mirror of
https://github.com/python/cpython.git
synced 2025-08-04 17:08:35 +00:00
Vladimir Marangozov's long-awaited malloc restructuring.
For more comments, read the patches@python.org archives. For documentation read the comments in mymalloc.h and objimpl.h. (This is not exactly what Vladimir posted to the patches list; I've made a few changes, and Vladimir sent me a fix in private email for a problem that only occurs in debug mode. I'm also holding back on his change to main.c, which seems unnecessary to me.)
This commit is contained in:
parent
2808b744e8
commit
b18618dab7
73 changed files with 658 additions and 407 deletions
|
@ -57,6 +57,8 @@ PERFORMANCE OF THIS SOFTWARE.
|
|||
#include <stdlib.h>
|
||||
#endif
|
||||
|
||||
#include "myproto.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
/* Move this down here since some C++ #include's don't like to be included
|
||||
inside an extern "C" */
|
||||
|
@ -67,12 +69,8 @@ extern "C" {
|
|||
#pragma lib_export on
|
||||
#endif
|
||||
|
||||
/* The following should never be necessary */
|
||||
#ifdef NEED_TO_DECLARE_MALLOC_AND_FRIEND
|
||||
extern ANY *malloc Py_PROTO((size_t));
|
||||
extern ANY *calloc Py_PROTO((size_t, size_t));
|
||||
extern ANY *realloc Py_PROTO((ANY *, size_t));
|
||||
extern void free Py_PROTO((ANY *)); /* XXX sometimes int on Unix old systems */
|
||||
#ifndef DL_IMPORT /* declarations for DLL import */
|
||||
#define DL_IMPORT(RTYPE) RTYPE
|
||||
#endif
|
||||
|
||||
#ifndef NULL
|
||||
|
@ -87,34 +85,117 @@ extern void free Py_PROTO((ANY *)); /* XXX sometimes int on Unix old systems */
|
|||
#define _PyMem_EXTRA 0
|
||||
#endif
|
||||
|
||||
#define PyMem_NEW(type, n) \
|
||||
( (type *) malloc(_PyMem_EXTRA + (n) * sizeof(type)) )
|
||||
#define PyMem_RESIZE(p, type, n) \
|
||||
if ((p) == NULL) \
|
||||
(p) = (type *) malloc(_PyMem_EXTRA + (n) * sizeof(type)); \
|
||||
else \
|
||||
(p) = (type *) realloc((ANY *)(p), \
|
||||
_PyMem_EXTRA + (n) * sizeof(type))
|
||||
#define PyMem_DEL(p) free((ANY *)p)
|
||||
#define PyMem_XDEL(p) if ((p) == NULL) ; else PyMem_DEL(p)
|
||||
/*
|
||||
* Core memory allocator
|
||||
* =====================
|
||||
*/
|
||||
|
||||
/* To make sure the interpreter is user-malloc friendly, all memory
|
||||
APIs are implemented on top of this one.
|
||||
|
||||
/* Two sets of function wrappers around malloc and friends; useful if
|
||||
you need to be sure that you are using the same memory allocator as
|
||||
The PyCore_* macros can be defined to make the interpreter use a
|
||||
custom allocator. Note that they are for internal use only. Both
|
||||
the core and extension modules should use the PyMem_* API. */
|
||||
|
||||
#ifndef PyCore_MALLOC_FUNC
|
||||
#undef PyCore_REALLOC_FUNC
|
||||
#undef PyCore_FREE_FUNC
|
||||
#define PyCore_MALLOC_FUNC malloc
|
||||
#define PyCore_REALLOC_FUNC realloc
|
||||
#define PyCore_FREE_FUNC free
|
||||
#endif
|
||||
|
||||
#ifndef PyCore_MALLOC_PROTO
|
||||
#undef PyCore_REALLOC_PROTO
|
||||
#undef PyCore_FREE_PROTO
|
||||
#define PyCore_MALLOC_PROTO Py_PROTO((size_t))
|
||||
#define PyCore_REALLOC_PROTO Py_PROTO((ANY *, size_t))
|
||||
#define PyCore_FREE_PROTO Py_PROTO((ANY *))
|
||||
#endif
|
||||
|
||||
#ifdef NEED_TO_DECLARE_MALLOC_AND_FRIEND
|
||||
extern ANY *PyCore_MALLOC_FUNC PyCore_MALLOC_PROTO;
|
||||
extern ANY *PyCore_REALLOC_FUNC PyCore_REALLOC_PROTO;
|
||||
extern void PyCore_FREE_FUNC PyCore_FREE_PROTO;
|
||||
#endif
|
||||
|
||||
#ifndef PyCore_MALLOC
|
||||
#undef PyCore_REALLOC
|
||||
#undef PyCore_FREE
|
||||
#define PyCore_MALLOC(n) PyCore_MALLOC_FUNC(n)
|
||||
#define PyCore_REALLOC(p, n) PyCore_REALLOC_FUNC((p), (n))
|
||||
#define PyCore_FREE(p) PyCore_FREE_FUNC(p)
|
||||
#endif
|
||||
|
||||
/* BEWARE:
|
||||
|
||||
Each interface exports both functions and macros. Extension modules
|
||||
should normally use the functions for ensuring binary compatibility
|
||||
of the user's code across Python versions. Subsequently, if the
|
||||
Python runtime switches to its own malloc (different from standard
|
||||
malloc), no recompilation is required for the extensions.
|
||||
|
||||
The macro versions trade compatibility for speed. They can be used
|
||||
whenever there is a performance problem, but their use implies
|
||||
recompilation of the code for each new Python release. The Python
|
||||
core uses the macros because it *is* compiled on every upgrade.
|
||||
This might not be the case with 3rd party extensions in a custom
|
||||
setup (for example, a customer does not always have access to the
|
||||
source of 3rd party deliverables). You have been warned! */
|
||||
|
||||
/*
|
||||
* Raw memory interface
|
||||
* ====================
|
||||
*/
|
||||
|
||||
/* Functions */
|
||||
|
||||
/* Function wrappers around PyCore_MALLOC and friends; useful if you
|
||||
need to be sure that you are using the same memory allocator as
|
||||
Python. Note that the wrappers make sure that allocating 0 bytes
|
||||
returns a non-NULL pointer, even if the underlying malloc doesn't.
|
||||
The Python interpreter continues to use PyMem_NEW etc. */
|
||||
|
||||
/* These wrappers around malloc call PyErr_NoMemory() on failure */
|
||||
extern DL_IMPORT(ANY *) Py_Malloc Py_PROTO((size_t));
|
||||
extern DL_IMPORT(ANY *) Py_Realloc Py_PROTO((ANY *, size_t));
|
||||
extern DL_IMPORT(void) Py_Free Py_PROTO((ANY *));
|
||||
|
||||
/* These wrappers around malloc *don't* call anything on failure */
|
||||
returns a non-NULL pointer, even if the underlying malloc
|
||||
doesn't. Returned pointers must be checked for NULL explicitly.
|
||||
No action is performed on failure. */
|
||||
extern DL_IMPORT(ANY *) PyMem_Malloc Py_PROTO((size_t));
|
||||
extern DL_IMPORT(ANY *) PyMem_Realloc Py_PROTO((ANY *, size_t));
|
||||
extern DL_IMPORT(void) PyMem_Free Py_PROTO((ANY *));
|
||||
|
||||
/* Starting from Python 1.6, the wrappers Py_{Malloc,Realloc,Free} are
|
||||
no longer supported. They used to call PyErr_NoMemory() on failure. */
|
||||
|
||||
/* Macros */
|
||||
#define PyMem_MALLOC(n) PyCore_MALLOC(n)
|
||||
#define PyMem_REALLOC(p, n) PyCore_REALLOC((ANY *)(p), (n))
|
||||
#define PyMem_FREE(p) PyCore_FREE((ANY *)(p))
|
||||
|
||||
/*
|
||||
* Type-oriented memory interface
|
||||
* ==============================
|
||||
*/
|
||||
|
||||
/* Functions */
|
||||
#define PyMem_New(type, n) \
|
||||
( (type *) PyMem_Malloc((n) * sizeof(type)) )
|
||||
#define PyMem_Resize(p, type, n) \
|
||||
( (p) = (type *) PyMem_Realloc((n) * sizeof(type)) )
|
||||
#define PyMem_Del(p) PyMem_Free(p)
|
||||
|
||||
/* Macros */
|
||||
#define PyMem_NEW(type, n) \
|
||||
( (type *) PyMem_MALLOC(_PyMem_EXTRA + (n) * sizeof(type)) )
|
||||
#define PyMem_RESIZE(p, type, n) \
|
||||
if ((p) == NULL) \
|
||||
(p) = (type *)(PyMem_MALLOC( \
|
||||
_PyMem_EXTRA + (n) * sizeof(type))); \
|
||||
else \
|
||||
(p) = (type *)(PyMem_REALLOC((p), \
|
||||
_PyMem_EXTRA + (n) * sizeof(type)))
|
||||
#define PyMem_DEL(p) PyMem_FREE(p)
|
||||
|
||||
/* PyMem_XDEL is deprecated. To avoid the call when p is NULL,
|
||||
it is recommended to write the test explicitly in the code.
|
||||
Note that according to ANSI C, free(NULL) has no effect. */
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
|
|
@ -35,42 +35,204 @@ PERFORMANCE OF THIS SOFTWARE.
|
|||
|
||||
******************************************************************/
|
||||
|
||||
#include "mymalloc.h"
|
||||
|
||||
/*
|
||||
Additional macros for modules that implement new object types.
|
||||
Functions and macros for modules that implement new object types.
|
||||
You must first include "object.h".
|
||||
|
||||
PyObject_NEW(type, typeobj) allocates memory for a new object of the given
|
||||
type; here 'type' must be the C structure type used to represent the
|
||||
object and 'typeobj' the address of the corresponding type object.
|
||||
Reference count and type pointer are filled in; the rest of the bytes of
|
||||
the object are *undefined*! The resulting expression type is 'type *'.
|
||||
The size of the object is actually determined by the tp_basicsize field
|
||||
of the type object.
|
||||
- PyObject_New(type, typeobj) allocates memory for a new object of
|
||||
the given type; here 'type' must be the C structure type used to
|
||||
represent the object and 'typeobj' the address of the corresponding
|
||||
type object. Reference count and type pointer are filled in; the
|
||||
rest of the bytes of the object are *undefined*! The resulting
|
||||
expression type is 'type *'. The size of the object is actually
|
||||
determined by the tp_basicsize field of the type object.
|
||||
|
||||
PyObject_NEW_VAR(type, typeobj, n) is similar but allocates a variable-size
|
||||
object with n extra items. The size is computed as tp_basicsize plus
|
||||
n * tp_itemsize. This fills in the ob_size field as well.
|
||||
*/
|
||||
- PyObject_NewVar(type, typeobj, n) is similar but allocates a
|
||||
variable-size object with n extra items. The size is computed as
|
||||
tp_basicsize plus n * tp_itemsize. This fills in the ob_size field
|
||||
as well.
|
||||
|
||||
#ifndef MS_COREDLL
|
||||
- PyObject_Del(op) releases the memory allocated for an object.
|
||||
|
||||
- PyObject_Init(op, typeobj) and PyObject_InitVar(op, typeobj, n) are
|
||||
similar to PyObject_{New, NewVar} except that they don't allocate
|
||||
the memory needed for an object. Instead of the 'type' parameter,
|
||||
they accept the pointer of a new object (allocated by an arbitrary
|
||||
allocator) and initialize its object header fields.
|
||||
|
||||
Note that objects created with PyObject_{New, NewVar} are allocated
|
||||
within the Python heap by an object allocator, the latter being
|
||||
implemented (by default) on top of the Python raw memory
|
||||
allocator. This ensures that Python keeps control on the user's
|
||||
objects regarding their memory management; for instance, they may be
|
||||
subject to automatic garbage collection.
|
||||
|
||||
In case a specific form of memory management is needed, implying that
|
||||
the objects would not reside in the Python heap (for example standard
|
||||
malloc heap(s) are mandatory, use of shared memory, C++ local storage
|
||||
or operator new), you must first allocate the object with your custom
|
||||
allocator, then pass its pointer to PyObject_{Init, InitVar} for
|
||||
filling in its Python-specific fields: reference count, type pointer,
|
||||
possibly others. You should be aware that Python has very limited
|
||||
control over these objects because they don't cooperate with the
|
||||
Python memory manager. Such objects may not be eligible for automatic
|
||||
garbage collection and you have to make sure that they are released
|
||||
accordingly whenever their destructor gets called (cf. the specific
|
||||
form of memory management you're using).
|
||||
|
||||
Unless you have specific memory management requirements, it is
|
||||
recommended to use PyObject_{New, NewVar, Del}. */
|
||||
|
||||
/*
|
||||
* Core object memory allocator
|
||||
* ============================
|
||||
*/
|
||||
|
||||
/* The purpose of the object allocator is to make make the distinction
|
||||
between "object memory" and the rest within the Python heap.
|
||||
|
||||
Object memory is the one allocated by PyObject_{New, NewVar}, i.e.
|
||||
the one that holds the object's representation defined by its C
|
||||
type structure, *excluding* any object-specific memory buffers that
|
||||
might be referenced by the structure (for type structures that have
|
||||
pointer fields). By default, the object memory allocator is
|
||||
implemented on top of the raw memory allocator.
|
||||
|
||||
The PyCore_* macros can be defined to make the interpreter use a
|
||||
custom object memory allocator. They are reserved for internal
|
||||
memory management purposes exclusively. Both the core and extension
|
||||
modules should use the PyObject_* API. */
|
||||
|
||||
#ifndef PyCore_OBJECT_MALLOC_FUNC
|
||||
#undef PyCore_OBJECT_REALLOC_FUNC
|
||||
#undef PyCore_OBJECT_FREE_FUNC
|
||||
#define PyCore_OBJECT_MALLOC_FUNC PyCore_MALLOC_FUNC
|
||||
#define PyCore_OBJECT_REALLOC_FUNC PyCore_REALLOC_FUNC
|
||||
#define PyCore_OBJECT_FREE_FUNC PyCore_FREE_FUNC
|
||||
#endif
|
||||
|
||||
#ifndef PyCore_OBJECT_MALLOC_PROTO
|
||||
#undef PyCore_OBJECT_REALLOC_PROTO
|
||||
#undef PyCore_OBJECT_FREE_PROTO
|
||||
#define PyCore_OBJECT_MALLOC_PROTO PyCore_MALLOC_PROTO
|
||||
#define PyCore_OBJECT_REALLOC_PROTO PyCore_REALLOC_PROTO
|
||||
#define PyCore_OBJECT_FREE_PROTO PyCore_FREE_PROTO
|
||||
#endif
|
||||
|
||||
#ifdef NEED_TO_DECLARE_OBJECT_MALLOC_AND_FRIEND
|
||||
extern ANY *PyCore_OBJECT_MALLOC_FUNC PyCore_OBJECT_MALLOC_PROTO;
|
||||
extern ANY *PyCore_OBJECT_REALLOC_FUNC PyCore_OBJECT_REALLOC_PROTO;
|
||||
extern void PyCore_OBJECT_FREE_FUNC PyCore_OBJECT_FREE_PROTO;
|
||||
#endif
|
||||
|
||||
#ifndef PyCore_OBJECT_MALLOC
|
||||
#undef PyCore_OBJECT_REALLOC
|
||||
#undef PyCore_OBJECT_FREE
|
||||
#define PyCore_OBJECT_MALLOC(n) PyCore_OBJECT_MALLOC_FUNC(n)
|
||||
#define PyCore_OBJECT_REALLOC(p, n) PyCore_OBJECT_REALLOC_FUNC((p), (n))
|
||||
#define PyCore_OBJECT_FREE(p) PyCore_OBJECT_FREE_FUNC(p)
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Raw object memory interface
|
||||
* ===========================
|
||||
*/
|
||||
|
||||
/* The use of this API should be avoided, unless a builtin object
|
||||
constructor inlines PyObject_{New, NewVar}, either because the
|
||||
latter functions cannot allocate the exact amount of needed memory,
|
||||
either for speed. This situation is exceptional, but occurs for
|
||||
some object constructors (PyBuffer_New, PyList_New...). Inlining
|
||||
PyObject_{New, NewVar} for objects that are supposed to belong to
|
||||
the Python heap is discouraged. If you really have to, make sure
|
||||
the object is initialized with PyObject_{Init, InitVar}. Do *not*
|
||||
inline PyObject_{Init, InitVar} for user-extension types or you
|
||||
might seriously interfere with Python's memory management. */
|
||||
|
||||
/* Functions */
|
||||
|
||||
/* Wrappers around PyCore_OBJECT_MALLOC and friends; useful if you
|
||||
need to be sure that you are using the same object memory allocator
|
||||
as Python. These wrappers *do not* make sure that allocating 0
|
||||
bytes returns a non-NULL pointer. Returned pointers must be checked
|
||||
for NULL explicitly; no action is performed on failure. */
|
||||
extern DL_IMPORT(ANY *) PyObject_Malloc Py_PROTO((size_t));
|
||||
extern DL_IMPORT(ANY *) PyObject_Realloc Py_PROTO((ANY *, size_t));
|
||||
extern DL_IMPORT(void) PyObject_Free Py_PROTO((ANY *));
|
||||
|
||||
/* Macros */
|
||||
#define PyObject_MALLOC(n) PyCore_OBJECT_MALLOC(n)
|
||||
#define PyObject_REALLOC(op, n) PyCore_OBJECT_REALLOC((ANY *)(op), (n))
|
||||
#define PyObject_FREE(op) PyCore_OBJECT_FREE((ANY *)(op))
|
||||
|
||||
/*
|
||||
* Generic object allocator interface
|
||||
* ==================================
|
||||
*/
|
||||
|
||||
/* Functions */
|
||||
extern DL_IMPORT(PyObject *) PyObject_Init Py_PROTO((PyObject *, PyTypeObject *));
|
||||
extern DL_IMPORT(PyVarObject *) PyObject_InitVar Py_PROTO((PyVarObject *, PyTypeObject *, int));
|
||||
extern DL_IMPORT(PyObject *) _PyObject_New Py_PROTO((PyTypeObject *));
|
||||
extern DL_IMPORT(PyVarObject *) _PyObject_NewVar Py_PROTO((PyTypeObject *, int));
|
||||
extern DL_IMPORT(void) _PyObject_Del Py_PROTO((PyObject *));
|
||||
|
||||
#define PyObject_NEW(type, typeobj) ((type *) _PyObject_New(typeobj))
|
||||
#define PyObject_NEW_VAR(type, typeobj, n) ((type *) _PyObject_NewVar(typeobj, n))
|
||||
#define PyObject_New(type, typeobj) \
|
||||
( (type *) _PyObject_New(typeobj) )
|
||||
#define PyObject_NewVar(type, typeobj, n) \
|
||||
( (type *) _PyObject_NewVar((typeobj), (n)) )
|
||||
#define PyObject_Del(op) _PyObject_Del((PyObject *)(op))
|
||||
|
||||
#else
|
||||
/* For an MS-Windows DLL, we change the way an object is created, so that the
|
||||
extension module's malloc is used, rather than the core DLL malloc, as there is
|
||||
no guarantee they will use the same heap
|
||||
*/
|
||||
extern DL_IMPORT(PyObject *) _PyObject_New Py_PROTO((PyTypeObject *, PyObject *));
|
||||
extern DL_IMPORT(PyVarObject *) _PyObject_NewVar Py_PROTO((PyTypeObject *, int, PyVarObject *));
|
||||
/* Macros trading binary compatibility for speed. See also mymalloc.h.
|
||||
Note that these macros expect non-NULL object pointers.*/
|
||||
#define PyObject_INIT(op, typeobj) \
|
||||
( (op)->ob_type = (typeobj), _Py_NewReference((PyObject *)(op)), (op) )
|
||||
#define PyObject_INIT_VAR(op, typeobj, size) \
|
||||
( (op)->ob_size = (size), PyObject_INIT((op), (typeobj)) )
|
||||
|
||||
#define PyObject_NEW(type, typeobj) ((type *) _PyObject_New(typeobj,(PyObject *)malloc((typeobj)->tp_basicsize)))
|
||||
#define PyObject_NEW_VAR(type, typeobj, n) ((type *) _PyObject_NewVar(typeobj, n, (PyVarObject *)malloc((typeobj)->tp_basicsize + n * (typeobj)->tp_itemsize)))
|
||||
#define _PyObject_SIZE(typeobj) ( (typeobj)->tp_basicsize )
|
||||
#define _PyObject_VAR_SIZE(typeobj, n) \
|
||||
( (typeobj)->tp_basicsize + (n) * (typeobj)->tp_itemsize )
|
||||
|
||||
#endif /* MS_COREDLL */
|
||||
#define PyObject_NEW(type, typeobj) \
|
||||
( (type *) PyObject_Init( \
|
||||
(PyObject *) PyObject_MALLOC( _PyObject_SIZE(typeobj) ), (typeobj)) )
|
||||
#define PyObject_NEW_VAR(type, typeobj, n) \
|
||||
( (type *) PyObject_InitVar( \
|
||||
(PyVarObject *) PyObject_MALLOC( _PyObject_VAR_SIZE((typeobj),(n)) ),\
|
||||
(typeobj), (n)) )
|
||||
#define PyObject_DEL(op) PyObject_FREE(op)
|
||||
|
||||
/* This example code implements an object constructor with a custom
|
||||
allocator, where PyObject_New is inlined, and shows the important
|
||||
distinction between two steps (at least):
|
||||
1) the actual allocation of the object storage;
|
||||
2) the initialization of the Python specific fields
|
||||
in this storage with PyObject_{Init, InitVar}.
|
||||
|
||||
PyObject *
|
||||
YourObject_New(...)
|
||||
{
|
||||
PyObject *op;
|
||||
|
||||
op = (PyObject *) Your_Allocator(_PyObject_SIZE(YourTypeStruct));
|
||||
if (op == NULL)
|
||||
return PyErr_NoMemory();
|
||||
|
||||
op = PyObject_Init(op, &YourTypeStruct);
|
||||
if (op == NULL)
|
||||
return NULL;
|
||||
|
||||
op->ob_field = value;
|
||||
...
|
||||
return op;
|
||||
}
|
||||
|
||||
Note that in C++, the use of the new operator usually implies that
|
||||
the 1st step is performed automatically for you, so in a C++ class
|
||||
constructor you would start directly with PyObject_Init/InitVar. */
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue