mirror of
https://github.com/python/cpython.git
synced 2025-08-06 18:08:48 +00:00
Recorded merge of revisions 81029 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/trunk ........ r81029 | antoine.pitrou | 2010-05-09 16:46:46 +0200 (dim., 09 mai 2010) | 3 lines Untabify C files. Will watch buildbots. ........
This commit is contained in:
parent
ba32864b2d
commit
c7c96a90bc
321 changed files with 195492 additions and 195492 deletions
274
Python/pymath.c
274
Python/pymath.c
|
@ -7,30 +7,30 @@
|
|||
thus rounding from extended precision to double precision. */
|
||||
double _Py_force_double(double x)
|
||||
{
|
||||
volatile double y;
|
||||
y = x;
|
||||
return y;
|
||||
volatile double y;
|
||||
y = x;
|
||||
return y;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifndef HAVE_HYPOT
|
||||
double hypot(double x, double y)
|
||||
{
|
||||
double yx;
|
||||
double yx;
|
||||
|
||||
x = fabs(x);
|
||||
y = fabs(y);
|
||||
if (x < y) {
|
||||
double temp = x;
|
||||
x = y;
|
||||
y = temp;
|
||||
}
|
||||
if (x == 0.)
|
||||
return 0.;
|
||||
else {
|
||||
yx = y/x;
|
||||
return x*sqrt(1.+yx*yx);
|
||||
}
|
||||
x = fabs(x);
|
||||
y = fabs(y);
|
||||
if (x < y) {
|
||||
double temp = x;
|
||||
x = y;
|
||||
y = temp;
|
||||
}
|
||||
if (x == 0.)
|
||||
return 0.;
|
||||
else {
|
||||
yx = y/x;
|
||||
return x*sqrt(1.+yx*yx);
|
||||
}
|
||||
}
|
||||
#endif /* HAVE_HYPOT */
|
||||
|
||||
|
@ -38,12 +38,12 @@ double hypot(double x, double y)
|
|||
double
|
||||
copysign(double x, double y)
|
||||
{
|
||||
/* use atan2 to distinguish -0. from 0. */
|
||||
if (y > 0. || (y == 0. && atan2(y, -1.) > 0.)) {
|
||||
return fabs(x);
|
||||
} else {
|
||||
return -fabs(x);
|
||||
}
|
||||
/* use atan2 to distinguish -0. from 0. */
|
||||
if (y > 0. || (y == 0. && atan2(y, -1.) > 0.)) {
|
||||
return fabs(x);
|
||||
} else {
|
||||
return -fabs(x);
|
||||
}
|
||||
}
|
||||
#endif /* HAVE_COPYSIGN */
|
||||
|
||||
|
@ -53,41 +53,41 @@ copysign(double x, double y)
|
|||
double
|
||||
log1p(double x)
|
||||
{
|
||||
/* For x small, we use the following approach. Let y be the nearest
|
||||
float to 1+x, then
|
||||
/* For x small, we use the following approach. Let y be the nearest
|
||||
float to 1+x, then
|
||||
|
||||
1+x = y * (1 - (y-1-x)/y)
|
||||
1+x = y * (1 - (y-1-x)/y)
|
||||
|
||||
so log(1+x) = log(y) + log(1-(y-1-x)/y). Since (y-1-x)/y is tiny,
|
||||
the second term is well approximated by (y-1-x)/y. If abs(x) >=
|
||||
DBL_EPSILON/2 or the rounding-mode is some form of round-to-nearest
|
||||
then y-1-x will be exactly representable, and is computed exactly
|
||||
by (y-1)-x.
|
||||
so log(1+x) = log(y) + log(1-(y-1-x)/y). Since (y-1-x)/y is tiny,
|
||||
the second term is well approximated by (y-1-x)/y. If abs(x) >=
|
||||
DBL_EPSILON/2 or the rounding-mode is some form of round-to-nearest
|
||||
then y-1-x will be exactly representable, and is computed exactly
|
||||
by (y-1)-x.
|
||||
|
||||
If abs(x) < DBL_EPSILON/2 and the rounding mode is not known to be
|
||||
round-to-nearest then this method is slightly dangerous: 1+x could
|
||||
be rounded up to 1+DBL_EPSILON instead of down to 1, and in that
|
||||
case y-1-x will not be exactly representable any more and the
|
||||
result can be off by many ulps. But this is easily fixed: for a
|
||||
floating-point number |x| < DBL_EPSILON/2., the closest
|
||||
floating-point number to log(1+x) is exactly x.
|
||||
*/
|
||||
If abs(x) < DBL_EPSILON/2 and the rounding mode is not known to be
|
||||
round-to-nearest then this method is slightly dangerous: 1+x could
|
||||
be rounded up to 1+DBL_EPSILON instead of down to 1, and in that
|
||||
case y-1-x will not be exactly representable any more and the
|
||||
result can be off by many ulps. But this is easily fixed: for a
|
||||
floating-point number |x| < DBL_EPSILON/2., the closest
|
||||
floating-point number to log(1+x) is exactly x.
|
||||
*/
|
||||
|
||||
double y;
|
||||
if (fabs(x) < DBL_EPSILON/2.) {
|
||||
return x;
|
||||
} else if (-0.5 <= x && x <= 1.) {
|
||||
/* WARNING: it's possible than an overeager compiler
|
||||
will incorrectly optimize the following two lines
|
||||
to the equivalent of "return log(1.+x)". If this
|
||||
happens, then results from log1p will be inaccurate
|
||||
for small x. */
|
||||
y = 1.+x;
|
||||
return log(y)-((y-1.)-x)/y;
|
||||
} else {
|
||||
/* NaNs and infinities should end up here */
|
||||
return log(1.+x);
|
||||
}
|
||||
double y;
|
||||
if (fabs(x) < DBL_EPSILON/2.) {
|
||||
return x;
|
||||
} else if (-0.5 <= x && x <= 1.) {
|
||||
/* WARNING: it's possible than an overeager compiler
|
||||
will incorrectly optimize the following two lines
|
||||
to the equivalent of "return log(1.+x)". If this
|
||||
happens, then results from log1p will be inaccurate
|
||||
for small x. */
|
||||
y = 1.+x;
|
||||
return log(y)-((y-1.)-x)/y;
|
||||
} else {
|
||||
/* NaNs and infinities should end up here */
|
||||
return log(1.+x);
|
||||
}
|
||||
}
|
||||
#endif /* HAVE_LOG1P */
|
||||
|
||||
|
@ -97,7 +97,7 @@ log1p(double x)
|
|||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
@ -109,51 +109,51 @@ static const double zero = 0.0;
|
|||
|
||||
/* asinh(x)
|
||||
* Method :
|
||||
* Based on
|
||||
* asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ]
|
||||
* we have
|
||||
* asinh(x) := x if 1+x*x=1,
|
||||
* := sign(x)*(log(x)+ln2)) for large |x|, else
|
||||
* := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else
|
||||
* := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2)))
|
||||
* Based on
|
||||
* asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ]
|
||||
* we have
|
||||
* asinh(x) := x if 1+x*x=1,
|
||||
* := sign(x)*(log(x)+ln2)) for large |x|, else
|
||||
* := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else
|
||||
* := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2)))
|
||||
*/
|
||||
|
||||
#ifndef HAVE_ASINH
|
||||
double
|
||||
asinh(double x)
|
||||
{
|
||||
double w;
|
||||
double absx = fabs(x);
|
||||
{
|
||||
double w;
|
||||
double absx = fabs(x);
|
||||
|
||||
if (Py_IS_NAN(x) || Py_IS_INFINITY(x)) {
|
||||
return x+x;
|
||||
}
|
||||
if (absx < two_pow_m28) { /* |x| < 2**-28 */
|
||||
return x; /* return x inexact except 0 */
|
||||
}
|
||||
if (absx > two_pow_p28) { /* |x| > 2**28 */
|
||||
w = log(absx)+ln2;
|
||||
}
|
||||
else if (absx > 2.0) { /* 2 < |x| < 2**28 */
|
||||
w = log(2.0*absx + 1.0 / (sqrt(x*x + 1.0) + absx));
|
||||
}
|
||||
else { /* 2**-28 <= |x| < 2= */
|
||||
double t = x*x;
|
||||
w = log1p(absx + t / (1.0 + sqrt(1.0 + t)));
|
||||
}
|
||||
return copysign(w, x);
|
||||
|
||||
if (Py_IS_NAN(x) || Py_IS_INFINITY(x)) {
|
||||
return x+x;
|
||||
}
|
||||
if (absx < two_pow_m28) { /* |x| < 2**-28 */
|
||||
return x; /* return x inexact except 0 */
|
||||
}
|
||||
if (absx > two_pow_p28) { /* |x| > 2**28 */
|
||||
w = log(absx)+ln2;
|
||||
}
|
||||
else if (absx > 2.0) { /* 2 < |x| < 2**28 */
|
||||
w = log(2.0*absx + 1.0 / (sqrt(x*x + 1.0) + absx));
|
||||
}
|
||||
else { /* 2**-28 <= |x| < 2= */
|
||||
double t = x*x;
|
||||
w = log1p(absx + t / (1.0 + sqrt(1.0 + t)));
|
||||
}
|
||||
return copysign(w, x);
|
||||
|
||||
}
|
||||
#endif /* HAVE_ASINH */
|
||||
|
||||
/* acosh(x)
|
||||
* Method :
|
||||
* Based on
|
||||
* acosh(x) = log [ x + sqrt(x*x-1) ]
|
||||
* acosh(x) = log [ x + sqrt(x*x-1) ]
|
||||
* we have
|
||||
* acosh(x) := log(x)+ln2, if x is large; else
|
||||
* acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
|
||||
* acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
|
||||
* acosh(x) := log(x)+ln2, if x is large; else
|
||||
* acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
|
||||
* acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
|
||||
*
|
||||
* Special cases:
|
||||
* acosh(x) is NaN with signal if x<1.
|
||||
|
@ -164,35 +164,35 @@ asinh(double x)
|
|||
double
|
||||
acosh(double x)
|
||||
{
|
||||
if (Py_IS_NAN(x)) {
|
||||
return x+x;
|
||||
}
|
||||
if (x < 1.) { /* x < 1; return a signaling NaN */
|
||||
errno = EDOM;
|
||||
if (Py_IS_NAN(x)) {
|
||||
return x+x;
|
||||
}
|
||||
if (x < 1.) { /* x < 1; return a signaling NaN */
|
||||
errno = EDOM;
|
||||
#ifdef Py_NAN
|
||||
return Py_NAN;
|
||||
return Py_NAN;
|
||||
#else
|
||||
return (x-x)/(x-x);
|
||||
return (x-x)/(x-x);
|
||||
#endif
|
||||
}
|
||||
else if (x >= two_pow_p28) { /* x > 2**28 */
|
||||
if (Py_IS_INFINITY(x)) {
|
||||
return x+x;
|
||||
} else {
|
||||
return log(x)+ln2; /* acosh(huge)=log(2x) */
|
||||
}
|
||||
}
|
||||
else if (x == 1.) {
|
||||
return 0.0; /* acosh(1) = 0 */
|
||||
}
|
||||
else if (x > 2.) { /* 2 < x < 2**28 */
|
||||
double t = x*x;
|
||||
return log(2.0*x - 1.0 / (x + sqrt(t - 1.0)));
|
||||
}
|
||||
else { /* 1 < x <= 2 */
|
||||
double t = x - 1.0;
|
||||
return log1p(t + sqrt(2.0*t + t*t));
|
||||
}
|
||||
}
|
||||
else if (x >= two_pow_p28) { /* x > 2**28 */
|
||||
if (Py_IS_INFINITY(x)) {
|
||||
return x+x;
|
||||
} else {
|
||||
return log(x)+ln2; /* acosh(huge)=log(2x) */
|
||||
}
|
||||
}
|
||||
else if (x == 1.) {
|
||||
return 0.0; /* acosh(1) = 0 */
|
||||
}
|
||||
else if (x > 2.) { /* 2 < x < 2**28 */
|
||||
double t = x*x;
|
||||
return log(2.0*x - 1.0 / (x + sqrt(t - 1.0)));
|
||||
}
|
||||
else { /* 1 < x <= 2 */
|
||||
double t = x - 1.0;
|
||||
return log1p(t + sqrt(2.0*t + t*t));
|
||||
}
|
||||
}
|
||||
#endif /* HAVE_ACOSH */
|
||||
|
||||
|
@ -200,9 +200,9 @@ acosh(double x)
|
|||
* Method :
|
||||
* 1.Reduced x to positive by atanh(-x) = -atanh(x)
|
||||
* 2.For x>=0.5
|
||||
* 1 2x x
|
||||
* 1 2x x
|
||||
* atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------)
|
||||
* 2 1 - x 1 - x
|
||||
* 2 1 - x 1 - x
|
||||
*
|
||||
* For x<0.5
|
||||
* atanh(x) = 0.5*log1p(2x+2x*x/(1-x))
|
||||
|
@ -217,31 +217,31 @@ acosh(double x)
|
|||
double
|
||||
atanh(double x)
|
||||
{
|
||||
double absx;
|
||||
double t;
|
||||
double absx;
|
||||
double t;
|
||||
|
||||
if (Py_IS_NAN(x)) {
|
||||
return x+x;
|
||||
}
|
||||
absx = fabs(x);
|
||||
if (absx >= 1.) { /* |x| >= 1 */
|
||||
errno = EDOM;
|
||||
if (Py_IS_NAN(x)) {
|
||||
return x+x;
|
||||
}
|
||||
absx = fabs(x);
|
||||
if (absx >= 1.) { /* |x| >= 1 */
|
||||
errno = EDOM;
|
||||
#ifdef Py_NAN
|
||||
return Py_NAN;
|
||||
return Py_NAN;
|
||||
#else
|
||||
return x/zero;
|
||||
return x/zero;
|
||||
#endif
|
||||
}
|
||||
if (absx < two_pow_m28) { /* |x| < 2**-28 */
|
||||
return x;
|
||||
}
|
||||
if (absx < 0.5) { /* |x| < 0.5 */
|
||||
t = absx+absx;
|
||||
t = 0.5 * log1p(t + t*absx / (1.0 - absx));
|
||||
}
|
||||
else { /* 0.5 <= |x| <= 1.0 */
|
||||
t = 0.5 * log1p((absx + absx) / (1.0 - absx));
|
||||
}
|
||||
return copysign(t, x);
|
||||
}
|
||||
if (absx < two_pow_m28) { /* |x| < 2**-28 */
|
||||
return x;
|
||||
}
|
||||
if (absx < 0.5) { /* |x| < 0.5 */
|
||||
t = absx+absx;
|
||||
t = 0.5 * log1p(t + t*absx / (1.0 - absx));
|
||||
}
|
||||
else { /* 0.5 <= |x| <= 1.0 */
|
||||
t = 0.5 * log1p((absx + absx) / (1.0 - absx));
|
||||
}
|
||||
return copysign(t, x);
|
||||
}
|
||||
#endif /* HAVE_ATANH */
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue