mirror of
https://github.com/python/cpython.git
synced 2025-12-04 00:30:19 +00:00
Merged revisions 77062 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/trunk ........ r77062 | mark.dickinson | 2009-12-27 14:55:57 +0000 (Sun, 27 Dec 2009) | 2 lines Issue #1811: Improve accuracy and consistency of true division for integers. ........
This commit is contained in:
parent
99b2c8f811
commit
cbb62745ac
3 changed files with 418 additions and 33 deletions
|
|
@ -14,6 +14,11 @@ class Frm(object):
|
|||
def __str__(self):
|
||||
return self.format % self.args
|
||||
|
||||
# decorator for skipping tests on non-IEEE 754 platforms
|
||||
requires_IEEE_754 = unittest.skipUnless(
|
||||
float.__getformat__("double").startswith("IEEE"),
|
||||
"test requires IEEE 754 doubles")
|
||||
|
||||
# SHIFT should match the value in longintrepr.h for best testing.
|
||||
SHIFT = sys.int_info.bits_per_digit
|
||||
BASE = 2 ** SHIFT
|
||||
|
|
@ -35,6 +40,43 @@ del p2
|
|||
# add complements & negations
|
||||
special += [~x for x in special] + [-x for x in special]
|
||||
|
||||
DBL_MAX = sys.float_info.max
|
||||
DBL_MAX_EXP = sys.float_info.max_exp
|
||||
DBL_MIN_EXP = sys.float_info.min_exp
|
||||
DBL_MANT_DIG = sys.float_info.mant_dig
|
||||
DBL_MIN_OVERFLOW = 2**DBL_MAX_EXP - 2**(DBL_MAX_EXP - DBL_MANT_DIG - 1)
|
||||
|
||||
# pure Python version of correctly-rounded true division
|
||||
def truediv(a, b):
|
||||
"""Correctly-rounded true division for integers."""
|
||||
negative = a^b < 0
|
||||
a, b = abs(a), abs(b)
|
||||
|
||||
# exceptions: division by zero, overflow
|
||||
if not b:
|
||||
raise ZeroDivisionError("division by zero")
|
||||
if a >= DBL_MIN_OVERFLOW * b:
|
||||
raise OverflowError("int/int too large to represent as a float")
|
||||
|
||||
# find integer d satisfying 2**(d - 1) <= a/b < 2**d
|
||||
d = a.bit_length() - b.bit_length()
|
||||
if d >= 0 and a >= 2**d * b or d < 0 and a * 2**-d >= b:
|
||||
d += 1
|
||||
|
||||
# compute 2**-exp * a / b for suitable exp
|
||||
exp = max(d, DBL_MIN_EXP) - DBL_MANT_DIG
|
||||
a, b = a << max(-exp, 0), b << max(exp, 0)
|
||||
q, r = divmod(a, b)
|
||||
|
||||
# round-half-to-even: fractional part is r/b, which is > 0.5 iff
|
||||
# 2*r > b, and == 0.5 iff 2*r == b.
|
||||
if 2*r > b or 2*r == b and q % 2 == 1:
|
||||
q += 1
|
||||
|
||||
result = float(q) * 2.**exp
|
||||
return -result if negative else result
|
||||
|
||||
|
||||
class LongTest(unittest.TestCase):
|
||||
|
||||
# Get quasi-random long consisting of ndigits digits (in base BASE).
|
||||
|
|
@ -306,10 +348,6 @@ class LongTest(unittest.TestCase):
|
|||
@unittest.skipUnless(float.__getformat__("double").startswith("IEEE"),
|
||||
"test requires IEEE 754 doubles")
|
||||
def test_float_conversion(self):
|
||||
import sys
|
||||
DBL_MAX = sys.float_info.max
|
||||
DBL_MAX_EXP = sys.float_info.max_exp
|
||||
DBL_MANT_DIG = sys.float_info.mant_dig
|
||||
|
||||
exact_values = [0, 1, 2,
|
||||
2**53-3,
|
||||
|
|
@ -614,6 +652,128 @@ class LongTest(unittest.TestCase):
|
|||
for zero in ["huge / 0", "mhuge / 0"]:
|
||||
self.assertRaises(ZeroDivisionError, eval, zero, namespace)
|
||||
|
||||
def check_truediv(self, a, b, skip_small=True):
|
||||
"""Verify that the result of a/b is correctly rounded, by
|
||||
comparing it with a pure Python implementation of correctly
|
||||
rounded division. b should be nonzero."""
|
||||
|
||||
# skip check for small a and b: in this case, the current
|
||||
# implementation converts the arguments to float directly and
|
||||
# then applies a float division. This can give doubly-rounded
|
||||
# results on x87-using machines (particularly 32-bit Linux).
|
||||
if skip_small and max(abs(a), abs(b)) < 2**DBL_MANT_DIG:
|
||||
return
|
||||
|
||||
try:
|
||||
# use repr so that we can distinguish between -0.0 and 0.0
|
||||
expected = repr(truediv(a, b))
|
||||
except OverflowError:
|
||||
expected = 'overflow'
|
||||
except ZeroDivisionError:
|
||||
expected = 'zerodivision'
|
||||
|
||||
try:
|
||||
got = repr(a / b)
|
||||
except OverflowError:
|
||||
got = 'overflow'
|
||||
except ZeroDivisionError:
|
||||
got = 'zerodivision'
|
||||
|
||||
if expected != got:
|
||||
self.fail("Incorrectly rounded division {}/{}: expected {!r}, "
|
||||
"got {!r}.".format(a, b, expected, got))
|
||||
|
||||
@requires_IEEE_754
|
||||
def test_correctly_rounded_true_division(self):
|
||||
# more stringent tests than those above, checking that the
|
||||
# result of true division of ints is always correctly rounded.
|
||||
# This test should probably be considered CPython-specific.
|
||||
|
||||
# Exercise all the code paths not involving Gb-sized ints.
|
||||
# ... divisions involving zero
|
||||
self.check_truediv(123, 0)
|
||||
self.check_truediv(-456, 0)
|
||||
self.check_truediv(0, 3)
|
||||
self.check_truediv(0, -3)
|
||||
self.check_truediv(0, 0)
|
||||
# ... overflow or underflow by large margin
|
||||
self.check_truediv(671 * 12345 * 2**DBL_MAX_EXP, 12345)
|
||||
self.check_truediv(12345, 345678 * 2**(DBL_MANT_DIG - DBL_MIN_EXP))
|
||||
# ... a much larger or smaller than b
|
||||
self.check_truediv(12345*2**100, 98765)
|
||||
self.check_truediv(12345*2**30, 98765*7**81)
|
||||
# ... a / b near a boundary: one of 1, 2**DBL_MANT_DIG, 2**DBL_MIN_EXP,
|
||||
# 2**DBL_MAX_EXP, 2**(DBL_MIN_EXP-DBL_MANT_DIG)
|
||||
bases = (0, DBL_MANT_DIG, DBL_MIN_EXP,
|
||||
DBL_MAX_EXP, DBL_MIN_EXP - DBL_MANT_DIG)
|
||||
for base in bases:
|
||||
for exp in range(base - 15, base + 15):
|
||||
self.check_truediv(75312*2**max(exp, 0), 69187*2**max(-exp, 0))
|
||||
self.check_truediv(69187*2**max(exp, 0), 75312*2**max(-exp, 0))
|
||||
|
||||
# overflow corner case
|
||||
for m in [1, 2, 7, 17, 12345, 7**100,
|
||||
-1, -2, -5, -23, -67891, -41**50]:
|
||||
for n in range(-10, 10):
|
||||
self.check_truediv(m*DBL_MIN_OVERFLOW + n, m)
|
||||
self.check_truediv(m*DBL_MIN_OVERFLOW + n, -m)
|
||||
|
||||
# check detection of inexactness in shifting stage
|
||||
for n in range(250):
|
||||
# (2**DBL_MANT_DIG+1)/(2**DBL_MANT_DIG) lies halfway
|
||||
# between two representable floats, and would usually be
|
||||
# rounded down under round-half-to-even. The tiniest of
|
||||
# additions to the numerator should cause it to be rounded
|
||||
# up instead.
|
||||
self.check_truediv((2**DBL_MANT_DIG + 1)*12345*2**200 + 2**n,
|
||||
2**DBL_MANT_DIG*12345)
|
||||
|
||||
# 1/2731 is one of the smallest division cases that's subject
|
||||
# to double rounding on IEEE 754 machines working internally with
|
||||
# 64-bit precision. On such machines, the next check would fail,
|
||||
# were it not explicitly skipped in check_truediv.
|
||||
self.check_truediv(1, 2731)
|
||||
|
||||
# a particularly bad case for the old algorithm: gives an
|
||||
# error of close to 3.5 ulps.
|
||||
self.check_truediv(295147931372582273023, 295147932265116303360)
|
||||
for i in range(1000):
|
||||
self.check_truediv(10**(i+1), 10**i)
|
||||
self.check_truediv(10**i, 10**(i+1))
|
||||
|
||||
# test round-half-to-even behaviour, normal result
|
||||
for m in [1, 2, 4, 7, 8, 16, 17, 32, 12345, 7**100,
|
||||
-1, -2, -5, -23, -67891, -41**50]:
|
||||
for n in range(-10, 10):
|
||||
self.check_truediv(2**DBL_MANT_DIG*m + n, m)
|
||||
|
||||
# test round-half-to-even, subnormal result
|
||||
for n in range(-20, 20):
|
||||
self.check_truediv(n, 2**1076)
|
||||
|
||||
# largeish random divisions: a/b where |a| <= |b| <=
|
||||
# 2*|a|; |ans| is between 0.5 and 1.0, so error should
|
||||
# always be bounded by 2**-54 with equality possible only
|
||||
# if the least significant bit of q=ans*2**53 is zero.
|
||||
for M in [10**10, 10**100, 10**1000]:
|
||||
for i in range(1000):
|
||||
a = random.randrange(1, M)
|
||||
b = random.randrange(a, 2*a+1)
|
||||
self.check_truediv(a, b)
|
||||
self.check_truediv(-a, b)
|
||||
self.check_truediv(a, -b)
|
||||
self.check_truediv(-a, -b)
|
||||
|
||||
# and some (genuinely) random tests
|
||||
for _ in range(10000):
|
||||
a_bits = random.randrange(1000)
|
||||
b_bits = random.randrange(1, 1000)
|
||||
x = random.randrange(2**a_bits)
|
||||
y = random.randrange(1, 2**b_bits)
|
||||
self.check_truediv(x, y)
|
||||
self.check_truediv(x, -y)
|
||||
self.check_truediv(-x, y)
|
||||
self.check_truediv(-x, -y)
|
||||
|
||||
def test_small_ints(self):
|
||||
for i in range(-5, 257):
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue