gh-119613: Use C99+ functions instead of Py_IS_NAN/INFINITY/FINITE (#119619)

This commit is contained in:
Sergey B Kirpichev 2024-05-29 10:51:19 +03:00 committed by GitHub
parent 86d1a1aa88
commit cd11ff12ac
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
12 changed files with 140 additions and 142 deletions

View file

@ -237,7 +237,7 @@ m_sinpi(double x)
double y, r;
int n;
/* this function should only ever be called for finite arguments */
assert(Py_IS_FINITE(x));
assert(isfinite(x));
y = fmod(fabs(x), 2.0);
n = (int)round(2.0*y);
assert(0 <= n && n <= 4);
@ -396,8 +396,8 @@ m_tgamma(double x)
double absx, r, y, z, sqrtpow;
/* special cases */
if (!Py_IS_FINITE(x)) {
if (Py_IS_NAN(x) || x > 0.0)
if (!isfinite(x)) {
if (isnan(x) || x > 0.0)
return x; /* tgamma(nan) = nan, tgamma(inf) = inf */
else {
errno = EDOM;
@ -424,7 +424,7 @@ m_tgamma(double x)
/* tiny arguments: tgamma(x) ~ 1/x for x near 0 */
if (absx < 1e-20) {
r = 1.0/x;
if (Py_IS_INFINITY(r))
if (isinf(r))
errno = ERANGE;
return r;
}
@ -481,7 +481,7 @@ m_tgamma(double x)
r *= sqrtpow;
}
}
if (Py_IS_INFINITY(r))
if (isinf(r))
errno = ERANGE;
return r;
}
@ -498,8 +498,8 @@ m_lgamma(double x)
double absx;
/* special cases */
if (!Py_IS_FINITE(x)) {
if (Py_IS_NAN(x))
if (!isfinite(x)) {
if (isnan(x))
return x; /* lgamma(nan) = nan */
else
return Py_HUGE_VAL; /* lgamma(+-inf) = +inf */
@ -530,7 +530,7 @@ m_lgamma(double x)
if (x < 0.0)
/* Use reflection formula to get value for negative x. */
r = logpi - log(fabs(m_sinpi(absx))) - log(absx) - r;
if (Py_IS_INFINITY(r))
if (isinf(r))
errno = ERANGE;
return r;
}
@ -546,10 +546,10 @@ m_lgamma(double x)
static double
m_atan2(double y, double x)
{
if (Py_IS_NAN(x) || Py_IS_NAN(y))
if (isnan(x) || isnan(y))
return Py_NAN;
if (Py_IS_INFINITY(y)) {
if (Py_IS_INFINITY(x)) {
if (isinf(y)) {
if (isinf(x)) {
if (copysign(1., x) == 1.)
/* atan2(+-inf, +inf) == +-pi/4 */
return copysign(0.25*Py_MATH_PI, y);
@ -560,7 +560,7 @@ m_atan2(double y, double x)
/* atan2(+-inf, x) == +-pi/2 for finite x */
return copysign(0.5*Py_MATH_PI, y);
}
if (Py_IS_INFINITY(x) || y == 0.) {
if (isinf(x) || y == 0.) {
if (copysign(1., x) == 1.)
/* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */
return copysign(0., y);
@ -580,7 +580,7 @@ static double
m_remainder(double x, double y)
{
/* Deal with most common case first. */
if (Py_IS_FINITE(x) && Py_IS_FINITE(y)) {
if (isfinite(x) && isfinite(y)) {
double absx, absy, c, m, r;
if (y == 0.0) {
@ -653,16 +653,16 @@ m_remainder(double x, double y)
}
/* Special values. */
if (Py_IS_NAN(x)) {
if (isnan(x)) {
return x;
}
if (Py_IS_NAN(y)) {
if (isnan(y)) {
return y;
}
if (Py_IS_INFINITY(x)) {
if (isinf(x)) {
return Py_NAN;
}
assert(Py_IS_INFINITY(y));
assert(isinf(y));
return x;
}
@ -677,7 +677,7 @@ m_remainder(double x, double y)
static double
m_log(double x)
{
if (Py_IS_FINITE(x)) {
if (isfinite(x)) {
if (x > 0.0)
return log(x);
errno = EDOM;
@ -686,7 +686,7 @@ m_log(double x)
else
return Py_NAN; /* log(-ve) = nan */
}
else if (Py_IS_NAN(x))
else if (isnan(x))
return x; /* log(nan) = nan */
else if (x > 0.0)
return x; /* log(inf) = inf */
@ -709,8 +709,8 @@ m_log(double x)
static double
m_log2(double x)
{
if (!Py_IS_FINITE(x)) {
if (Py_IS_NAN(x))
if (!isfinite(x)) {
if (isnan(x))
return x; /* log2(nan) = nan */
else if (x > 0.0)
return x; /* log2(+inf) = +inf */
@ -736,7 +736,7 @@ m_log2(double x)
static double
m_log10(double x)
{
if (Py_IS_FINITE(x)) {
if (isfinite(x)) {
if (x > 0.0)
return log10(x);
errno = EDOM;
@ -745,7 +745,7 @@ m_log10(double x)
else
return Py_NAN; /* log10(-ve) = nan */
}
else if (Py_IS_NAN(x))
else if (isnan(x))
return x; /* log10(nan) = nan */
else if (x > 0.0)
return x; /* log10(inf) = inf */
@ -966,12 +966,12 @@ math_1(PyObject *arg, double (*func) (double), int can_overflow)
return NULL;
errno = 0;
r = (*func)(x);
if (Py_IS_NAN(r) && !Py_IS_NAN(x)) {
if (isnan(r) && !isnan(x)) {
PyErr_SetString(PyExc_ValueError,
"math domain error"); /* invalid arg */
return NULL;
}
if (Py_IS_INFINITY(r) && Py_IS_FINITE(x)) {
if (isinf(r) && isfinite(x)) {
if (can_overflow)
PyErr_SetString(PyExc_OverflowError,
"math range error"); /* overflow */
@ -980,7 +980,7 @@ math_1(PyObject *arg, double (*func) (double), int can_overflow)
"math domain error"); /* singularity */
return NULL;
}
if (Py_IS_FINITE(r) && errno && is_error(r))
if (isfinite(r) && errno && is_error(r))
/* this branch unnecessary on most platforms */
return NULL;
@ -1049,14 +1049,14 @@ math_2(PyObject *const *args, Py_ssize_t nargs,
}
errno = 0;
r = (*func)(x, y);
if (Py_IS_NAN(r)) {
if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
if (isnan(r)) {
if (!isnan(x) && !isnan(y))
errno = EDOM;
else
errno = 0;
}
else if (Py_IS_INFINITY(r)) {
if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
else if (isinf(r)) {
if (isfinite(x) && isfinite(y))
errno = ERANGE;
else
errno = 0;
@ -1403,17 +1403,17 @@ math_fsum(PyObject *module, PyObject *seq)
n = i; /* ps[i:] = [x] */
if (x != 0.0) {
if (! Py_IS_FINITE(x)) {
if (! isfinite(x)) {
/* a nonfinite x could arise either as
a result of intermediate overflow, or
as a result of a nan or inf in the
summands */
if (Py_IS_FINITE(xsave)) {
if (isfinite(xsave)) {
PyErr_SetString(PyExc_OverflowError,
"intermediate overflow in fsum");
goto _fsum_error;
}
if (Py_IS_INFINITY(xsave))
if (isinf(xsave))
inf_sum += xsave;
special_sum += xsave;
/* reset partials */
@ -1427,7 +1427,7 @@ math_fsum(PyObject *module, PyObject *seq)
}
if (special_sum != 0.0) {
if (Py_IS_NAN(inf_sum))
if (isnan(inf_sum))
PyErr_SetString(PyExc_ValueError,
"-inf + inf in fsum");
else
@ -2108,7 +2108,7 @@ math_frexp_impl(PyObject *module, double x)
int i;
/* deal with special cases directly, to sidestep platform
differences */
if (Py_IS_NAN(x) || Py_IS_INFINITY(x) || !x) {
if (isnan(x) || isinf(x) || !x) {
i = 0;
}
else {
@ -2153,7 +2153,7 @@ math_ldexp_impl(PyObject *module, double x, PyObject *i)
return NULL;
}
if (x == 0. || !Py_IS_FINITE(x)) {
if (x == 0. || !isfinite(x)) {
/* NaNs, zeros and infinities are returned unchanged */
r = x;
errno = 0;
@ -2168,7 +2168,7 @@ math_ldexp_impl(PyObject *module, double x, PyObject *i)
} else {
errno = 0;
r = ldexp(x, (int)exp);
if (Py_IS_INFINITY(r))
if (isinf(r))
errno = ERANGE;
}
@ -2196,9 +2196,9 @@ math_modf_impl(PyObject *module, double x)
double y;
/* some platforms don't do the right thing for NaNs and
infinities, so we take care of special cases directly. */
if (Py_IS_INFINITY(x))
if (isinf(x))
return Py_BuildValue("(dd)", copysign(0., x), x);
else if (Py_IS_NAN(x))
else if (isnan(x))
return Py_BuildValue("(dd)", x, x);
errno = 0;
@ -2341,19 +2341,19 @@ math_fma_impl(PyObject *module, double x, double y, double z)
double r = fma(x, y, z);
/* Fast path: if we got a finite result, we're done. */
if (Py_IS_FINITE(r)) {
if (isfinite(r)) {
return PyFloat_FromDouble(r);
}
/* Non-finite result. Raise an exception if appropriate, else return r. */
if (Py_IS_NAN(r)) {
if (!Py_IS_NAN(x) && !Py_IS_NAN(y) && !Py_IS_NAN(z)) {
if (isnan(r)) {
if (!isnan(x) && !isnan(y) && !isnan(z)) {
/* NaN result from non-NaN inputs. */
PyErr_SetString(PyExc_ValueError, "invalid operation in fma");
return NULL;
}
}
else if (Py_IS_FINITE(x) && Py_IS_FINITE(y) && Py_IS_FINITE(z)) {
else if (isfinite(x) && isfinite(y) && isfinite(z)) {
/* Infinite result from finite inputs. */
PyErr_SetString(PyExc_OverflowError, "overflow in fma");
return NULL;
@ -2381,12 +2381,12 @@ math_fmod_impl(PyObject *module, double x, double y)
{
double r;
/* fmod(x, +/-Inf) returns x for finite x. */
if (Py_IS_INFINITY(y) && Py_IS_FINITE(x))
if (isinf(y) && isfinite(x))
return PyFloat_FromDouble(x);
errno = 0;
r = fmod(x, y);
if (Py_IS_NAN(r)) {
if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
if (isnan(r)) {
if (!isnan(x) && !isnan(y))
errno = EDOM;
else
errno = 0;
@ -2508,7 +2508,7 @@ vector_norm(Py_ssize_t n, double *vec, double max, int found_nan)
int max_e;
Py_ssize_t i;
if (Py_IS_INFINITY(max)) {
if (isinf(max)) {
return max;
}
if (found_nan) {
@ -2530,7 +2530,7 @@ vector_norm(Py_ssize_t n, double *vec, double max, int found_nan)
assert(max * scale < 1.0);
for (i=0 ; i < n ; i++) {
x = vec[i];
assert(Py_IS_FINITE(x) && fabs(x) <= max);
assert(isfinite(x) && fabs(x) <= max);
x *= scale; // lossless scaling
assert(fabs(x) < 1.0);
pr = dl_mul(x, x); // lossless squaring
@ -2620,7 +2620,7 @@ math_dist_impl(PyObject *module, PyObject *p, PyObject *q)
ASSIGN_DOUBLE(qx, item, error_exit);
x = fabs(px - qx);
diffs[i] = x;
found_nan |= Py_IS_NAN(x);
found_nan |= isnan(x);
if (x > max) {
max = x;
}
@ -2673,7 +2673,7 @@ math_hypot(PyObject *self, PyObject *const *args, Py_ssize_t nargs)
ASSIGN_DOUBLE(x, item, error_exit);
x = fabs(x);
coordinates[i] = x;
found_nan |= Py_IS_NAN(x);
found_nan |= isnan(x);
if (x > max) {
max = x;
}
@ -2976,14 +2976,14 @@ math_pow_impl(PyObject *module, double x, double y)
/* deal directly with IEEE specials, to cope with problems on various
platforms whose semantics don't exactly match C99 */
r = 0.; /* silence compiler warning */
if (!Py_IS_FINITE(x) || !Py_IS_FINITE(y)) {
if (!isfinite(x) || !isfinite(y)) {
errno = 0;
if (Py_IS_NAN(x))
if (isnan(x))
r = y == 0. ? 1. : x; /* NaN**0 = 1 */
else if (Py_IS_NAN(y))
else if (isnan(y))
r = x == 1. ? 1. : y; /* 1**NaN = 1 */
else if (Py_IS_INFINITY(x)) {
odd_y = Py_IS_FINITE(y) && fmod(fabs(y), 2.0) == 1.0;
else if (isinf(x)) {
odd_y = isfinite(y) && fmod(fabs(y), 2.0) == 1.0;
if (y > 0.)
r = odd_y ? x : fabs(x);
else if (y == 0.)
@ -2992,7 +2992,7 @@ math_pow_impl(PyObject *module, double x, double y)
r = odd_y ? copysign(0., x) : 0.;
}
else {
assert(Py_IS_INFINITY(y));
assert(isinf(y));
if (fabs(x) == 1.0)
r = 1.;
else if (y > 0. && fabs(x) > 1.0)
@ -3010,8 +3010,8 @@ math_pow_impl(PyObject *module, double x, double y)
r = pow(x, y);
/* a NaN result should arise only from (-ve)**(finite
non-integer); in this case we want to raise ValueError. */
if (!Py_IS_FINITE(r)) {
if (Py_IS_NAN(r)) {
if (!isfinite(r)) {
if (isnan(r)) {
errno = EDOM;
}
/*
@ -3019,7 +3019,7 @@ math_pow_impl(PyObject *module, double x, double y)
(A) (+/-0.)**negative (-> divide-by-zero)
(B) overflow of x**y with x and y finite
*/
else if (Py_IS_INFINITY(r)) {
else if (isinf(r)) {
if (x == 0.)
errno = EDOM;
else
@ -3085,7 +3085,7 @@ static PyObject *
math_isfinite_impl(PyObject *module, double x)
/*[clinic end generated code: output=8ba1f396440c9901 input=46967d254812e54a]*/
{
return PyBool_FromLong((long)Py_IS_FINITE(x));
return PyBool_FromLong((long)isfinite(x));
}
@ -3102,7 +3102,7 @@ static PyObject *
math_isnan_impl(PyObject *module, double x)
/*[clinic end generated code: output=f537b4d6df878c3e input=935891e66083f46a]*/
{
return PyBool_FromLong((long)Py_IS_NAN(x));
return PyBool_FromLong((long)isnan(x));
}
@ -3119,7 +3119,7 @@ static PyObject *
math_isinf_impl(PyObject *module, double x)
/*[clinic end generated code: output=9f00cbec4de7b06b input=32630e4212cf961f]*/
{
return PyBool_FromLong((long)Py_IS_INFINITY(x));
return PyBool_FromLong((long)isinf(x));
}
@ -3176,7 +3176,7 @@ math_isclose_impl(PyObject *module, double a, double b, double rel_tol,
above.
*/
if (Py_IS_INFINITY(a) || Py_IS_INFINITY(b)) {
if (isinf(a) || isinf(b)) {
return 0;
}
@ -3926,10 +3926,10 @@ math_nextafter_impl(PyObject *module, double x, double y, PyObject *steps)
Bug fixed in bos.adt.libm 7.2.2.0 by APAR IV95512. */
return PyFloat_FromDouble(y);
}
if (Py_IS_NAN(x)) {
if (isnan(x)) {
return PyFloat_FromDouble(x);
}
if (Py_IS_NAN(y)) {
if (isnan(y)) {
return PyFloat_FromDouble(y);
}
#endif
@ -3975,10 +3975,10 @@ math_nextafter_impl(PyObject *module, double x, double y, PyObject *steps)
if (usteps == 0) {
return PyFloat_FromDouble(x);
}
if (Py_IS_NAN(x)) {
if (isnan(x)) {
return PyFloat_FromDouble(x);
}
if (Py_IS_NAN(y)) {
if (isnan(y)) {
return PyFloat_FromDouble(y);
}
@ -4044,16 +4044,16 @@ static double
math_ulp_impl(PyObject *module, double x)
/*[clinic end generated code: output=f5207867a9384dd4 input=31f9bfbbe373fcaa]*/
{
if (Py_IS_NAN(x)) {
if (isnan(x)) {
return x;
}
x = fabs(x);
if (Py_IS_INFINITY(x)) {
if (isinf(x)) {
return x;
}
double inf = Py_INFINITY;
double x2 = nextafter(x, inf);
if (Py_IS_INFINITY(x2)) {
if (isinf(x2)) {
/* special case: x is the largest positive representable float */
x2 = nextafter(x, -inf);
return x - x2;