mirror of
https://github.com/python/cpython.git
synced 2025-08-02 16:13:13 +00:00
shelve.py: database of persistent objects, on top of pickle.py and anydbm.py
pickle.py: new low-level persistency module (used to be called flatten) dbmac.py: stupid dbm clone for the Mac anydbm.py: generic dbm interface (should be extended to support gdbm)
This commit is contained in:
parent
8a30adc33f
commit
a48061a580
4 changed files with 681 additions and 0 deletions
9
Lib/anydbm.py
Normal file
9
Lib/anydbm.py
Normal file
|
@ -0,0 +1,9 @@
|
|||
"""A generic interface to all dbm clones."""
|
||||
|
||||
try:
|
||||
import dbm
|
||||
def open(file, mode = 'rw'):
|
||||
return dbm.open(file, mode, 0666)
|
||||
except ImportError:
|
||||
import dbmac
|
||||
open = dbmac.open
|
504
Lib/pickle.py
Normal file
504
Lib/pickle.py
Normal file
|
@ -0,0 +1,504 @@
|
|||
"""\
|
||||
Pickling Algorithm
|
||||
------------------
|
||||
|
||||
This module implements a basic but powerful algorithm for "pickling" (a.k.a.
|
||||
serializing, marshalling or flattening) nearly arbitrary Python objects.
|
||||
This is a more primitive notion than persistency -- although pickle
|
||||
reads and writes file objects, it does not handle the issue of naming
|
||||
persistent objects, nor the (even more complicated) area of concurrent
|
||||
access to persistent objects. The pickle module can transform a complex
|
||||
object into a byte stream and it can transform the byte stream into
|
||||
an object with the same internal structure. The most obvious thing to
|
||||
do with these byte streams is to write them onto a file, but it is also
|
||||
conceivable to send them across a network or store them in a database.
|
||||
|
||||
Unlike the built-in marshal module, pickle handles the following correctly:
|
||||
|
||||
- recursive objects
|
||||
- pointer sharing
|
||||
- class instances
|
||||
|
||||
Pickle is Python-specific. This has the advantage that there are no
|
||||
restrictions imposed by external standards such as CORBA (which probably
|
||||
can't represent pointer sharing or recursive objects); however it means
|
||||
that non-Python programs may not be able to reconstruct pickled Python
|
||||
objects.
|
||||
|
||||
Pickle uses a printable ASCII representation. This is slightly more
|
||||
voluminous than a binary representation. However, small integers actually
|
||||
take *less* space when represented as minimal-size decimal strings than
|
||||
when represented as 32-bit binary numbers, and strings are only much longer
|
||||
if they contain control characters or 8-bit characters. The big advantage
|
||||
of using printable ASCII (and of some other characteristics of pickle's
|
||||
representation) is that for debugging or recovery purposes it is possible
|
||||
for a human to read the pickled file with a standard text editor. (I could
|
||||
have gone a step further and used a notation like S-expressions, but the
|
||||
parser would have been considerably more complicated and slower, and the
|
||||
files would probably have become much larger.)
|
||||
|
||||
Pickle doesn't handle code objects, which marshal does.
|
||||
I suppose pickle could, and maybe it should, but there's probably no
|
||||
great need for it right now (as long as marshal continues to be used
|
||||
for reading and writing code objects), and at least this avoids
|
||||
the possibility of smuggling Trojan horses into a program.
|
||||
|
||||
For the benefit of persistency modules written using pickle, it supports
|
||||
the notion of a reference to an object outside the pickled data stream.
|
||||
Such objects are referenced by a name, which is an arbitrary string of
|
||||
printable ASCII characters. The resolution of such names is not defined
|
||||
by the pickle module -- the persistent object module will have to implement
|
||||
a method "persistent_load". To write references to persistent objects,
|
||||
the persistent module must define a method "persistent_id" which returns
|
||||
either None or the persistent ID of the object.
|
||||
|
||||
There are some restrictions on the pickling of class instances.
|
||||
|
||||
First of all, the class must be defined at the top level in a module.
|
||||
|
||||
Next, it must normally be possible to create class instances by calling
|
||||
the class without arguments. If this is undesirable, the class can
|
||||
define a method __getinitargs__ (XXX not a pretty name!), which should
|
||||
return a *tuple* containing the arguments to be passed to the class
|
||||
constructor.
|
||||
|
||||
Classes can influence how they are pickled -- if the class defines
|
||||
the method __getstate__, it is called and the return state is pickled
|
||||
as the contents for the instance, and if the class defines the
|
||||
method __setstate__, it is called with the unpickled state. (Note
|
||||
that these methods can also be used to implement copying class instances.)
|
||||
If there is no __getstate__ method, the instance's __dict__
|
||||
is pickled. If there is no __setstate__ method, the pickled object
|
||||
must be a dictionary and its items are assigned to the new instance's
|
||||
dictionary. (If a class defines both __getstate__ and __setstate__,
|
||||
the state object needn't be a dictionary -- these methods can do what they
|
||||
want.)
|
||||
|
||||
Note that when class instances are pickled, their class's code and data
|
||||
is not pickled along with them. Only the instance data is pickled.
|
||||
This is done on purpose, so you can fix bugs in a class or add methods and
|
||||
still load objects that were created with an earlier version of the
|
||||
class. If you plan to have long-lived objects that will see many versions
|
||||
of a class, it may be worth to put a version number in the objects so
|
||||
that suitable conversions can be made by the class's __setstate__ method.
|
||||
|
||||
The interface is as follows:
|
||||
|
||||
To pickle an object x onto a file f. open for writing:
|
||||
|
||||
p = pickle.Pickler(f)
|
||||
p.dump(x)
|
||||
|
||||
To unpickle an object x from a file f, open for reading:
|
||||
|
||||
u = pickle.Unpickler(f)
|
||||
x = u.load(x)
|
||||
|
||||
The Pickler class only calls the method f.write with a string argument
|
||||
(XXX possibly the interface should pass f.write instead of f).
|
||||
The Unpickler calls the methods f.read(with an integer argument)
|
||||
and f.readline(without argument), both returning a string.
|
||||
It is explicitly allowed to pass non-file objects here, as long as they
|
||||
have the right methods.
|
||||
|
||||
The following types can be pickled:
|
||||
|
||||
- None
|
||||
- integers, long integers, floating point numbers
|
||||
- strings
|
||||
- tuples, lists and dictionaries containing picklable objects
|
||||
- class instances whose __dict__ or __setstate__() is picklable
|
||||
|
||||
Attempts to pickle unpicklable objects will raise an exception
|
||||
after having written an unspecified number of bytes to the file argument.
|
||||
|
||||
It is possible to make multiple calls to Pickler.dump() or to
|
||||
Unpickler.load(), as long as there is a one-to-one correspondence
|
||||
betwee pickler and Unpickler objects and between dump and load calls
|
||||
for any pair of corresponding Pickler and Unpicklers. WARNING: this
|
||||
is intended for pickleing multiple objects without intervening modifications
|
||||
to the objects or their parts. If you modify an object and then pickle
|
||||
it again using the same Pickler instance, the object is not pickled
|
||||
again -- a reference to it is pickled and the Unpickler will return
|
||||
the old value, not the modified one. (XXX There are two problems here:
|
||||
(a) detecting changes, and (b) marshalling a minimal set of changes.
|
||||
I have no answers. Garbage Collection may also become a problem here.)
|
||||
"""
|
||||
|
||||
__format_version__ = "1.0" # File format version
|
||||
__version__ = "1.2" # Code version
|
||||
|
||||
from types import *
|
||||
import string
|
||||
|
||||
AtomicTypes = [NoneType, IntType, FloatType, StringType]
|
||||
|
||||
def safe(object):
|
||||
t = type(object)
|
||||
if t in AtomicTypes:
|
||||
return 1
|
||||
if t is TupleType:
|
||||
for item in object:
|
||||
if not safe(item): return 0
|
||||
return 1
|
||||
return 0
|
||||
|
||||
MARK = '('
|
||||
POP = '0'
|
||||
DUP = '2'
|
||||
STOP = '.'
|
||||
TUPLE = 't'
|
||||
LIST = 'l'
|
||||
DICT = 'd'
|
||||
INST = 'i'
|
||||
GET = 'g'
|
||||
PUT = 'p'
|
||||
APPEND = 'a'
|
||||
SETITEM = 's'
|
||||
BUILD = 'b'
|
||||
NONE = 'N'
|
||||
INT = 'I'
|
||||
LONG = 'L'
|
||||
FLOAT = 'F'
|
||||
STRING = 'S'
|
||||
PERSID = 'P'
|
||||
AtomicKeys = [NONE, INT, LONG, FLOAT, STRING]
|
||||
AtomicMap = {
|
||||
NoneType: NONE,
|
||||
IntType: INT,
|
||||
LongType: LONG,
|
||||
FloatType: FLOAT,
|
||||
StringType: STRING,
|
||||
}
|
||||
|
||||
class Pickler:
|
||||
|
||||
def __init__(self, file):
|
||||
self.write = file.write
|
||||
self.memo = {}
|
||||
|
||||
def dump(self, object):
|
||||
self.save(object)
|
||||
self.write(STOP)
|
||||
|
||||
def save(self, object):
|
||||
pid = self.persistent_id(object)
|
||||
if pid:
|
||||
self.write(PERSID + str(pid) + '\n')
|
||||
return
|
||||
d = id(object)
|
||||
if self.memo.has_key(d):
|
||||
self.write(GET + `d` + '\n')
|
||||
return
|
||||
t = type(object)
|
||||
self.dispatch[t](self, object)
|
||||
|
||||
def persistent_id(self, object):
|
||||
return None
|
||||
|
||||
dispatch = {}
|
||||
|
||||
def save_none(self, object):
|
||||
self.write(NONE)
|
||||
dispatch[NoneType] = save_none
|
||||
|
||||
def save_int(self, object):
|
||||
self.write(INT + `object` + '\n')
|
||||
dispatch[IntType] = save_int
|
||||
|
||||
def save_long(self, object):
|
||||
self.write(LONG + `object` + '\n')
|
||||
dispatch[LongType] = save_long
|
||||
|
||||
def save_float(self, object):
|
||||
self.write(FLOAT + `object` + '\n')
|
||||
dispatch[FloatType] = save_float
|
||||
|
||||
def save_string(self, object):
|
||||
d = id(object)
|
||||
self.write(STRING + `object` + '\n')
|
||||
self.write(PUT + `d` + '\n')
|
||||
self.memo[d] = object
|
||||
dispatch[StringType] = save_string
|
||||
|
||||
def save_tuple(self, object):
|
||||
d = id(object)
|
||||
self.write(MARK)
|
||||
n = len(object)
|
||||
for k in range(n):
|
||||
self.save(object[k])
|
||||
if self.memo.has_key(d):
|
||||
# Saving object[k] has saved us!
|
||||
while k >= 0:
|
||||
self.write(POP)
|
||||
k = k-1
|
||||
self.write(GET + `d` + '\n')
|
||||
break
|
||||
else:
|
||||
self.write(TUPLE + PUT + `d` + '\n')
|
||||
self.memo[d] = object
|
||||
dispatch[TupleType] = save_tuple
|
||||
|
||||
def save_list(self, object):
|
||||
d = id(object)
|
||||
self.write(MARK)
|
||||
n = len(object)
|
||||
for k in range(n):
|
||||
item = object[k]
|
||||
if not safe(item):
|
||||
break
|
||||
self.save(item)
|
||||
else:
|
||||
k = n
|
||||
self.write(LIST + PUT + `d` + '\n')
|
||||
self.memo[d] = object
|
||||
for k in range(k, n):
|
||||
item = object[k]
|
||||
self.save(item)
|
||||
self.write(APPEND)
|
||||
dispatch[ListType] = save_list
|
||||
|
||||
def save_dict(self, object):
|
||||
d = id(object)
|
||||
self.write(MARK)
|
||||
items = object.items()
|
||||
n = len(items)
|
||||
for k in range(n):
|
||||
key, value = items[k]
|
||||
if not safe(key) or not safe(value):
|
||||
break
|
||||
self.save(key)
|
||||
self.save(value)
|
||||
else:
|
||||
k = n
|
||||
self.write(DICT + PUT + `d` + '\n')
|
||||
self.memo[d] = object
|
||||
for k in range(k, n):
|
||||
key, value = items[k]
|
||||
self.save(key)
|
||||
self.save(value)
|
||||
self.write(SETITEM)
|
||||
dispatch[DictionaryType] = save_dict
|
||||
|
||||
def save_inst(self, object):
|
||||
d = id(object)
|
||||
cls = object.__class__
|
||||
module = whichmodule(cls)
|
||||
name = cls.__name__
|
||||
if hasattr(object, '__getinitargs__'):
|
||||
args = object.__getinitargs__()
|
||||
len(args) # XXX Assert it's a sequence
|
||||
else:
|
||||
args = ()
|
||||
self.write(MARK)
|
||||
for arg in args:
|
||||
self.save(arg)
|
||||
self.write(INST + module + '\n' + name + '\n' +
|
||||
PUT + `d` + '\n')
|
||||
self.memo[d] = object
|
||||
try:
|
||||
getstate = object.__getstate__
|
||||
except AttributeError:
|
||||
stuff = object.__dict__
|
||||
else:
|
||||
stuff = getstate()
|
||||
self.save(stuff)
|
||||
self.write(BUILD)
|
||||
dispatch[InstanceType] = save_inst
|
||||
|
||||
|
||||
classmap = {}
|
||||
|
||||
def whichmodule(cls):
|
||||
"""Figure out the module in which a class occurs.
|
||||
|
||||
Search sys.modules for the module.
|
||||
Cache in classmap.
|
||||
Return a module name.
|
||||
If the class cannot be found, return __main__.
|
||||
"""
|
||||
if classmap.has_key(cls):
|
||||
return classmap[cls]
|
||||
import sys
|
||||
clsname = cls.__name__
|
||||
for name, module in sys.modules.items():
|
||||
if module.__name__ != '__main__' and \
|
||||
hasattr(module, clsname) and \
|
||||
getattr(module, clsname) is cls:
|
||||
break
|
||||
else:
|
||||
name = '__main__'
|
||||
classmap[cls] = name
|
||||
return name
|
||||
|
||||
|
||||
class Unpickler:
|
||||
|
||||
def __init__(self, file):
|
||||
self.readline = file.readline
|
||||
self.read = file.read
|
||||
self.memo = {}
|
||||
|
||||
def load(self):
|
||||
self.mark = ['spam'] # Any new unique object
|
||||
self.stack = []
|
||||
try:
|
||||
while 1:
|
||||
key = self.read(1)
|
||||
self.dispatch[key](self)
|
||||
except STOP, value:
|
||||
return value
|
||||
|
||||
def marker(self):
|
||||
k = len(self.stack)-1
|
||||
while self.stack[k] != self.mark: k = k-1
|
||||
return k
|
||||
|
||||
dispatch = {}
|
||||
|
||||
def load_persid(self):
|
||||
pid = self.readline()[:-1]
|
||||
self.stack.append(self.persisent_load(pid))
|
||||
dispatch[PERSID] = load_persid
|
||||
|
||||
def load_none(self):
|
||||
self.stack.append(None)
|
||||
dispatch[NONE] = load_none
|
||||
|
||||
def load_atomic(self):
|
||||
self.stack.append(eval(self.readline()[:-1]))
|
||||
dispatch[INT] = load_atomic
|
||||
dispatch[LONG] = load_atomic
|
||||
dispatch[FLOAT] = load_atomic
|
||||
dispatch[STRING] = load_atomic
|
||||
|
||||
def load_tuple(self):
|
||||
k = self.marker()
|
||||
self.stack[k:] = [tuple(self.stack[k+1:])]
|
||||
dispatch[TUPLE] = load_tuple
|
||||
|
||||
def load_list(self):
|
||||
k = self.marker()
|
||||
self.stack[k:] = [self.stack[k+1:]]
|
||||
dispatch[LIST] = load_list
|
||||
|
||||
def load_dict(self):
|
||||
k = self.marker()
|
||||
d = {}
|
||||
items = self.stack[k+1:]
|
||||
for i in range(0, len(items), 2):
|
||||
key = items[i]
|
||||
value = items[i+1]
|
||||
d[key] = value
|
||||
self.stack[k:] = [d]
|
||||
dispatch[DICT] = load_dict
|
||||
|
||||
def load_inst(self):
|
||||
k = self.marker()
|
||||
args = tuple(self.stack[k+1:])
|
||||
del self.stack[k:]
|
||||
module = self.readline()[:-1]
|
||||
name = self.readline()[:-1]
|
||||
env = {}
|
||||
try:
|
||||
exec 'from %s import %s' % (module, name) in env
|
||||
except ImportError:
|
||||
raise SystemError, \
|
||||
"Failed to import class %s from module %s" % \
|
||||
(name, module)
|
||||
else:
|
||||
klass = env[name]
|
||||
if type(klass) != ClassType:
|
||||
raise SystemError, \
|
||||
"imported object %s from module %s is not a class" % \
|
||||
(name, module)
|
||||
value = apply(klass, args)
|
||||
self.stack.append(value)
|
||||
dispatch[INST] = load_inst
|
||||
|
||||
def load_pop(self):
|
||||
del self.stack[-1]
|
||||
dispatch[POP] = load_pop
|
||||
|
||||
def load_dup(self):
|
||||
stack.append(stack[-1])
|
||||
dispatch[DUP] = load_dup
|
||||
|
||||
def load_get(self):
|
||||
self.stack.append(self.memo[string.atoi(self.readline()[:-1])])
|
||||
dispatch[GET] = load_get
|
||||
|
||||
def load_put(self):
|
||||
self.memo[string.atoi(self.readline()[:-1])] = self.stack[-1]
|
||||
dispatch[PUT] = load_put
|
||||
|
||||
def load_append(self):
|
||||
value = self.stack[-1]
|
||||
del self.stack[-1]
|
||||
list = self.stack[-1]
|
||||
list.append(value)
|
||||
dispatch[APPEND] = load_append
|
||||
|
||||
def load_setitem(self):
|
||||
value = self.stack[-1]
|
||||
key = self.stack[-2]
|
||||
del self.stack[-2:]
|
||||
dict = self.stack[-1]
|
||||
dict[key] = value
|
||||
dispatch[SETITEM] = load_setitem
|
||||
|
||||
def load_build(self):
|
||||
value = self.stack[-1]
|
||||
del self.stack[-1]
|
||||
inst = self.stack[-1]
|
||||
try:
|
||||
setstate = inst.__setstate__
|
||||
except AttributeError:
|
||||
for key in value.keys():
|
||||
inst.__dict__[key] = value[key]
|
||||
else:
|
||||
setstate(value)
|
||||
dispatch[BUILD] = load_build
|
||||
|
||||
def load_mark(self):
|
||||
self.stack.append(self.mark)
|
||||
dispatch[MARK] = load_mark
|
||||
|
||||
def load_stop(self):
|
||||
value = self.stack[-1]
|
||||
del self.stack[-1]
|
||||
raise STOP, value
|
||||
dispatch[STOP] = load_stop
|
||||
|
||||
|
||||
class C:
|
||||
def __cmp__(self, other):
|
||||
return cmp(self.__dict__, other.__dict__)
|
||||
|
||||
def test():
|
||||
fn = 'pickle_tmp'
|
||||
c = C()
|
||||
c.foo = 1
|
||||
c.bar = 2
|
||||
x = [0,1,2,3]
|
||||
y = ('abc', 'abc', c, c)
|
||||
x.append(y)
|
||||
x.append(y)
|
||||
x.append(5)
|
||||
f = open(fn, 'w')
|
||||
F = Pickler(f)
|
||||
F.dump(x)
|
||||
f.close()
|
||||
f = open(fn, 'r')
|
||||
U = Unpickler(f)
|
||||
x2 = U.load()
|
||||
print x
|
||||
print x2
|
||||
print x == x2
|
||||
print map(id, x)
|
||||
print map(id, x2)
|
||||
print F.memo
|
||||
print U.memo
|
||||
|
||||
if __name__ == '__main__':
|
||||
test()
|
43
Lib/shelve.py
Normal file
43
Lib/shelve.py
Normal file
|
@ -0,0 +1,43 @@
|
|||
"""Manage shelves of pickled objects."""
|
||||
|
||||
import pickle
|
||||
import StringIO
|
||||
|
||||
class Shelf:
|
||||
|
||||
def __init__(self, dict):
|
||||
self.dict = dict
|
||||
|
||||
def keys(self):
|
||||
return self.dict.keys()
|
||||
|
||||
def __len__(self):
|
||||
return self.dict.len()
|
||||
|
||||
def has_key(self, key):
|
||||
return self.dict.has_key(key)
|
||||
|
||||
def __getitem__(self, key):
|
||||
return pickle.Unpickler(StringIO.StringIO(self.dict[key])).load()
|
||||
|
||||
def __setitem__(self, key, value):
|
||||
f = StringIO.StringIO()
|
||||
p = pickle.Pickler(f)
|
||||
p.dump(value)
|
||||
self.dict[key] = f.getvalue()
|
||||
|
||||
def __delitem__(self, key):
|
||||
del self.dict[key]
|
||||
|
||||
def close(self):
|
||||
self.db.close()
|
||||
self.db = None
|
||||
|
||||
class DbShelf(Shelf):
|
||||
|
||||
def __init__(self, file):
|
||||
import anydbm
|
||||
Shelf.__init__(self, anydbm.open(file))
|
||||
|
||||
def open(file):
|
||||
return DbShelf(file)
|
125
Mac/Lib/dbmac.py
Normal file
125
Mac/Lib/dbmac.py
Normal file
|
@ -0,0 +1,125 @@
|
|||
"""A slow but simple dbm clone for the Mac.
|
||||
|
||||
For database spam, spam.dir contains the index (a text file),
|
||||
spam.bak *may* contain a backup of the index (also a text file),
|
||||
while spam.dat contains the data (a binary file).
|
||||
|
||||
XXX TO DO:
|
||||
|
||||
- reclaim free space (currently, space once occupied by deleted or expanded
|
||||
items is never reused)
|
||||
|
||||
- support concurrent access (currently, if two processes take turns making
|
||||
updates, they can mess up the index)
|
||||
|
||||
- support efficient access to large databases (currently, the whole index
|
||||
is read when the database is opened, and some updates rewrite the whole index)
|
||||
"""
|
||||
|
||||
_os = __import__('os')
|
||||
import __builtin__
|
||||
|
||||
_open = __builtin__.open
|
||||
|
||||
_BLOCKSIZE = 512
|
||||
|
||||
class _Database:
|
||||
|
||||
def __init__(self, file):
|
||||
self._dirfile = file + '.dir'
|
||||
self._datfile = file + '.dat'
|
||||
self._bakfile = file + '.bak'
|
||||
self._update()
|
||||
|
||||
def _update(self):
|
||||
self._index = {}
|
||||
try:
|
||||
f = _open(self._dirfile)
|
||||
except IOError:
|
||||
pass
|
||||
else:
|
||||
while 1:
|
||||
line = f.readline()
|
||||
if not line: break
|
||||
key, (pos, siz) = eval(line)
|
||||
self._index[key] = (pos, siz)
|
||||
f.close()
|
||||
|
||||
def _commit(self):
|
||||
try: _os.unlink(self._bakfile)
|
||||
except _os.error: pass
|
||||
try: _os.rename(self._dirfile, self._bakfile)
|
||||
except _os.error: pass
|
||||
f = _open(self._dirfile, 'w')
|
||||
for key, (pos, siz) in self._index.items():
|
||||
f.write("%s, (%s, %s)\n" % (`key`, `pos`, `siz`))
|
||||
f.close()
|
||||
|
||||
def __getitem__(self, key):
|
||||
pos, siz = self._index[key] # may raise KeyError
|
||||
f = _open(self._datfile, 'rb')
|
||||
f.seek(pos)
|
||||
dat = f.read(siz)
|
||||
f.close()
|
||||
return dat
|
||||
|
||||
def _addval(self, val):
|
||||
f = _open(self._datfile, 'rb+')
|
||||
f.seek(0, 2)
|
||||
pos = f.tell()
|
||||
pos = ((pos + _BLOCKSIZE - 1) / _BLOCKSIZE) * _BLOCKSIZE
|
||||
f.seek(pos)
|
||||
f.write(val)
|
||||
f.close()
|
||||
return (pos, len(val))
|
||||
|
||||
def _setval(self, pos, val):
|
||||
f = _open(self._datfile, 'rb+')
|
||||
f.seek(pos)
|
||||
f.write(val)
|
||||
f.close()
|
||||
return pos, (val)
|
||||
|
||||
def _addkey(self, key, (pos, siz)):
|
||||
self._index[key] = (pos, siz)
|
||||
f = _open(self._dirfile, 'a')
|
||||
f.write("%s, (%s, %s)\n" % (`key`, `pos`, `siz`))
|
||||
f.close()
|
||||
|
||||
def __setitem__(self, key, val):
|
||||
if not type(key) == type('') == type(val):
|
||||
raise TypeError, "dbmac keys and values must be strings"
|
||||
if not self._index.has_key(key):
|
||||
(pos, siz) = self._addval(val)
|
||||
self._addkey(key, (pos, siz))
|
||||
else:
|
||||
pos, siz = self._index[key]
|
||||
oldblocks = (siz + _BLOCKSIZE - 1) / _BLOCKSIZE
|
||||
newblocks = (len(val) + _BLOCKSIZE - 1) / _BLOCKSIZE
|
||||
if newblocks <= oldblocks:
|
||||
pos, siz = self._setval(pos, val)
|
||||
self._index[key] = pos, siz
|
||||
else:
|
||||
pos, siz = self._addval(val)
|
||||
self._index[key] = pos, siz
|
||||
self._addkey(key, (pos, siz))
|
||||
|
||||
def __delitem__(self, key):
|
||||
del self._index[key]
|
||||
self._commit()
|
||||
|
||||
def keys(self):
|
||||
return self._index.keys()
|
||||
|
||||
def has_key(self, key):
|
||||
return self._index.has_key(key)
|
||||
|
||||
def __len__(self):
|
||||
return len(self._index)
|
||||
|
||||
def close(self):
|
||||
self._index = self._datfile = self._dirfile = self._bakfile = None
|
||||
|
||||
|
||||
def open(file, mode = None):
|
||||
return _Database(file)
|
Loading…
Add table
Add a link
Reference in a new issue