Method | 10-20% | Ken Jin, |
|
||||||
|
| methods for | | loading now has no namespace lookups -- even for | | Mark Shannon |
|
||||||
|
| call | | classes with long inheritance chains. | | |
|
||||||
|
+---------------+--------------------+-------------------------------------------------------+-------------------+-------------------+
|
||||||
|
| Store | ``o.attr = z`` | Similar to load attribute optimization. | 2% | Mark Shannon |
|
||||||
|
| attribute | | | in pyperformance | |
|
||||||
|
+---------------+--------------------+-------------------------------------------------------+-------------------+-------------------+
|
||||||
|
| Unpack | ``*seq`` | Specialized for common containers such as ``list`` | 8% | Brandt Bucher |
|
||||||
|
| Sequence | | and ``tuple``. Avoids internal calling convention. | | |
|
||||||
|
+---------------+--------------------+-------------------------------------------------------+-------------------+-------------------+
|
||||||
|
|
||||||
|
.. [1] A similar optimization already existed since Python 3.8. 3.11
|
||||||
|
specializes for more forms and reduces some overhead.
|
||||||
|
|
||||||
|
.. [2] A similar optimization already existed since Python 3.10.
|
||||||
|
3.11 specializes for more forms. Furthermore, all attribute loads should
|
||||||
|
be sped up by :issue:`45947`.
|
||||||
|
|
||||||
|
|
||||||
|
Misc
|
||||||
|
----
|
||||||
|
|
||||||
|
* Objects now require less memory due to lazily created object namespaces. Their
|
||||||
|
namespace dictionaries now also share keys more freely.
|
||||||
|
(Contributed Mark Shannon in :issue:`45340` and :issue:`40116`.)
|
||||||
|
|
||||||
|
* A more concise representation of exceptions in the interpreter reduced the
|
||||||
|
time required for catching an exception by about 10%.
|
||||||
|
(Contributed by Irit Katriel in :issue:`45711`.)
|
||||||
|
|
||||||
|
FAQ
|
||||||
|
---
|
||||||
|
|
||||||
|
| Q: How should I write my code to utilize these speedups?
|
||||||
|
|
|
||||||
|
| A: You don't have to change your code. Write Pythonic code that follows common
|
||||||
|
best practices. The Faster CPython project optimizes for common code
|
||||||
|
patterns we observe.
|
||||||
|
|
|
||||||
|
|
|
||||||
|
| Q: Will CPython 3.11 use more memory?
|
||||||
|
|
|
||||||
|
| A: Maybe not. We don't expect memory use to exceed 20% more than 3.10.
|
||||||
|
This is offset by memory optimizations for frame objects and object
|
||||||
|
dictionaries as mentioned above.
|
||||||
|
|
|
||||||
|
|
|
||||||
|
| Q: I don't see any speedups in my workload. Why?
|
||||||
|
|
|
||||||
|
| A: Certain code won't have noticeable benefits. If your code spends most of
|
||||||
|
its time on I/O operations, or already does most of its
|
||||||
|
computation in a C extension library like numpy, there won't be significant
|
||||||
|
speedup. This project currently benefits pure-Python workloads the most.
|
||||||
|
|
|
||||||
|
| Furthermore, the pyperformance figures are a geometric mean. Even within the
|
||||||
|
pyperformance benchmarks, certain benchmarks have slowed down slightly, while
|
||||||
|
others have sped up by nearly 2x!
|
||||||
|
|
|
||||||
|
|
|
||||||
|
| Q: Is there a JIT compiler?
|
||||||
|
|
|
||||||
|
| A: No. We're still exploring other optimizations.
|
||||||
|
|
||||||
|
|
||||||
|
About
|
||||||
|
-----
|
||||||
|
|
||||||
|
Faster CPython explores optimizations for :term:`CPython`. The main team is
|
||||||
|
funded by Microsoft to work on this full-time. Pablo Galindo Salgado is also
|
||||||
|
funded by Bloomberg LP to work on the project part-time. Finally, many
|
||||||
|
contributors are volunteers from the community.
|
||||||
|
|
||||||
|
|
||||||
CPython bytecode changes
|
CPython bytecode changes
|
||||||
========================
|
========================
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -0,0 +1,2 @@
|
||||||
|
Add a What's New in Python 3.11 entry for the Faster CPython project.
|
||||||
|
Documentation by Ken Jin and Kumar Aditya.
|
||||||
Loading…
Add table
Add a link
Reference in a new issue