mirror of
https://github.com/python/cpython.git
synced 2025-10-03 05:35:59 +00:00
Add entry for the math module.
This commit is contained in:
parent
ad81f2bee6
commit
a4cfb4292a
1 changed files with 39 additions and 0 deletions
|
@ -972,6 +972,45 @@ datetime and time
|
||||||
|
|
||||||
(Contributed by Alexander Belopolsky and Victor Stinner.)
|
(Contributed by Alexander Belopolsky and Victor Stinner.)
|
||||||
|
|
||||||
|
math
|
||||||
|
----
|
||||||
|
|
||||||
|
The :mod:`math` module has been updated with five new functions inspired by the
|
||||||
|
C99 standard.
|
||||||
|
|
||||||
|
The :func:`~math.isfinite` function provides a reliable and fast way to detect
|
||||||
|
special values. It returns *True* for regular numbers and *False* for *Nan* or
|
||||||
|
*Infinity*:
|
||||||
|
|
||||||
|
>>> [isfinite(x) for x in (123, 4.56, float('Nan'), float('Inf'))]
|
||||||
|
[True, True, False, False]
|
||||||
|
|
||||||
|
The :func:`~math.expm1` function computes ``e**x-1`` for small values of *x*
|
||||||
|
without incuring the loss of precision that usually accompanies the subtraction
|
||||||
|
of nearly equal quantities:
|
||||||
|
|
||||||
|
>>> expm1(0.013671875) # more accurate way to compute e**x-1 for a small x
|
||||||
|
0.013765762467652909
|
||||||
|
|
||||||
|
The :func:`~math.erf` function computes a probability integral of `Gaussian
|
||||||
|
error function <http://en.wikipedia.org/wiki/Error_function>`_:
|
||||||
|
|
||||||
|
>>> erf(1.0/sqrt(2.0)) # portion of normal distribution within 1 standard deviation
|
||||||
|
0.682689492137086
|
||||||
|
|
||||||
|
:func:`~math.gamma` is a continuous extension of the factorial function. See
|
||||||
|
http://en.wikipedia.org/wiki/Gamma_function for details. Because the function
|
||||||
|
is related to factorials, it grows large even for small values of *x*, so there
|
||||||
|
is also a :func:`~math.lgamma` for computing the natural logarithm of the gamma
|
||||||
|
function:
|
||||||
|
|
||||||
|
>>> gamma(7.0) # six factorial
|
||||||
|
720.0
|
||||||
|
>>> lgamma(801.0) # log(800 factorial)
|
||||||
|
4551.950730698041
|
||||||
|
|
||||||
|
(Contributed by Mark Dickinson.)
|
||||||
|
|
||||||
abc
|
abc
|
||||||
---
|
---
|
||||||
|
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue