mirror of
				https://github.com/python/cpython.git
				synced 2025-11-04 03:44:55 +00:00 
			
		
		
		
	Doc: Reorganize math module documentation (#126337)
Co-authored-by: Bénédikt Tran <10796600+picnixz@users.noreply.github.com> Co-authored-by: Sergey B Kirpichev <skirpichev@gmail.com>
This commit is contained in:
		
							parent
							
								
									500a4712bb
								
							
						
					
					
						commit
						ce453e6c2f
					
				
					 1 changed files with 263 additions and 239 deletions
				
			
		| 
						 | 
					@ -27,36 +27,39 @@ noted otherwise, all return values are floats.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
====================================================  ============================================
 | 
					====================================================  ============================================
 | 
				
			||||||
**Number-theoretic and representation functions**
 | 
					**Number-theoretic functions**
 | 
				
			||||||
 | 
					--------------------------------------------------------------------------------------------------
 | 
				
			||||||
 | 
					:func:`comb(n, k) <comb>`                             Number of ways to choose *k* items from *n* items without repetition and without order
 | 
				
			||||||
 | 
					:func:`factorial(n) <factorial>`                      *n* factorial
 | 
				
			||||||
 | 
					:func:`gcd(*integers) <gcd>`                          Greatest common divisor of the integer arguments
 | 
				
			||||||
 | 
					:func:`isqrt(n) <isqrt>`                              Integer square root of a nonnegative integer *n*
 | 
				
			||||||
 | 
					:func:`lcm(*integers) <lcm>`                          Least common multiple of the integer arguments
 | 
				
			||||||
 | 
					:func:`perm(n, k) <perm>`                             Number of ways to choose *k* items from *n* items without repetition and with order
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					**Floating point arithmetic**
 | 
				
			||||||
--------------------------------------------------------------------------------------------------
 | 
					--------------------------------------------------------------------------------------------------
 | 
				
			||||||
:func:`ceil(x) <ceil>`                                Ceiling of *x*, the smallest integer greater than or equal to *x*
 | 
					:func:`ceil(x) <ceil>`                                Ceiling of *x*, the smallest integer greater than or equal to *x*
 | 
				
			||||||
:func:`comb(n, k) <comb>`                             Number of ways to choose *k* items from *n* items without repetition and without order
 | 
					 | 
				
			||||||
:func:`copysign(x, y) <copysign>`                     Magnitude (absolute value) of *x* with the sign of *y*
 | 
					 | 
				
			||||||
:func:`fabs(x) <fabs>`                                Absolute value of *x*
 | 
					:func:`fabs(x) <fabs>`                                Absolute value of *x*
 | 
				
			||||||
:func:`factorial(n) <factorial>`                      *n* factorial
 | 
					:func:`floor(x)  <floor>`                             Floor of *x*, the largest integer less than or equal to *x*
 | 
				
			||||||
:func:`floor (x)  <floor>`                            Floor of *x*, the largest integer less than or equal to *x*
 | 
					 | 
				
			||||||
:func:`fma(x, y, z) <fma>`                            Fused multiply-add operation: ``(x * y) + z``
 | 
					:func:`fma(x, y, z) <fma>`                            Fused multiply-add operation: ``(x * y) + z``
 | 
				
			||||||
:func:`fmod(x, y) <fmod>`                             Remainder of division ``x / y``
 | 
					:func:`fmod(x, y) <fmod>`                             Remainder of division ``x / y``
 | 
				
			||||||
 | 
					:func:`modf(x) <modf>`                                Fractional and integer parts of *x*
 | 
				
			||||||
 | 
					:func:`remainder(x, y) <remainder>`                   Remainder of *x* with respect to *y*
 | 
				
			||||||
 | 
					:func:`trunc(x) <trunc>`                              Integer part of *x*
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					**Floating point manipulation functions**
 | 
				
			||||||
 | 
					--------------------------------------------------------------------------------------------------
 | 
				
			||||||
 | 
					:func:`copysign(x, y) <copysign>`                     Magnitude (absolute value) of *x* with the sign of *y*
 | 
				
			||||||
:func:`frexp(x) <frexp>`                              Mantissa and exponent of *x*
 | 
					:func:`frexp(x) <frexp>`                              Mantissa and exponent of *x*
 | 
				
			||||||
:func:`fsum(iterable) <fsum>`                         Sum of values in the input *iterable*
 | 
					 | 
				
			||||||
:func:`gcd(*integers) <gcd>`                          Greatest common divisor of the integer arguments
 | 
					 | 
				
			||||||
:func:`isclose(a, b, rel_tol, abs_tol) <isclose>`     Check if the values *a* and *b* are close to each other
 | 
					:func:`isclose(a, b, rel_tol, abs_tol) <isclose>`     Check if the values *a* and *b* are close to each other
 | 
				
			||||||
:func:`isfinite(x) <isfinite>`                        Check if *x* is neither an infinity nor a NaN
 | 
					:func:`isfinite(x) <isfinite>`                        Check if *x* is neither an infinity nor a NaN
 | 
				
			||||||
:func:`isinf(x) <isinf>`                              Check if *x* is a positive or negative infinity
 | 
					:func:`isinf(x) <isinf>`                              Check if *x* is a positive or negative infinity
 | 
				
			||||||
:func:`isnan(x) <isnan>`                              Check if *x* is a NaN  (not a number)
 | 
					:func:`isnan(x) <isnan>`                              Check if *x* is a NaN  (not a number)
 | 
				
			||||||
:func:`isqrt(n) <isqrt>`                              Integer square root of a nonnegative integer *n*
 | 
					 | 
				
			||||||
:func:`lcm(*integers) <lcm>`                          Least common multiple of the integer arguments
 | 
					 | 
				
			||||||
:func:`ldexp(x, i) <ldexp>`                           ``x * (2**i)``, inverse of function :func:`frexp`
 | 
					:func:`ldexp(x, i) <ldexp>`                           ``x * (2**i)``, inverse of function :func:`frexp`
 | 
				
			||||||
:func:`modf(x) <modf>`                                Fractional and integer parts of *x*
 | 
					 | 
				
			||||||
:func:`nextafter(x, y, steps) <nextafter>`            Floating-point value *steps* steps after *x* towards *y*
 | 
					:func:`nextafter(x, y, steps) <nextafter>`            Floating-point value *steps* steps after *x* towards *y*
 | 
				
			||||||
:func:`perm(n, k) <perm>`                             Number of ways to choose *k* items from *n* items without repetition and with order
 | 
					 | 
				
			||||||
:func:`prod(iterable, start) <prod>`                  Product of elements in the input *iterable* with a *start* value
 | 
					 | 
				
			||||||
:func:`remainder(x, y) <remainder>`                   Remainder of *x* with respect to *y*
 | 
					 | 
				
			||||||
:func:`sumprod(p, q) <sumprod>`                       Sum of products from two iterables *p* and *q*
 | 
					 | 
				
			||||||
:func:`trunc(x) <trunc>`                              Integer part of *x*
 | 
					 | 
				
			||||||
:func:`ulp(x) <ulp>`                                  Value of the least significant bit of *x*
 | 
					:func:`ulp(x) <ulp>`                                  Value of the least significant bit of *x*
 | 
				
			||||||
 | 
					
 | 
				
			||||||
**Power and logarithmic functions**
 | 
					**Power, exponential and logarithmic functions**
 | 
				
			||||||
--------------------------------------------------------------------------------------------------
 | 
					--------------------------------------------------------------------------------------------------
 | 
				
			||||||
:func:`cbrt(x) <cbrt>`                                Cube root of *x*
 | 
					:func:`cbrt(x) <cbrt>`                                Cube root of *x*
 | 
				
			||||||
:func:`exp(x) <exp>`                                  *e* raised to the power *x*
 | 
					:func:`exp(x) <exp>`                                  *e* raised to the power *x*
 | 
				
			||||||
| 
						 | 
					@ -69,6 +72,19 @@ noted otherwise, all return values are floats.
 | 
				
			||||||
:func:`pow(x, y) <math.pow>`                          *x* raised to the power *y*
 | 
					:func:`pow(x, y) <math.pow>`                          *x* raised to the power *y*
 | 
				
			||||||
:func:`sqrt(x) <sqrt>`                                Square root of *x*
 | 
					:func:`sqrt(x) <sqrt>`                                Square root of *x*
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					**Summation and product functions**
 | 
				
			||||||
 | 
					--------------------------------------------------------------------------------------------------
 | 
				
			||||||
 | 
					:func:`dist(p, q) <dist>`                             Euclidean distance between two points *p* and *q* given as an iterable of coordinates
 | 
				
			||||||
 | 
					:func:`fsum(iterable) <fsum>`                         Sum of values in the input *iterable*
 | 
				
			||||||
 | 
					:func:`hypot(*coordinates) <hypot>`                   Euclidean norm of an iterable of coordinates
 | 
				
			||||||
 | 
					:func:`prod(iterable, start) <prod>`                  Product of elements in the input *iterable* with a *start* value
 | 
				
			||||||
 | 
					:func:`sumprod(p, q) <sumprod>`                       Sum of products from two iterables *p* and *q*
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					**Angular conversion**
 | 
				
			||||||
 | 
					--------------------------------------------------------------------------------------------------
 | 
				
			||||||
 | 
					:func:`degrees(x) <degrees>`                          Convert angle *x* from radians to degrees
 | 
				
			||||||
 | 
					:func:`radians(x) <radians>`                          Convert angle *x* from degrees to radians
 | 
				
			||||||
 | 
					
 | 
				
			||||||
**Trigonometric functions**
 | 
					**Trigonometric functions**
 | 
				
			||||||
--------------------------------------------------------------------------------------------------
 | 
					--------------------------------------------------------------------------------------------------
 | 
				
			||||||
:func:`acos(x) <acos>`                                Arc cosine of *x*
 | 
					:func:`acos(x) <acos>`                                Arc cosine of *x*
 | 
				
			||||||
| 
						 | 
					@ -76,16 +92,9 @@ noted otherwise, all return values are floats.
 | 
				
			||||||
:func:`atan(x) <atan>`                                Arc tangent of *x*
 | 
					:func:`atan(x) <atan>`                                Arc tangent of *x*
 | 
				
			||||||
:func:`atan2(y, x) <atan2>`                           ``atan(y / x)``
 | 
					:func:`atan2(y, x) <atan2>`                           ``atan(y / x)``
 | 
				
			||||||
:func:`cos(x) <cos>`                                  Cosine of *x*
 | 
					:func:`cos(x) <cos>`                                  Cosine of *x*
 | 
				
			||||||
:func:`dist(p, q) <dist>`                             Euclidean distance between two points *p* and *q* given as an iterable of coordinates
 | 
					 | 
				
			||||||
:func:`hypot(*coordinates) <hypot>`                   Euclidean norm of an iterable of coordinates
 | 
					 | 
				
			||||||
:func:`sin(x) <sin>`                                  Sine of *x*
 | 
					:func:`sin(x) <sin>`                                  Sine of *x*
 | 
				
			||||||
:func:`tan(x) <tan>`                                  Tangent of *x*
 | 
					:func:`tan(x) <tan>`                                  Tangent of *x*
 | 
				
			||||||
 | 
					
 | 
				
			||||||
**Angular conversion**
 | 
					 | 
				
			||||||
--------------------------------------------------------------------------------------------------
 | 
					 | 
				
			||||||
:func:`degrees(x) <degrees>`                          Convert angle *x* from radians to degrees
 | 
					 | 
				
			||||||
:func:`radians(x) <radians>`                          Convert angle *x* from degrees to radians
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
**Hyperbolic functions**
 | 
					**Hyperbolic functions**
 | 
				
			||||||
--------------------------------------------------------------------------------------------------
 | 
					--------------------------------------------------------------------------------------------------
 | 
				
			||||||
:func:`acosh(x) <acosh>`                              Inverse hyperbolic cosine of *x*
 | 
					:func:`acosh(x) <acosh>`                              Inverse hyperbolic cosine of *x*
 | 
				
			||||||
| 
						 | 
					@ -112,15 +121,8 @@ noted otherwise, all return values are floats.
 | 
				
			||||||
====================================================  ============================================
 | 
					====================================================  ============================================
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Number-theoretic and representation functions
 | 
					Number-theoretic functions
 | 
				
			||||||
---------------------------------------------
 | 
					--------------------------
 | 
				
			||||||
 | 
					 | 
				
			||||||
.. function:: ceil(x)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   Return the ceiling of *x*, the smallest integer greater than or equal to *x*.
 | 
					 | 
				
			||||||
   If *x* is not a float, delegates to :meth:`x.__ceil__ <object.__ceil__>`,
 | 
					 | 
				
			||||||
   which should return an :class:`~numbers.Integral` value.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
.. function:: comb(n, k)
 | 
					.. function:: comb(n, k)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -140,18 +142,6 @@ Number-theoretic and representation functions
 | 
				
			||||||
   .. versionadded:: 3.8
 | 
					   .. versionadded:: 3.8
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
.. function:: copysign(x, y)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   Return a float with the magnitude (absolute value) of *x* but the sign of
 | 
					 | 
				
			||||||
   *y*.  On platforms that support signed zeros, ``copysign(1.0, -0.0)``
 | 
					 | 
				
			||||||
   returns *-1.0*.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
.. function:: fabs(x)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   Return the absolute value of *x*.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
.. function:: factorial(n)
 | 
					.. function:: factorial(n)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
   Return *n* factorial as an integer.  Raises :exc:`ValueError` if *n* is not integral or
 | 
					   Return *n* factorial as an integer.  Raises :exc:`ValueError` if *n* is not integral or
 | 
				
			||||||
| 
						 | 
					@ -161,6 +151,78 @@ Number-theoretic and representation functions
 | 
				
			||||||
      Floats with integral values (like ``5.0``) are no longer accepted.
 | 
					      Floats with integral values (like ``5.0``) are no longer accepted.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					.. function:: gcd(*integers)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   Return the greatest common divisor of the specified integer arguments.
 | 
				
			||||||
 | 
					   If any of the arguments is nonzero, then the returned value is the largest
 | 
				
			||||||
 | 
					   positive integer that is a divisor of all arguments.  If all arguments
 | 
				
			||||||
 | 
					   are zero, then the returned value is ``0``.  ``gcd()`` without arguments
 | 
				
			||||||
 | 
					   returns ``0``.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   .. versionadded:: 3.5
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   .. versionchanged:: 3.9
 | 
				
			||||||
 | 
					      Added support for an arbitrary number of arguments. Formerly, only two
 | 
				
			||||||
 | 
					      arguments were supported.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					.. function:: isqrt(n)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   Return the integer square root of the nonnegative integer *n*. This is the
 | 
				
			||||||
 | 
					   floor of the exact square root of *n*, or equivalently the greatest integer
 | 
				
			||||||
 | 
					   *a* such that *a*\ ² |nbsp| ≤ |nbsp| *n*.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   For some applications, it may be more convenient to have the least integer
 | 
				
			||||||
 | 
					   *a* such that *n* |nbsp| ≤ |nbsp| *a*\ ², or in other words the ceiling of
 | 
				
			||||||
 | 
					   the exact square root of *n*. For positive *n*, this can be computed using
 | 
				
			||||||
 | 
					   ``a = 1 + isqrt(n - 1)``.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   .. versionadded:: 3.8
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					.. function:: lcm(*integers)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   Return the least common multiple of the specified integer arguments.
 | 
				
			||||||
 | 
					   If all arguments are nonzero, then the returned value is the smallest
 | 
				
			||||||
 | 
					   positive integer that is a multiple of all arguments.  If any of the arguments
 | 
				
			||||||
 | 
					   is zero, then the returned value is ``0``.  ``lcm()`` without arguments
 | 
				
			||||||
 | 
					   returns ``1``.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   .. versionadded:: 3.9
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					.. function:: perm(n, k=None)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   Return the number of ways to choose *k* items from *n* items
 | 
				
			||||||
 | 
					   without repetition and with order.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   Evaluates to ``n! / (n - k)!`` when ``k <= n`` and evaluates
 | 
				
			||||||
 | 
					   to zero when ``k > n``.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   If *k* is not specified or is ``None``, then *k* defaults to *n*
 | 
				
			||||||
 | 
					   and the function returns ``n!``.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   Raises :exc:`TypeError` if either of the arguments are not integers.
 | 
				
			||||||
 | 
					   Raises :exc:`ValueError` if either of the arguments are negative.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   .. versionadded:: 3.8
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Floating point arithmetic
 | 
				
			||||||
 | 
					-------------------------
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					.. function:: ceil(x)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   Return the ceiling of *x*, the smallest integer greater than or equal to *x*.
 | 
				
			||||||
 | 
					   If *x* is not a float, delegates to :meth:`x.__ceil__ <object.__ceil__>`,
 | 
				
			||||||
 | 
					   which should return an :class:`~numbers.Integral` value.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					.. function:: fabs(x)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   Return the absolute value of *x*.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
.. function:: floor(x)
 | 
					.. function:: floor(x)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
   Return the floor of *x*, the largest integer less than or equal to *x*.  If
 | 
					   Return the floor of *x*, the largest integer less than or equal to *x*.  If
 | 
				
			||||||
| 
						 | 
					@ -199,6 +261,64 @@ Number-theoretic and representation functions
 | 
				
			||||||
   floats, while Python's ``x % y`` is preferred when working with integers.
 | 
					   floats, while Python's ``x % y`` is preferred when working with integers.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					.. function:: modf(x)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   Return the fractional and integer parts of *x*.  Both results carry the sign
 | 
				
			||||||
 | 
					   of *x* and are floats.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   Note that :func:`modf` has a different call/return pattern
 | 
				
			||||||
 | 
					   than its C equivalents: it takes a single argument and return a pair of
 | 
				
			||||||
 | 
					   values, rather than returning its second return value through an 'output
 | 
				
			||||||
 | 
					   parameter' (there is no such thing in Python).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					.. function:: remainder(x, y)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   Return the IEEE 754-style remainder of *x* with respect to *y*.  For
 | 
				
			||||||
 | 
					   finite *x* and finite nonzero *y*, this is the difference ``x - n*y``,
 | 
				
			||||||
 | 
					   where ``n`` is the closest integer to the exact value of the quotient ``x /
 | 
				
			||||||
 | 
					   y``.  If ``x / y`` is exactly halfway between two consecutive integers, the
 | 
				
			||||||
 | 
					   nearest *even* integer is used for ``n``.  The remainder ``r = remainder(x,
 | 
				
			||||||
 | 
					   y)`` thus always satisfies ``abs(r) <= 0.5 * abs(y)``.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   Special cases follow IEEE 754: in particular, ``remainder(x, math.inf)`` is
 | 
				
			||||||
 | 
					   *x* for any finite *x*, and ``remainder(x, 0)`` and
 | 
				
			||||||
 | 
					   ``remainder(math.inf, x)`` raise :exc:`ValueError` for any non-NaN *x*.
 | 
				
			||||||
 | 
					   If the result of the remainder operation is zero, that zero will have
 | 
				
			||||||
 | 
					   the same sign as *x*.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   On platforms using IEEE 754 binary floating point, the result of this
 | 
				
			||||||
 | 
					   operation is always exactly representable: no rounding error is introduced.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   .. versionadded:: 3.7
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					.. function:: trunc(x)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   Return *x* with the fractional part
 | 
				
			||||||
 | 
					   removed, leaving the integer part.  This rounds toward 0: ``trunc()`` is
 | 
				
			||||||
 | 
					   equivalent to :func:`floor` for positive *x*, and equivalent to :func:`ceil`
 | 
				
			||||||
 | 
					   for negative *x*. If *x* is not a float, delegates to :meth:`x.__trunc__
 | 
				
			||||||
 | 
					   <object.__trunc__>`, which should return an :class:`~numbers.Integral` value.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					For the :func:`ceil`, :func:`floor`, and :func:`modf` functions, note that *all*
 | 
				
			||||||
 | 
					floating-point numbers of sufficiently large magnitude are exact integers.
 | 
				
			||||||
 | 
					Python floats typically carry no more than 53 bits of precision (the same as the
 | 
				
			||||||
 | 
					platform C double type), in which case any float *x* with ``abs(x) >= 2**52``
 | 
				
			||||||
 | 
					necessarily has no fractional bits.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Floating point manipulation functions
 | 
				
			||||||
 | 
					-------------------------------------
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					.. function:: copysign(x, y)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   Return a float with the magnitude (absolute value) of *x* but the sign of
 | 
				
			||||||
 | 
					   *y*.  On platforms that support signed zeros, ``copysign(1.0, -0.0)``
 | 
				
			||||||
 | 
					   returns *-1.0*.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
.. function:: frexp(x)
 | 
					.. function:: frexp(x)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
   Return the mantissa and exponent of *x* as the pair ``(m, e)``.  *m* is a float
 | 
					   Return the mantissa and exponent of *x* as the pair ``(m, e)``.  *m* is a float
 | 
				
			||||||
| 
						 | 
					@ -206,37 +326,10 @@ Number-theoretic and representation functions
 | 
				
			||||||
   returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``.  This is used to "pick
 | 
					   returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``.  This is used to "pick
 | 
				
			||||||
   apart" the internal representation of a float in a portable way.
 | 
					   apart" the internal representation of a float in a portable way.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   Note that :func:`frexp` has a different call/return pattern
 | 
				
			||||||
.. function:: fsum(iterable)
 | 
					   than its C equivalents: it takes a single argument and return a pair of
 | 
				
			||||||
 | 
					   values, rather than returning its second return value through an 'output
 | 
				
			||||||
   Return an accurate floating-point sum of values in the iterable.  Avoids
 | 
					   parameter' (there is no such thing in Python).
 | 
				
			||||||
   loss of precision by tracking multiple intermediate partial sums.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   The algorithm's accuracy depends on IEEE-754 arithmetic guarantees and the
 | 
					 | 
				
			||||||
   typical case where the rounding mode is half-even.  On some non-Windows
 | 
					 | 
				
			||||||
   builds, the underlying C library uses extended precision addition and may
 | 
					 | 
				
			||||||
   occasionally double-round an intermediate sum causing it to be off in its
 | 
					 | 
				
			||||||
   least significant bit.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   For further discussion and two alternative approaches, see the `ASPN cookbook
 | 
					 | 
				
			||||||
   recipes for accurate floating-point summation
 | 
					 | 
				
			||||||
   <https://code.activestate.com/recipes/393090-binary-floating-point-summation-accurate-to-full-p/>`_\.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
.. function:: gcd(*integers)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   Return the greatest common divisor of the specified integer arguments.
 | 
					 | 
				
			||||||
   If any of the arguments is nonzero, then the returned value is the largest
 | 
					 | 
				
			||||||
   positive integer that is a divisor of all arguments.  If all arguments
 | 
					 | 
				
			||||||
   are zero, then the returned value is ``0``.  ``gcd()`` without arguments
 | 
					 | 
				
			||||||
   returns ``0``.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   .. versionadded:: 3.5
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   .. versionchanged:: 3.9
 | 
					 | 
				
			||||||
      Added support for an arbitrary number of arguments. Formerly, only two
 | 
					 | 
				
			||||||
      arguments were supported.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
.. function:: isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0)
 | 
					.. function:: isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -291,43 +384,12 @@ Number-theoretic and representation functions
 | 
				
			||||||
   Return ``True`` if *x* is a NaN (not a number), and ``False`` otherwise.
 | 
					   Return ``True`` if *x* is a NaN (not a number), and ``False`` otherwise.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
.. function:: isqrt(n)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   Return the integer square root of the nonnegative integer *n*. This is the
 | 
					 | 
				
			||||||
   floor of the exact square root of *n*, or equivalently the greatest integer
 | 
					 | 
				
			||||||
   *a* such that *a*\ ² |nbsp| ≤ |nbsp| *n*.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   For some applications, it may be more convenient to have the least integer
 | 
					 | 
				
			||||||
   *a* such that *n* |nbsp| ≤ |nbsp| *a*\ ², or in other words the ceiling of
 | 
					 | 
				
			||||||
   the exact square root of *n*. For positive *n*, this can be computed using
 | 
					 | 
				
			||||||
   ``a = 1 + isqrt(n - 1)``.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   .. versionadded:: 3.8
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
.. function:: lcm(*integers)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   Return the least common multiple of the specified integer arguments.
 | 
					 | 
				
			||||||
   If all arguments are nonzero, then the returned value is the smallest
 | 
					 | 
				
			||||||
   positive integer that is a multiple of all arguments.  If any of the arguments
 | 
					 | 
				
			||||||
   is zero, then the returned value is ``0``.  ``lcm()`` without arguments
 | 
					 | 
				
			||||||
   returns ``1``.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   .. versionadded:: 3.9
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
.. function:: ldexp(x, i)
 | 
					.. function:: ldexp(x, i)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
   Return ``x * (2**i)``.  This is essentially the inverse of function
 | 
					   Return ``x * (2**i)``.  This is essentially the inverse of function
 | 
				
			||||||
   :func:`frexp`.
 | 
					   :func:`frexp`.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
.. function:: modf(x)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   Return the fractional and integer parts of *x*.  Both results carry the sign
 | 
					 | 
				
			||||||
   of *x* and are floats.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
.. function:: nextafter(x, y, steps=1)
 | 
					.. function:: nextafter(x, y, steps=1)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
   Return the floating-point value *steps* steps after *x* towards *y*.
 | 
					   Return the floating-point value *steps* steps after *x* towards *y*.
 | 
				
			||||||
| 
						 | 
					@ -348,79 +410,6 @@ Number-theoretic and representation functions
 | 
				
			||||||
   .. versionchanged:: 3.12
 | 
					   .. versionchanged:: 3.12
 | 
				
			||||||
      Added the *steps* argument.
 | 
					      Added the *steps* argument.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
.. function:: perm(n, k=None)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   Return the number of ways to choose *k* items from *n* items
 | 
					 | 
				
			||||||
   without repetition and with order.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   Evaluates to ``n! / (n - k)!`` when ``k <= n`` and evaluates
 | 
					 | 
				
			||||||
   to zero when ``k > n``.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   If *k* is not specified or is ``None``, then *k* defaults to *n*
 | 
					 | 
				
			||||||
   and the function returns ``n!``.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   Raises :exc:`TypeError` if either of the arguments are not integers.
 | 
					 | 
				
			||||||
   Raises :exc:`ValueError` if either of the arguments are negative.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   .. versionadded:: 3.8
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
.. function:: prod(iterable, *, start=1)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   Calculate the product of all the elements in the input *iterable*.
 | 
					 | 
				
			||||||
   The default *start* value for the product is ``1``.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   When the iterable is empty, return the start value.  This function is
 | 
					 | 
				
			||||||
   intended specifically for use with numeric values and may reject
 | 
					 | 
				
			||||||
   non-numeric types.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   .. versionadded:: 3.8
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
.. function:: remainder(x, y)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   Return the IEEE 754-style remainder of *x* with respect to *y*.  For
 | 
					 | 
				
			||||||
   finite *x* and finite nonzero *y*, this is the difference ``x - n*y``,
 | 
					 | 
				
			||||||
   where ``n`` is the closest integer to the exact value of the quotient ``x /
 | 
					 | 
				
			||||||
   y``.  If ``x / y`` is exactly halfway between two consecutive integers, the
 | 
					 | 
				
			||||||
   nearest *even* integer is used for ``n``.  The remainder ``r = remainder(x,
 | 
					 | 
				
			||||||
   y)`` thus always satisfies ``abs(r) <= 0.5 * abs(y)``.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   Special cases follow IEEE 754: in particular, ``remainder(x, math.inf)`` is
 | 
					 | 
				
			||||||
   *x* for any finite *x*, and ``remainder(x, 0)`` and
 | 
					 | 
				
			||||||
   ``remainder(math.inf, x)`` raise :exc:`ValueError` for any non-NaN *x*.
 | 
					 | 
				
			||||||
   If the result of the remainder operation is zero, that zero will have
 | 
					 | 
				
			||||||
   the same sign as *x*.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   On platforms using IEEE 754 binary floating point, the result of this
 | 
					 | 
				
			||||||
   operation is always exactly representable: no rounding error is introduced.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   .. versionadded:: 3.7
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
.. function:: sumprod(p, q)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   Return the sum of products of values from two iterables *p* and *q*.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   Raises :exc:`ValueError` if the inputs do not have the same length.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   Roughly equivalent to::
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
       sum(map(operator.mul, p, q, strict=True))
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   For float and mixed int/float inputs, the intermediate products
 | 
					 | 
				
			||||||
   and sums are computed with extended precision.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   .. versionadded:: 3.12
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
.. function:: trunc(x)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   Return *x* with the fractional part
 | 
					 | 
				
			||||||
   removed, leaving the integer part.  This rounds toward 0: ``trunc()`` is
 | 
					 | 
				
			||||||
   equivalent to :func:`floor` for positive *x*, and equivalent to :func:`ceil`
 | 
					 | 
				
			||||||
   for negative *x*. If *x* is not a float, delegates to :meth:`x.__trunc__
 | 
					 | 
				
			||||||
   <object.__trunc__>`, which should return an :class:`~numbers.Integral` value.
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
.. function:: ulp(x)
 | 
					.. function:: ulp(x)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -447,20 +436,8 @@ Number-theoretic and representation functions
 | 
				
			||||||
   .. versionadded:: 3.9
 | 
					   .. versionadded:: 3.9
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Note that :func:`frexp` and :func:`modf` have a different call/return pattern
 | 
					Power, exponential and logarithmic functions
 | 
				
			||||||
than their C equivalents: they take a single argument and return a pair of
 | 
					--------------------------------------------
 | 
				
			||||||
values, rather than returning their second return value through an 'output
 | 
					 | 
				
			||||||
parameter' (there is no such thing in Python).
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
For the :func:`ceil`, :func:`floor`, and :func:`modf` functions, note that *all*
 | 
					 | 
				
			||||||
floating-point numbers of sufficiently large magnitude are exact integers.
 | 
					 | 
				
			||||||
Python floats typically carry no more than 53 bits of precision (the same as the
 | 
					 | 
				
			||||||
platform C double type), in which case any float *x* with ``abs(x) >= 2**52``
 | 
					 | 
				
			||||||
necessarily has no fractional bits.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Power and logarithmic functions
 | 
					 | 
				
			||||||
-------------------------------
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
.. function:: cbrt(x)
 | 
					.. function:: cbrt(x)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -557,6 +534,99 @@ Power and logarithmic functions
 | 
				
			||||||
   Return the square root of *x*.
 | 
					   Return the square root of *x*.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Summation and product functions
 | 
				
			||||||
 | 
					-------------------------------
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					.. function:: dist(p, q)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   Return the Euclidean distance between two points *p* and *q*, each
 | 
				
			||||||
 | 
					   given as a sequence (or iterable) of coordinates.  The two points
 | 
				
			||||||
 | 
					   must have the same dimension.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   Roughly equivalent to::
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					       sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q)))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   .. versionadded:: 3.8
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					.. function:: fsum(iterable)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   Return an accurate floating-point sum of values in the iterable.  Avoids
 | 
				
			||||||
 | 
					   loss of precision by tracking multiple intermediate partial sums.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   The algorithm's accuracy depends on IEEE-754 arithmetic guarantees and the
 | 
				
			||||||
 | 
					   typical case where the rounding mode is half-even.  On some non-Windows
 | 
				
			||||||
 | 
					   builds, the underlying C library uses extended precision addition and may
 | 
				
			||||||
 | 
					   occasionally double-round an intermediate sum causing it to be off in its
 | 
				
			||||||
 | 
					   least significant bit.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   For further discussion and two alternative approaches, see the `ASPN cookbook
 | 
				
			||||||
 | 
					   recipes for accurate floating-point summation
 | 
				
			||||||
 | 
					   <https://code.activestate.com/recipes/393090-binary-floating-point-summation-accurate-to-full-p/>`_\.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					.. function:: hypot(*coordinates)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   Return the Euclidean norm, ``sqrt(sum(x**2 for x in coordinates))``.
 | 
				
			||||||
 | 
					   This is the length of the vector from the origin to the point
 | 
				
			||||||
 | 
					   given by the coordinates.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   For a two dimensional point ``(x, y)``, this is equivalent to computing
 | 
				
			||||||
 | 
					   the hypotenuse of a right triangle using the Pythagorean theorem,
 | 
				
			||||||
 | 
					   ``sqrt(x*x + y*y)``.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   .. versionchanged:: 3.8
 | 
				
			||||||
 | 
					      Added support for n-dimensional points. Formerly, only the two
 | 
				
			||||||
 | 
					      dimensional case was supported.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   .. versionchanged:: 3.10
 | 
				
			||||||
 | 
					      Improved the algorithm's accuracy so that the maximum error is
 | 
				
			||||||
 | 
					      under 1 ulp (unit in the last place).  More typically, the result
 | 
				
			||||||
 | 
					      is almost always correctly rounded to within 1/2 ulp.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					.. function:: prod(iterable, *, start=1)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   Calculate the product of all the elements in the input *iterable*.
 | 
				
			||||||
 | 
					   The default *start* value for the product is ``1``.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   When the iterable is empty, return the start value.  This function is
 | 
				
			||||||
 | 
					   intended specifically for use with numeric values and may reject
 | 
				
			||||||
 | 
					   non-numeric types.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   .. versionadded:: 3.8
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					.. function:: sumprod(p, q)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   Return the sum of products of values from two iterables *p* and *q*.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   Raises :exc:`ValueError` if the inputs do not have the same length.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   Roughly equivalent to::
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					       sum(map(operator.mul, p, q, strict=True))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   For float and mixed int/float inputs, the intermediate products
 | 
				
			||||||
 | 
					   and sums are computed with extended precision.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   .. versionadded:: 3.12
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Angular conversion
 | 
				
			||||||
 | 
					------------------
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					.. function:: degrees(x)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   Convert angle *x* from radians to degrees.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					.. function:: radians(x)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   Convert angle *x* from degrees to radians.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Trigonometric functions
 | 
					Trigonometric functions
 | 
				
			||||||
-----------------------
 | 
					-----------------------
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -593,39 +663,6 @@ Trigonometric functions
 | 
				
			||||||
   Return the cosine of *x* radians.
 | 
					   Return the cosine of *x* radians.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
.. function:: dist(p, q)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   Return the Euclidean distance between two points *p* and *q*, each
 | 
					 | 
				
			||||||
   given as a sequence (or iterable) of coordinates.  The two points
 | 
					 | 
				
			||||||
   must have the same dimension.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   Roughly equivalent to::
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
       sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q)))
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   .. versionadded:: 3.8
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
.. function:: hypot(*coordinates)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   Return the Euclidean norm, ``sqrt(sum(x**2 for x in coordinates))``.
 | 
					 | 
				
			||||||
   This is the length of the vector from the origin to the point
 | 
					 | 
				
			||||||
   given by the coordinates.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   For a two dimensional point ``(x, y)``, this is equivalent to computing
 | 
					 | 
				
			||||||
   the hypotenuse of a right triangle using the Pythagorean theorem,
 | 
					 | 
				
			||||||
   ``sqrt(x*x + y*y)``.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   .. versionchanged:: 3.8
 | 
					 | 
				
			||||||
      Added support for n-dimensional points. Formerly, only the two
 | 
					 | 
				
			||||||
      dimensional case was supported.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   .. versionchanged:: 3.10
 | 
					 | 
				
			||||||
      Improved the algorithm's accuracy so that the maximum error is
 | 
					 | 
				
			||||||
      under 1 ulp (unit in the last place).  More typically, the result
 | 
					 | 
				
			||||||
      is almost always correctly rounded to within 1/2 ulp.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
.. function:: sin(x)
 | 
					.. function:: sin(x)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
   Return the sine of *x* radians.
 | 
					   Return the sine of *x* radians.
 | 
				
			||||||
| 
						 | 
					@ -636,19 +673,6 @@ Trigonometric functions
 | 
				
			||||||
   Return the tangent of *x* radians.
 | 
					   Return the tangent of *x* radians.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Angular conversion
 | 
					 | 
				
			||||||
------------------
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
.. function:: degrees(x)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   Convert angle *x* from radians to degrees.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
.. function:: radians(x)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   Convert angle *x* from degrees to radians.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Hyperbolic functions
 | 
					Hyperbolic functions
 | 
				
			||||||
--------------------
 | 
					--------------------
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue