mirror of
https://github.com/python/cpython.git
synced 2025-11-03 03:22:27 +00:00
Initial revision
This commit is contained in:
parent
46f3e00407
commit
da43a4ab88
6 changed files with 1846 additions and 0 deletions
468
Doc/ref/ref6.tex
Normal file
468
Doc/ref/ref6.tex
Normal file
|
|
@ -0,0 +1,468 @@
|
||||||
|
\chapter{Simple statements}
|
||||||
|
\indexii{simple}{statement}
|
||||||
|
|
||||||
|
Simple statements are comprised within a single logical line.
|
||||||
|
Several simple statements may occur on a single line separated
|
||||||
|
by semicolons. The syntax for simple statements is:
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
simple_stmt: expression_stmt
|
||||||
|
| assignment_stmt
|
||||||
|
| pass_stmt
|
||||||
|
| del_stmt
|
||||||
|
| print_stmt
|
||||||
|
| return_stmt
|
||||||
|
| raise_stmt
|
||||||
|
| break_stmt
|
||||||
|
| continue_stmt
|
||||||
|
| import_stmt
|
||||||
|
| global_stmt
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
\section{Expression statements}
|
||||||
|
\indexii{expression}{statement}
|
||||||
|
|
||||||
|
Expression statements are used (mostly interactively) to compute and
|
||||||
|
write a value, or (usually) to call a procedure (a function that
|
||||||
|
returns no meaningful result; in Python, procedures return the value
|
||||||
|
\verb\None\):
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
expression_stmt: expression_list
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
An expression statement evaluates the expression list (which may be a
|
||||||
|
single expression). If the value is not \verb\None\, it is converted
|
||||||
|
to a string using the rules for string conversions (expressions in
|
||||||
|
reverse quotes), and the resulting string is written to standard
|
||||||
|
output (see section \ref{print}) on a line by itself.
|
||||||
|
\indexii{expression}{list}
|
||||||
|
\ttindex{None}
|
||||||
|
\indexii{string}{conversion}
|
||||||
|
\index{output}
|
||||||
|
\indexii{standard}{output}
|
||||||
|
\indexii{writing}{values}
|
||||||
|
|
||||||
|
(The exception for \verb\None\ is made so that procedure calls, which
|
||||||
|
are syntactically equivalent to expressions, do not cause any output.
|
||||||
|
A tuple with only \verb\None\ items is written normally.)
|
||||||
|
\indexii{procedure}{call}
|
||||||
|
|
||||||
|
\section{Assignment statements}
|
||||||
|
\indexii{assignment}{statement}
|
||||||
|
|
||||||
|
Assignment statements are used to (re)bind names to values and to
|
||||||
|
modify attributes or items of mutable objects:
|
||||||
|
\indexii{binding}{name}
|
||||||
|
\indexii{rebinding}{name}
|
||||||
|
\obindex{mutable}
|
||||||
|
\indexii{attribute}{assignment}
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
assignment_stmt: (target_list "=")+ expression_list
|
||||||
|
target_list: target ("," target)* [","]
|
||||||
|
target: identifier | "(" target_list ")" | "[" target_list "]"
|
||||||
|
| attributeref | subscription | slicing
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
(See section \ref{primaries} for the syntax definitions for the last
|
||||||
|
three symbols.)
|
||||||
|
|
||||||
|
An assignment statement evaluates the expression list (remember that
|
||||||
|
this can be a single expression or a comma-separated list, the latter
|
||||||
|
yielding a tuple) and assigns the single resulting object to each of
|
||||||
|
the target lists, from left to right.
|
||||||
|
\indexii{expression}{list}
|
||||||
|
|
||||||
|
Assignment is defined recursively depending on the form of the target
|
||||||
|
(list). When a target is part of a mutable object (an attribute
|
||||||
|
reference, subscription or slicing), the mutable object must
|
||||||
|
ultimately perform the assignment and decide about its validity, and
|
||||||
|
may raise an exception if the assignment is unacceptable. The rules
|
||||||
|
observed by various types and the exceptions raised are given with the
|
||||||
|
definition of the object types (see section \ref{types}).
|
||||||
|
\index{target}
|
||||||
|
\indexii{target}{list}
|
||||||
|
|
||||||
|
Assignment of an object to a target list is recursively defined as
|
||||||
|
follows.
|
||||||
|
\indexiii{target}{list}{assignment}
|
||||||
|
|
||||||
|
\begin{itemize}
|
||||||
|
\item
|
||||||
|
If the target list is a single target: the object is assigned to that
|
||||||
|
target.
|
||||||
|
|
||||||
|
\item
|
||||||
|
If the target list is a comma-separated list of targets: the object
|
||||||
|
must be a tuple with the same number of items as the list contains
|
||||||
|
targets, and the items are assigned, from left to right, to the
|
||||||
|
corresponding targets.
|
||||||
|
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
Assignment of an object to a single target is recursively defined as
|
||||||
|
follows.
|
||||||
|
|
||||||
|
\begin{itemize} % nested
|
||||||
|
|
||||||
|
\item
|
||||||
|
If the target is an identifier (name):
|
||||||
|
|
||||||
|
\begin{itemize}
|
||||||
|
|
||||||
|
\item
|
||||||
|
If the name does not occur in a \verb\global\ statement in the current
|
||||||
|
code block: the name is bound to the object in the current local name
|
||||||
|
space.
|
||||||
|
\stindex{global}
|
||||||
|
|
||||||
|
\item
|
||||||
|
Otherwise: the name is bound to the object in the current global name
|
||||||
|
space.
|
||||||
|
|
||||||
|
\end{itemize} % nested
|
||||||
|
|
||||||
|
The name is rebound if it was already bound.
|
||||||
|
|
||||||
|
\item
|
||||||
|
If the target is a target list enclosed in parentheses: the object is
|
||||||
|
assigned to that target list as described above.
|
||||||
|
|
||||||
|
\item
|
||||||
|
If the target is a target list enclosed in square brackets: the object
|
||||||
|
must be a list with the same number of items as the target list
|
||||||
|
contains targets, and its items are assigned, from left to right, to
|
||||||
|
the corresponding targets.
|
||||||
|
|
||||||
|
\item
|
||||||
|
If the target is an attribute reference: The primary expression in the
|
||||||
|
reference is evaluated. It should yield an object with assignable
|
||||||
|
attributes; if this is not the case, \verb\TypeError\ is raised. That
|
||||||
|
object is then asked to assign the assigned object to the given
|
||||||
|
attribute; if it cannot perform the assignment, it raises an exception
|
||||||
|
(usually but not necessarily \verb\AttributeError\).
|
||||||
|
\indexii{attribute}{assignment}
|
||||||
|
|
||||||
|
\item
|
||||||
|
If the target is a subscription: The primary expression in the
|
||||||
|
reference is evaluated. It should yield either a mutable sequence
|
||||||
|
(list) object or a mapping (dictionary) object. Next, the subscript
|
||||||
|
expression is evaluated.
|
||||||
|
\indexii{subscription}{assignment}
|
||||||
|
\obindex{mutable}
|
||||||
|
|
||||||
|
If the primary is a mutable sequence object (a list), the subscript
|
||||||
|
must yield a plain integer. If it is negative, the sequence's length
|
||||||
|
is added to it. The resulting value must be a nonnegative integer
|
||||||
|
less than the sequence's length, and the sequence is asked to assign
|
||||||
|
the assigned object to its item with that index. If the index is out
|
||||||
|
of range, \verb\IndexError\ is raised (assignment to a subscripted
|
||||||
|
sequence cannot add new items to a list).
|
||||||
|
\obindex{sequence}
|
||||||
|
\obindex{list}
|
||||||
|
|
||||||
|
If the primary is a mapping (dictionary) object, the subscript must
|
||||||
|
have a type compatible with the mapping's key type, and the mapping is
|
||||||
|
then asked to to create a key/datum pair which maps the subscript to
|
||||||
|
the assigned object. This can either replace an existing key/value
|
||||||
|
pair with the same key value, or insert a new key/value pair (if no
|
||||||
|
key with the same value existed).
|
||||||
|
\obindex{mapping}
|
||||||
|
\obindex{dictionary}
|
||||||
|
|
||||||
|
\item
|
||||||
|
If the target is a slicing: The primary expression in the reference is
|
||||||
|
evaluated. It should yield a mutable sequence (list) object. The
|
||||||
|
assigned object should be a sequence object of the same type. Next,
|
||||||
|
the lower and upper bound expressions are evaluated, insofar they are
|
||||||
|
present; defaults are zero and the sequence's length. The bounds
|
||||||
|
should evaluate to (small) integers. If either bound is negative, the
|
||||||
|
sequence's length is added to it. The resulting bounds are clipped to
|
||||||
|
lie between zero and the sequence's length, inclusive. Finally, the
|
||||||
|
sequence object is asked to replace the items indicated by the slice
|
||||||
|
with the items of the assigned sequence. This may change the
|
||||||
|
sequence's length, if it allows it.
|
||||||
|
\indexii{slicing}{assignment}
|
||||||
|
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
(In the original implementation, the syntax for targets is taken
|
||||||
|
to be the same as for expressions, and invalid syntax is rejected
|
||||||
|
during the code generation phase, causing less detailed error
|
||||||
|
messages.)
|
||||||
|
|
||||||
|
\section{The {\tt pass} statement}
|
||||||
|
\stindex{pass}
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
pass_stmt: "pass"
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
\verb\pass\ is a null operation --- when it is executed, nothing
|
||||||
|
happens. It is useful as a placeholder when a statement is
|
||||||
|
required syntactically, but no code needs to be executed, for example:
|
||||||
|
\indexii{null}{operation}
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
def f(arg): pass # a function that does nothing (yet)
|
||||||
|
|
||||||
|
class C: pass # an class with no methods (yet)
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
\section{The {\tt del} statement}
|
||||||
|
\stindex{del}
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
del_stmt: "del" target_list
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
Deletion is recursively defined very similar to the way assignment is
|
||||||
|
defined. Rather that spelling it out in full details, here are some
|
||||||
|
hints.
|
||||||
|
\indexii{deletion}{target}
|
||||||
|
\indexiii{deletion}{target}{list}
|
||||||
|
|
||||||
|
Deletion of a target list recursively deletes each target, from left
|
||||||
|
to right.
|
||||||
|
|
||||||
|
Deletion of a name removes the binding of that name (which must exist)
|
||||||
|
from the local or global name space, depending on whether the name
|
||||||
|
occurs in a \verb\global\ statement in the same code block.
|
||||||
|
\stindex{global}
|
||||||
|
\indexii{unbinding}{name}
|
||||||
|
|
||||||
|
Deletion of attribute references, subscriptions and slicings
|
||||||
|
is passed to the primary object involved; deletion of a slicing
|
||||||
|
is in general equivalent to assignment of an empty slice of the
|
||||||
|
right type (but even this is determined by the sliced object).
|
||||||
|
\indexii{attribute}{deletion}
|
||||||
|
|
||||||
|
\section{The {\tt print} statement} \label{print}
|
||||||
|
\stindex{print}
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
print_stmt: "print" [ condition ("," condition)* [","] ]
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
\verb\print\ evaluates each condition in turn and writes the resulting
|
||||||
|
object to standard output (see below). If an object is not a string,
|
||||||
|
it is first converted to a string using the rules for string
|
||||||
|
conversions. The (resulting or original) string is then written. A
|
||||||
|
space is written before each object is (converted and) written, unless
|
||||||
|
the output system believes it is positioned at the beginning of a
|
||||||
|
line. This is the case: (1) when no characters have yet been written
|
||||||
|
to standard output; or (2) when the last character written to standard
|
||||||
|
output is \verb/\n/; or (3) when the last write operation on standard
|
||||||
|
output was not a \verb\print\ statement. (In some cases it may be
|
||||||
|
functional to write an empty string to standard output for this
|
||||||
|
reason.)
|
||||||
|
\index{output}
|
||||||
|
\indexii{writing}{values}
|
||||||
|
|
||||||
|
A \verb/"\n"/ character is written at the end, unless the \verb\print\
|
||||||
|
statement ends with a comma. This is the only action if the statement
|
||||||
|
contains just the keyword \verb\print\.
|
||||||
|
\indexii{trailing}{comma}
|
||||||
|
\indexii{newline}{suppression}
|
||||||
|
|
||||||
|
Standard output is defined as the file object named \verb\stdout\
|
||||||
|
in the built-in module \verb\sys\. If no such object exists,
|
||||||
|
or if it is not a writable file, a \verb\RuntimeError\ exception is raised.
|
||||||
|
(The original implementation attempts to write to the system's original
|
||||||
|
standard output instead, but this is not safe, and should be fixed.)
|
||||||
|
\indexii{standard}{output}
|
||||||
|
\bimodindex{sys}
|
||||||
|
\ttindex{stdout}
|
||||||
|
\exindex{RuntimeError}
|
||||||
|
|
||||||
|
\section{The {\tt return} statement}
|
||||||
|
\stindex{return}
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
return_stmt: "return" [condition_list]
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
\verb\return\ may only occur syntactically nested in a function
|
||||||
|
definition, not within a nested class definition.
|
||||||
|
\indexii{function}{definition}
|
||||||
|
\indexii{class}{definition}
|
||||||
|
|
||||||
|
If a condition list is present, it is evaluated, else \verb\None\
|
||||||
|
is substituted.
|
||||||
|
|
||||||
|
\verb\return\ leaves the current function call with the condition
|
||||||
|
list (or \verb\None\) as return value.
|
||||||
|
|
||||||
|
When \verb\return\ passes control out of a \verb\try\ statement
|
||||||
|
with a \verb\finally\ clause, that finally clause is executed
|
||||||
|
before really leaving the function.
|
||||||
|
\kwindex{finally}
|
||||||
|
|
||||||
|
\section{The {\tt raise} statement}
|
||||||
|
\stindex{raise}
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
raise_stmt: "raise" condition ["," condition]
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
\verb\raise\ evaluates its first condition, which must yield
|
||||||
|
a string object. If there is a second condition, this is evaluated,
|
||||||
|
else \verb\None\ is substituted.
|
||||||
|
\index{exception}
|
||||||
|
\indexii{raising}{exception}
|
||||||
|
|
||||||
|
It then raises the exception identified by the first object,
|
||||||
|
with the second one (or \verb\None\) as its parameter.
|
||||||
|
|
||||||
|
\section{The {\tt break} statement}
|
||||||
|
\stindex{break}
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
break_stmt: "break"
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
\verb\break\ may only occur syntactically nested in a \verb\for\
|
||||||
|
or \verb\while\ loop, not nested in a function or class definition.
|
||||||
|
\stindex{for}
|
||||||
|
\stindex{while}
|
||||||
|
\indexii{loop}{statement}
|
||||||
|
|
||||||
|
It terminates the neares enclosing loop, skipping the optional
|
||||||
|
\verb\else\ clause if the loop has one.
|
||||||
|
\kwindex{else}
|
||||||
|
|
||||||
|
If a \verb\for\ loop is terminated by \verb\break\, the loop control
|
||||||
|
target keeps its current value.
|
||||||
|
\indexii{loop control}{target}
|
||||||
|
|
||||||
|
When \verb\break\ passes control out of a \verb\try\ statement
|
||||||
|
with a \verb\finally\ clause, that finally clause is executed
|
||||||
|
before really leaving the loop.
|
||||||
|
\kwindex{finally}
|
||||||
|
|
||||||
|
\section{The {\tt continue} statement}
|
||||||
|
\stindex{continue}
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
continue_stmt: "continue"
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
\verb\continue\ may only occur syntactically nested in a \verb\for\ or
|
||||||
|
\verb\while\ loop, not nested in a function or class definition, and
|
||||||
|
not nested in the \verb\try\ clause of a \verb\try\ statement with a
|
||||||
|
\verb\finally\ clause (it may occur nested in a \verb\except\ or
|
||||||
|
\verb\finally\ clause of a \verb\try\ statement though).
|
||||||
|
\stindex{for}
|
||||||
|
\stindex{while}
|
||||||
|
\indexii{loop}{statement}
|
||||||
|
\kwindex{finally}
|
||||||
|
|
||||||
|
It continues with the next cycle of the nearest enclosing loop.
|
||||||
|
|
||||||
|
\section{The {\tt import} statement} \label{import}
|
||||||
|
\stindex{import}
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
import_stmt: "import" identifier ("," identifier)*
|
||||||
|
| "from" identifier "import" identifier ("," identifier)*
|
||||||
|
| "from" identifier "import" "*"
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
Import statements are executed in two steps: (1) find a module, and
|
||||||
|
initialize it if necessary; (2) define a name or names in the local
|
||||||
|
name space (of the scope where the \verb\import\ statement occurs).
|
||||||
|
The first form (without \verb\from\) repeats these steps for each
|
||||||
|
identifier in the list, the \verb\from\ form performs them once, with
|
||||||
|
the first identifier specifying the module name.
|
||||||
|
\indexii{importing}{module}
|
||||||
|
\indexii{name}{binding}
|
||||||
|
\kwindex{from}
|
||||||
|
|
||||||
|
The system maintains a table of modules that have been initialized,
|
||||||
|
indexed by module name. (The current implementation makes this table
|
||||||
|
accessible as \verb\sys.modules\.) When a module name is found in
|
||||||
|
this table, step (1) is finished. If not, a search for a module
|
||||||
|
definition is started. This first looks for a built-in module
|
||||||
|
definition, and if no built-in module if the given name is found, it
|
||||||
|
searches a user-specified list of directories for a file whose name is
|
||||||
|
the module name with extension \verb\".py"\. (The current
|
||||||
|
implementation uses the list of strings \verb\sys.path\ as the search
|
||||||
|
path; it is initialized from the shell environment variable
|
||||||
|
\verb\$PYTHONPATH\, with an installation-dependent default.)
|
||||||
|
\ttindex{modules}
|
||||||
|
\ttindex{sys.modules}
|
||||||
|
\indexii{module}{name}
|
||||||
|
\indexii{built-in}{module}
|
||||||
|
\indexii{user-defined}{module}
|
||||||
|
\bimodindex{sys}
|
||||||
|
\ttindex{path}
|
||||||
|
\ttindex{sys.path}
|
||||||
|
\indexii{filename}{extension}
|
||||||
|
|
||||||
|
If a built-in module is found, its built-in initialization code is
|
||||||
|
executed and step (1) is finished. If no matching file is found,
|
||||||
|
\verb\ImportError\ is raised. If a file is found, it is parsed,
|
||||||
|
yielding an executable code block. If a syntax error occurs,
|
||||||
|
\verb\SyntaxError\ is raised. Otherwise, an empty module of the given
|
||||||
|
name is created and inserted in the module table, and then the code
|
||||||
|
block is executed in the context of this module. Exceptions during
|
||||||
|
this execution terminate step (1).
|
||||||
|
\indexii{module}{initialization}
|
||||||
|
\exindex{SyntaxError}
|
||||||
|
\exindex{ImportError}
|
||||||
|
\index{code block}
|
||||||
|
|
||||||
|
When step (1) finishes without raising an exception, step (2) can
|
||||||
|
begin.
|
||||||
|
|
||||||
|
The first form of \verb\import\ statement binds the module name in the
|
||||||
|
local name space to the module object, and then goes on to import the
|
||||||
|
next identifier, if any. The \verb\from\ from does not bind the
|
||||||
|
module name: it goes through the list of identifiers, looks each one
|
||||||
|
of them up in the module found in step (1), and binds the name in the
|
||||||
|
local name space to the object thus found. If a name is not found,
|
||||||
|
\verb\ImportError\ is raised. If the list of identifiers is replaced
|
||||||
|
by a star (\verb\*\), all names defined in the module are bound,
|
||||||
|
except those beginning with an underscore(\verb\_\).
|
||||||
|
\indexii{name}{binding}
|
||||||
|
\exindex{ImportError}
|
||||||
|
|
||||||
|
Names bound by import statements may not occur in \verb\global\
|
||||||
|
statements in the same scope.
|
||||||
|
\stindex{global}
|
||||||
|
|
||||||
|
The \verb\from\ form with \verb\*\ may only occur in a module scope.
|
||||||
|
\kwindex{from}
|
||||||
|
\ttindex{from ... import *}
|
||||||
|
|
||||||
|
(The current implementation does not enforce the latter two
|
||||||
|
restrictions, but programs should not abuse this freedom, as future
|
||||||
|
implementations may enforce them or silently change the meaning of the
|
||||||
|
program.)
|
||||||
|
|
||||||
|
\section{The {\tt global} statement} \label{global}
|
||||||
|
\stindex{global}
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
global_stmt: "global" identifier ("," identifier)*
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
The \verb\global\ statement is a declaration which holds for the
|
||||||
|
entire current scope. It means that the listed identifiers are to be
|
||||||
|
interpreted as globals. While {\em using} global names is automatic
|
||||||
|
if they are not defined in the local scope, {\em assigning} to global
|
||||||
|
names would be impossible without \verb\global\.
|
||||||
|
\indexiii{global}{name}{binding}
|
||||||
|
|
||||||
|
Names listed in a \verb\global\ statement must not be used in the same
|
||||||
|
scope before that \verb\global\ statement is executed.
|
||||||
|
|
||||||
|
Names listed in a \verb\global\ statement must not be defined as formal
|
||||||
|
parameters or in a \verb\for\ loop control target, \verb\class\
|
||||||
|
definition, function definition, or \verb\import\ statement.
|
||||||
|
|
||||||
|
(The current implementation does not enforce the latter two
|
||||||
|
restrictions, but programs should not abuse this freedom, as future
|
||||||
|
implementations may enforce them or silently change the meaning of the
|
||||||
|
program.)
|
||||||
347
Doc/ref/ref7.tex
Normal file
347
Doc/ref/ref7.tex
Normal file
|
|
@ -0,0 +1,347 @@
|
||||||
|
\chapter{Compound statements}
|
||||||
|
\indexii{compound}{statement}
|
||||||
|
|
||||||
|
Compound statements contain (groups of) other statements; they affect
|
||||||
|
or control the execution of those other statements in some way. In
|
||||||
|
general, compound statements span multiple lines, although in simple
|
||||||
|
incarnations a whole compound statement may be contained in one line.
|
||||||
|
|
||||||
|
The \verb\if\, \verb\while\ and \verb\for\ statements implement
|
||||||
|
traditional control flow constructs. \verb\try\ specifies exception
|
||||||
|
handlers and/or cleanup code for a group of statements. Function and
|
||||||
|
class definitions are also syntactically compound statements.
|
||||||
|
|
||||||
|
Compound statements consist of one or more `clauses'. A clause
|
||||||
|
consists of a header and a `suite'. The clause headers of a
|
||||||
|
particular compound statement are all at the same indentation level.
|
||||||
|
Each clause header begins with a uniquely identifying keyword and ends
|
||||||
|
with a colon. A suite is a group of statements controlled by a
|
||||||
|
clause. A suite can be one or more semicolon-separated simple
|
||||||
|
statements on the same line as the header, following the header's
|
||||||
|
colon, or it can be one or more indented statements on subsequent
|
||||||
|
lines. Only the latter form of suite can contain nested compound
|
||||||
|
statements; the following is illegal, mostly because it wouldn't be
|
||||||
|
clear to which \verb\if\ clause a following \verb\else\ clause would
|
||||||
|
belong:
|
||||||
|
\index{clause}
|
||||||
|
\index{suite}
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
if test1: if test2: print x
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
Also note that the semicolon binds tighter than the colon in this
|
||||||
|
context, so that in the following example, either all or none of the
|
||||||
|
\verb\print\ statements are executed:
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
if x < y < z: print x; print y; print z
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
Summarizing:
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
compound_stmt: if_stmt | while_stmt | for_stmt
|
||||||
|
| try_stmt | funcdef | classdef
|
||||||
|
suite: stmt_list NEWLINE | NEWLINE INDENT statement+ DEDENT
|
||||||
|
statement: stmt_list NEWLINE | compound_stmt
|
||||||
|
stmt_list: simple_stmt (";" simple_stmt)* [";"]
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
Note that statements always end in a \verb\NEWLINE\ possibly followed
|
||||||
|
by a \verb\DEDENT\.
|
||||||
|
\index{NEWLINE token}
|
||||||
|
\index{DEDENT token}
|
||||||
|
|
||||||
|
Also note that optional continuation clauses always begin with a
|
||||||
|
keyword that cannot start a statement, thus there are no ambiguities
|
||||||
|
(the `dangling \verb\else\' problem is solved in Python by requiring
|
||||||
|
nested \verb\if\ statements to be indented).
|
||||||
|
\indexii{dangling}{else}
|
||||||
|
|
||||||
|
The formatting of the grammar rules in the following sections places
|
||||||
|
each clause on a separate line for clarity.
|
||||||
|
|
||||||
|
\section{The {\tt if} statement}
|
||||||
|
\stindex{if}
|
||||||
|
|
||||||
|
The \verb\if\ statement is used for conditional execution:
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
if_stmt: "if" condition ":" suite
|
||||||
|
("elif" condition ":" suite)*
|
||||||
|
["else" ":" suite]
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
It selects exactly one of the suites by evaluating the conditions one
|
||||||
|
by one until one is found to be true (see section \ref{Booleans} for
|
||||||
|
the definition of true and false); then that suite is executed (and no
|
||||||
|
other part of the \verb\if\ statement is executed or evaluated). If
|
||||||
|
all conditions are false, the suite of the \verb\else\ clause, if
|
||||||
|
present, is executed.
|
||||||
|
\kwindex{elif}
|
||||||
|
\kwindex{else}
|
||||||
|
|
||||||
|
\section{The {\tt while} statement}
|
||||||
|
\stindex{while}
|
||||||
|
\indexii{loop}{statement}
|
||||||
|
|
||||||
|
The \verb\while\ statement is used for repeated execution as long as a
|
||||||
|
condition is true:
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
while_stmt: "while" condition ":" suite
|
||||||
|
["else" ":" suite]
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
This repeatedly tests the condition and, if it is true, executes the
|
||||||
|
first suite; if the condition is false (which may be the first time it
|
||||||
|
is tested) the suite of the \verb\else\ clause, if present, is
|
||||||
|
executed and the loop terminates.
|
||||||
|
\kwindex{else}
|
||||||
|
|
||||||
|
A \verb\break\ statement executed in the first suite terminates the
|
||||||
|
loop without executing the \verb\else\ clause's suite. A
|
||||||
|
\verb\continue\ statement executed in the first suite skips the rest
|
||||||
|
of the suite and goes back to testing the condition.
|
||||||
|
\stindex{break}
|
||||||
|
\stindex{continue}
|
||||||
|
|
||||||
|
\section{The {\tt for} statement}
|
||||||
|
\stindex{for}
|
||||||
|
\indexii{loop}{statement}
|
||||||
|
|
||||||
|
The \verb\for\ statement is used to iterate over the elements of a
|
||||||
|
sequence (string, tuple or list):
|
||||||
|
\obindex{sequence}
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
for_stmt: "for" target_list "in" condition_list ":" suite
|
||||||
|
["else" ":" suite]
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
The condition list is evaluated once; it should yield a sequence. The
|
||||||
|
suite is then executed once for each item in the sequence, in the
|
||||||
|
order of ascending indices. Each item in turn is assigned to the
|
||||||
|
target list using the standard rules for assignments, and then the
|
||||||
|
suite is executed. When the items are exhausted (which is immediately
|
||||||
|
when the sequence is empty), the suite in the \verb\else\ clause, if
|
||||||
|
present, is executed, and the loop terminates.
|
||||||
|
\kwindex{in}
|
||||||
|
\kwindex{else}
|
||||||
|
\indexii{target}{list}
|
||||||
|
|
||||||
|
A \verb\break\ statement executed in the first suite terminates the
|
||||||
|
loop without executing the \verb\else\ clause's suite. A
|
||||||
|
\verb\continue\ statement executed in the first suite skips the rest
|
||||||
|
of the suite and continues with the next item, or with the \verb\else\
|
||||||
|
clause if there was no next item.
|
||||||
|
\stindex{break}
|
||||||
|
\stindex{continue}
|
||||||
|
|
||||||
|
The suite may assign to the variable(s) in the target list; this does
|
||||||
|
not affect the next item assigned to it.
|
||||||
|
|
||||||
|
The target list is not deleted when the loop is finished, but if the
|
||||||
|
sequence is empty, it will not have been assigned to at all by the
|
||||||
|
loop.
|
||||||
|
|
||||||
|
Hint: the built-in function \verb\range()\ returns a sequence of
|
||||||
|
integers suitable to emulate the effect of Pascal's \verb\for i := a
|
||||||
|
to b do\; e.g. \verb\range(3)\ returns the list \verb\[0, 1, 2]\.
|
||||||
|
\bifuncindex{range}
|
||||||
|
\index{Pascal}
|
||||||
|
|
||||||
|
{\bf Warning:} There is a subtlety when the sequence is being modified
|
||||||
|
by the loop (this can only occur for mutable sequences, i.e. lists).
|
||||||
|
An internal counter is used to keep track of which item is used next,
|
||||||
|
and this is incremented on each iteration. When this counter has
|
||||||
|
reached the length of the sequence the loop terminates. This means that
|
||||||
|
if the suite deletes the current (or a previous) item from the
|
||||||
|
sequence, the next item will be skipped (since it gets the index of
|
||||||
|
the current item which has already been treated). Likewise, if the
|
||||||
|
suite inserts an item in the sequence before the current item, the
|
||||||
|
current item will be treated again the next time through the loop.
|
||||||
|
This can lead to nasty bugs that can be avoided by making a temporary
|
||||||
|
copy using a slice of the whole sequence, e.g.
|
||||||
|
\index{loop!over mutable sequence}
|
||||||
|
\index{mutable sequence!loop over}
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
for x in a[:]:
|
||||||
|
if x < 0: a.remove(x)
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
\section{The {\tt try} statement}
|
||||||
|
\stindex{try}
|
||||||
|
|
||||||
|
The \verb\try\ statement specifies exception handlers and/or cleanup
|
||||||
|
code for a group of statements:
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
try_stmt: try_exc_stmt | try_fin_stmt
|
||||||
|
try_exc_stmt: "try" ":" suite
|
||||||
|
("except" [condition ["," target]] ":" suite)+
|
||||||
|
try_fin_stmt: "try" ":" suite
|
||||||
|
"finally" ":" suite
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
There are two forms of \verb\try\ statement: \verb\try...except\ and
|
||||||
|
\verb\try...finally\. These forms cannot be mixed.
|
||||||
|
|
||||||
|
The \verb\try...except\ form specifies one or more exception handlers
|
||||||
|
(the \verb\except\ clauses). When no exception occurs in the
|
||||||
|
\verb\try\ clause, no exception handler is executed. When an
|
||||||
|
exception occurs in the \verb\try\ suite, a search for an exception
|
||||||
|
handler is started. This inspects the except clauses in turn until
|
||||||
|
one is found that matches the exception. A condition-less except
|
||||||
|
clause, if present, must be last; it matches any exception. For an
|
||||||
|
except clause with a condition, that condition is evaluated, and the
|
||||||
|
clause matches the exception if the resulting object is ``compatible''
|
||||||
|
with the exception. An object is compatible with an exception if it
|
||||||
|
is either the object that identifies the exception or it is a tuple
|
||||||
|
containing an item that is compatible with the exception. Note that
|
||||||
|
the object identities must match, i.e. it must be the same object, not
|
||||||
|
just an object with the same value.
|
||||||
|
\kwindex{except}
|
||||||
|
|
||||||
|
If no except clause matches the exception, the search for an exception
|
||||||
|
handler continues in the surrounding code and on the invocation stack.
|
||||||
|
|
||||||
|
If the evaluation of a condition in the header of an except clause
|
||||||
|
raises an exception, the original search for a handler is cancelled
|
||||||
|
and a search starts for the new exception in the surrounding code and
|
||||||
|
on the call stack (it is treated as if the entire \verb\try\ statement
|
||||||
|
raised the exception).
|
||||||
|
|
||||||
|
When a matching except clause is found, the exception's parameter is
|
||||||
|
assigned to the target specified in that except clause, if present,
|
||||||
|
and the except clause's suite is executed. When the end of this suite
|
||||||
|
is reached, execution continues normally after the entire try
|
||||||
|
statement. (This means that if two nested handlers exist for the same
|
||||||
|
exception, and the exception occurs in the try clause of the inner
|
||||||
|
handler, the outer handler will not handle the exception.)
|
||||||
|
|
||||||
|
The \verb\try...finally\ form specifies a `cleanup' handler. The
|
||||||
|
\verb\try\ clause is executed. When no exception occurs, the
|
||||||
|
\verb\finally\ clause is executed. When an exception occurs in the
|
||||||
|
\verb\try\ clause, the exception is temporarily saved, the
|
||||||
|
\verb\finally\ clause is executed, and then the saved exception is
|
||||||
|
re-raised. If the \verb\finally\ clause raises another exception or
|
||||||
|
executes a \verb\return\, \verb\break\ or \verb\continue\ statement,
|
||||||
|
the saved exception is lost.
|
||||||
|
\kwindex{finally}
|
||||||
|
|
||||||
|
When a \verb\return\ or \verb\break\ statement is executed in the
|
||||||
|
\verb\try\ suite of a \verb\try...finally\ statement, the
|
||||||
|
\verb\finally\ clause is also executed `on the way out'. A
|
||||||
|
\verb\continue\ statement is illegal in the \verb\try\ clause. (The
|
||||||
|
reason is a problem with the current implementation --- this
|
||||||
|
restriction may be lifted in the future).
|
||||||
|
\stindex{return}
|
||||||
|
\stindex{break}
|
||||||
|
\stindex{continue}
|
||||||
|
|
||||||
|
\section{Function definitions} \label{function}
|
||||||
|
\indexii{function}{definition}
|
||||||
|
|
||||||
|
A function definition defines a user-defined function object (see
|
||||||
|
section \ref{types}):
|
||||||
|
\obindex{user-defined function}
|
||||||
|
\obindex{function}
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
funcdef: "def" funcname "(" [parameter_list] ")" ":" suite
|
||||||
|
parameter_list: (parameter ",")* ("*" identifier | parameter [","])
|
||||||
|
sublist: parameter ("," parameter)* [","]
|
||||||
|
parameter: identifier | "(" sublist ")"
|
||||||
|
funcname: identifier
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
A function definition is an executable statement. Its execution binds
|
||||||
|
the function name in the current local name space to a function object
|
||||||
|
(a wrapper around the executable code for the function). This
|
||||||
|
function object contains a reference to the current global name space
|
||||||
|
as the global name space to be used when the function is called.
|
||||||
|
\indexii{function}{name}
|
||||||
|
\indexii{name}{binding}
|
||||||
|
|
||||||
|
The function definition does not execute the function body; this gets
|
||||||
|
executed only when the function is called.
|
||||||
|
|
||||||
|
Function call semantics are described in section \ref{calls}. When a
|
||||||
|
user-defined function is called, the arguments (a.k.a. actual
|
||||||
|
parameters) are bound to the (formal) parameters, as follows:
|
||||||
|
\indexii{function}{call}
|
||||||
|
\indexiii{user-defined}{function}{call}
|
||||||
|
\index{parameter}
|
||||||
|
\index{argument}
|
||||||
|
\indexii{parameter}{formal}
|
||||||
|
\indexii{parameter}{actual}
|
||||||
|
|
||||||
|
\begin{itemize}
|
||||||
|
|
||||||
|
\item
|
||||||
|
If there are no formal parameters, there must be no arguments.
|
||||||
|
|
||||||
|
\item
|
||||||
|
If the formal parameter list does not end in a star followed by an
|
||||||
|
identifier, there must be exactly as many arguments as there are
|
||||||
|
parameters in the formal parameter list (at the top level); the
|
||||||
|
arguments are assigned to the formal parameters one by one. Note that
|
||||||
|
the presence or absence of a trailing comma at the top level in either
|
||||||
|
the formal or the actual parameter list makes no difference. The
|
||||||
|
assignment to a formal parameter is performed as if the parameter
|
||||||
|
occurs on the left hand side of an assignment statement whose right
|
||||||
|
hand side's value is that of the argument.
|
||||||
|
|
||||||
|
\item
|
||||||
|
If the formal parameter list ends in a star followed by an identifier,
|
||||||
|
preceded by zero or more comma-followed parameters, there must be at
|
||||||
|
least as many arguments as there are parameters preceding the star.
|
||||||
|
Call this number {\em N}. The first {\em N} arguments are assigned to
|
||||||
|
the corresponding formal parameters in the way descibed above. A
|
||||||
|
tuple containing the remaining arguments, if any, is then assigned to
|
||||||
|
the identifier following the star. This variable will always be a
|
||||||
|
tuple: if there are no extra arguments, its value is \verb\()\, if
|
||||||
|
there is just one extra argument, it is a singleton tuple.
|
||||||
|
\indexii{variable length}{parameter list}
|
||||||
|
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
Note that the `variable length parameter list' feature only works at
|
||||||
|
the top level of the parameter list; individual parameters use a model
|
||||||
|
corresponding more closely to that of ordinary assignment. While the
|
||||||
|
latter model is generally preferable, because of the greater type
|
||||||
|
safety it offers (wrong-sized tuples aren't silently mistreated),
|
||||||
|
variable length parameter lists are a sufficiently accepted practice
|
||||||
|
in most programming languages that a compromise has been worked out.
|
||||||
|
(And anyway, assignment has no equivalent for empty argument lists.)
|
||||||
|
|
||||||
|
\section{Class definitions} \label{class}
|
||||||
|
\indexii{class}{definition}
|
||||||
|
|
||||||
|
A class definition defines a class object (see section \ref{types}):
|
||||||
|
\obindex{class}
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
classdef: "class" classname [inheritance] ":" suite
|
||||||
|
inheritance: "(" [condition_list] ")"
|
||||||
|
classname: identifier
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
A class definition is an executable statement. It first evaluates the
|
||||||
|
inheritance list, if present. Each item in the inheritance list
|
||||||
|
should evaluate to a class object. The class's suite is then executed
|
||||||
|
in a new execution frame (see section \ref{execframes}), using a newly
|
||||||
|
created local name space and the original global name space.
|
||||||
|
(Usually, the suite contains only function definitions.) When the
|
||||||
|
class's suite finishes execution, its execution frame is discarded but
|
||||||
|
its local name space is saved. A class object is then created using
|
||||||
|
the inheritance list for the base classes and the saved local name
|
||||||
|
space for the attribute dictionary. The class name is bound to this
|
||||||
|
class object in the original local name space.
|
||||||
|
\index{inheritance}
|
||||||
|
\indexii{class}{name}
|
||||||
|
\indexii{name}{binding}
|
||||||
|
\indexii{execution}{frame}
|
||||||
108
Doc/ref/ref8.tex
Normal file
108
Doc/ref/ref8.tex
Normal file
|
|
@ -0,0 +1,108 @@
|
||||||
|
\chapter{Top-level components}
|
||||||
|
|
||||||
|
The Python interpreter can get its input from a number of sources:
|
||||||
|
from a script passed to it as standard input or as program argument,
|
||||||
|
typed in interactively, from a module source file, etc. This chapter
|
||||||
|
gives the syntax used in these cases.
|
||||||
|
\index{interpreter}
|
||||||
|
|
||||||
|
\section{Complete Python programs}
|
||||||
|
\index{program}
|
||||||
|
|
||||||
|
While a language specification need not prescribe how the language
|
||||||
|
interpreter is invoked, it is useful to have a notion of a complete
|
||||||
|
Python program. A complete Python program is executed in a minimally
|
||||||
|
initialized environment: all built-in and standard modules are
|
||||||
|
available, but none have been initialized, except for \verb\sys\
|
||||||
|
(various system services), \verb\builtin\ (built-in functions,
|
||||||
|
exceptions and \verb\None\) and \verb\__main__\. The latter is used
|
||||||
|
to provide the local and global name space for execution of the
|
||||||
|
complete program.
|
||||||
|
\bimodindex{sys}
|
||||||
|
\bimodindex{__main__}
|
||||||
|
\bimodindex{builtin}
|
||||||
|
|
||||||
|
The syntax for a complete Python program is that for file input,
|
||||||
|
described in the next section.
|
||||||
|
|
||||||
|
The interpreter may also be invoked in interactive mode; in this case,
|
||||||
|
it does not read and execute a complete program but reads and executes
|
||||||
|
one statement (possibly compound) at a time. The initial environment
|
||||||
|
is identical to that of a complete program; each statement is executed
|
||||||
|
in the name space of \verb\__main__\.
|
||||||
|
\index{interactive mode}
|
||||||
|
|
||||||
|
Under {\UNIX}, a complete program can be passed to the interpreter in
|
||||||
|
three forms: with the {\bf -c} {\it string} command line option, as a
|
||||||
|
file passed as the first command line argument, or as standard input.
|
||||||
|
If the file or standard input is a tty device, the interpreter enters
|
||||||
|
interactive mode; otherwise, it executes the file as a complete
|
||||||
|
program.
|
||||||
|
\index{UNIX}
|
||||||
|
\index{command line}
|
||||||
|
\index{standard input}
|
||||||
|
|
||||||
|
\section{File input}
|
||||||
|
|
||||||
|
All input read from non-interactive files has the same form:
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
file_input: (NEWLINE | statement)*
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
This syntax is used in the following situations:
|
||||||
|
|
||||||
|
\begin{itemize}
|
||||||
|
|
||||||
|
\item when parsing a complete Python program (from a file or from a string);
|
||||||
|
|
||||||
|
\item when parsing a module;
|
||||||
|
|
||||||
|
\item when parsing a string passed to \verb\exec()\;
|
||||||
|
\bifuncindex{exec}
|
||||||
|
|
||||||
|
\item when parsing a file passed to \verb\execfile()\;
|
||||||
|
\bifuncindex{execfile}
|
||||||
|
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
\section{Interactive input}
|
||||||
|
|
||||||
|
Input in interactive mode is parsed using the following grammar:
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
interactive_input: [stmt_list] NEWLINE | compound_stmt NEWLINE
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
Note that a (top-level) compound statement must be followed by a blank
|
||||||
|
line in interactive mode; this is needed to help the parser detect the
|
||||||
|
end of the input.
|
||||||
|
|
||||||
|
\section{Expression input}
|
||||||
|
\index{input}
|
||||||
|
|
||||||
|
There are two forms of expression input. Both ignore leading
|
||||||
|
whitespace.
|
||||||
|
|
||||||
|
The string argument to \verb\eval()\ must have the following form:
|
||||||
|
\bifuncindex{eval}
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
eval_input: condition_list NEWLINE*
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
The input line read by \verb\input()\ must have the following form:
|
||||||
|
\bifuncindex{input}
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
input_input: condition_list NEWLINE
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
Note: to read `raw' input line without interpretation, you can use the
|
||||||
|
built-in function \verb\raw_input()\ or the \verb\readline()\ method
|
||||||
|
of file objects.
|
||||||
|
\obindex{file}
|
||||||
|
\index{input!raw}
|
||||||
|
\index{raw input}
|
||||||
|
\bifuncindex{raw_index}
|
||||||
|
\ttindex{readline}
|
||||||
468
Doc/ref6.tex
Normal file
468
Doc/ref6.tex
Normal file
|
|
@ -0,0 +1,468 @@
|
||||||
|
\chapter{Simple statements}
|
||||||
|
\indexii{simple}{statement}
|
||||||
|
|
||||||
|
Simple statements are comprised within a single logical line.
|
||||||
|
Several simple statements may occur on a single line separated
|
||||||
|
by semicolons. The syntax for simple statements is:
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
simple_stmt: expression_stmt
|
||||||
|
| assignment_stmt
|
||||||
|
| pass_stmt
|
||||||
|
| del_stmt
|
||||||
|
| print_stmt
|
||||||
|
| return_stmt
|
||||||
|
| raise_stmt
|
||||||
|
| break_stmt
|
||||||
|
| continue_stmt
|
||||||
|
| import_stmt
|
||||||
|
| global_stmt
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
\section{Expression statements}
|
||||||
|
\indexii{expression}{statement}
|
||||||
|
|
||||||
|
Expression statements are used (mostly interactively) to compute and
|
||||||
|
write a value, or (usually) to call a procedure (a function that
|
||||||
|
returns no meaningful result; in Python, procedures return the value
|
||||||
|
\verb\None\):
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
expression_stmt: expression_list
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
An expression statement evaluates the expression list (which may be a
|
||||||
|
single expression). If the value is not \verb\None\, it is converted
|
||||||
|
to a string using the rules for string conversions (expressions in
|
||||||
|
reverse quotes), and the resulting string is written to standard
|
||||||
|
output (see section \ref{print}) on a line by itself.
|
||||||
|
\indexii{expression}{list}
|
||||||
|
\ttindex{None}
|
||||||
|
\indexii{string}{conversion}
|
||||||
|
\index{output}
|
||||||
|
\indexii{standard}{output}
|
||||||
|
\indexii{writing}{values}
|
||||||
|
|
||||||
|
(The exception for \verb\None\ is made so that procedure calls, which
|
||||||
|
are syntactically equivalent to expressions, do not cause any output.
|
||||||
|
A tuple with only \verb\None\ items is written normally.)
|
||||||
|
\indexii{procedure}{call}
|
||||||
|
|
||||||
|
\section{Assignment statements}
|
||||||
|
\indexii{assignment}{statement}
|
||||||
|
|
||||||
|
Assignment statements are used to (re)bind names to values and to
|
||||||
|
modify attributes or items of mutable objects:
|
||||||
|
\indexii{binding}{name}
|
||||||
|
\indexii{rebinding}{name}
|
||||||
|
\obindex{mutable}
|
||||||
|
\indexii{attribute}{assignment}
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
assignment_stmt: (target_list "=")+ expression_list
|
||||||
|
target_list: target ("," target)* [","]
|
||||||
|
target: identifier | "(" target_list ")" | "[" target_list "]"
|
||||||
|
| attributeref | subscription | slicing
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
(See section \ref{primaries} for the syntax definitions for the last
|
||||||
|
three symbols.)
|
||||||
|
|
||||||
|
An assignment statement evaluates the expression list (remember that
|
||||||
|
this can be a single expression or a comma-separated list, the latter
|
||||||
|
yielding a tuple) and assigns the single resulting object to each of
|
||||||
|
the target lists, from left to right.
|
||||||
|
\indexii{expression}{list}
|
||||||
|
|
||||||
|
Assignment is defined recursively depending on the form of the target
|
||||||
|
(list). When a target is part of a mutable object (an attribute
|
||||||
|
reference, subscription or slicing), the mutable object must
|
||||||
|
ultimately perform the assignment and decide about its validity, and
|
||||||
|
may raise an exception if the assignment is unacceptable. The rules
|
||||||
|
observed by various types and the exceptions raised are given with the
|
||||||
|
definition of the object types (see section \ref{types}).
|
||||||
|
\index{target}
|
||||||
|
\indexii{target}{list}
|
||||||
|
|
||||||
|
Assignment of an object to a target list is recursively defined as
|
||||||
|
follows.
|
||||||
|
\indexiii{target}{list}{assignment}
|
||||||
|
|
||||||
|
\begin{itemize}
|
||||||
|
\item
|
||||||
|
If the target list is a single target: the object is assigned to that
|
||||||
|
target.
|
||||||
|
|
||||||
|
\item
|
||||||
|
If the target list is a comma-separated list of targets: the object
|
||||||
|
must be a tuple with the same number of items as the list contains
|
||||||
|
targets, and the items are assigned, from left to right, to the
|
||||||
|
corresponding targets.
|
||||||
|
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
Assignment of an object to a single target is recursively defined as
|
||||||
|
follows.
|
||||||
|
|
||||||
|
\begin{itemize} % nested
|
||||||
|
|
||||||
|
\item
|
||||||
|
If the target is an identifier (name):
|
||||||
|
|
||||||
|
\begin{itemize}
|
||||||
|
|
||||||
|
\item
|
||||||
|
If the name does not occur in a \verb\global\ statement in the current
|
||||||
|
code block: the name is bound to the object in the current local name
|
||||||
|
space.
|
||||||
|
\stindex{global}
|
||||||
|
|
||||||
|
\item
|
||||||
|
Otherwise: the name is bound to the object in the current global name
|
||||||
|
space.
|
||||||
|
|
||||||
|
\end{itemize} % nested
|
||||||
|
|
||||||
|
The name is rebound if it was already bound.
|
||||||
|
|
||||||
|
\item
|
||||||
|
If the target is a target list enclosed in parentheses: the object is
|
||||||
|
assigned to that target list as described above.
|
||||||
|
|
||||||
|
\item
|
||||||
|
If the target is a target list enclosed in square brackets: the object
|
||||||
|
must be a list with the same number of items as the target list
|
||||||
|
contains targets, and its items are assigned, from left to right, to
|
||||||
|
the corresponding targets.
|
||||||
|
|
||||||
|
\item
|
||||||
|
If the target is an attribute reference: The primary expression in the
|
||||||
|
reference is evaluated. It should yield an object with assignable
|
||||||
|
attributes; if this is not the case, \verb\TypeError\ is raised. That
|
||||||
|
object is then asked to assign the assigned object to the given
|
||||||
|
attribute; if it cannot perform the assignment, it raises an exception
|
||||||
|
(usually but not necessarily \verb\AttributeError\).
|
||||||
|
\indexii{attribute}{assignment}
|
||||||
|
|
||||||
|
\item
|
||||||
|
If the target is a subscription: The primary expression in the
|
||||||
|
reference is evaluated. It should yield either a mutable sequence
|
||||||
|
(list) object or a mapping (dictionary) object. Next, the subscript
|
||||||
|
expression is evaluated.
|
||||||
|
\indexii{subscription}{assignment}
|
||||||
|
\obindex{mutable}
|
||||||
|
|
||||||
|
If the primary is a mutable sequence object (a list), the subscript
|
||||||
|
must yield a plain integer. If it is negative, the sequence's length
|
||||||
|
is added to it. The resulting value must be a nonnegative integer
|
||||||
|
less than the sequence's length, and the sequence is asked to assign
|
||||||
|
the assigned object to its item with that index. If the index is out
|
||||||
|
of range, \verb\IndexError\ is raised (assignment to a subscripted
|
||||||
|
sequence cannot add new items to a list).
|
||||||
|
\obindex{sequence}
|
||||||
|
\obindex{list}
|
||||||
|
|
||||||
|
If the primary is a mapping (dictionary) object, the subscript must
|
||||||
|
have a type compatible with the mapping's key type, and the mapping is
|
||||||
|
then asked to to create a key/datum pair which maps the subscript to
|
||||||
|
the assigned object. This can either replace an existing key/value
|
||||||
|
pair with the same key value, or insert a new key/value pair (if no
|
||||||
|
key with the same value existed).
|
||||||
|
\obindex{mapping}
|
||||||
|
\obindex{dictionary}
|
||||||
|
|
||||||
|
\item
|
||||||
|
If the target is a slicing: The primary expression in the reference is
|
||||||
|
evaluated. It should yield a mutable sequence (list) object. The
|
||||||
|
assigned object should be a sequence object of the same type. Next,
|
||||||
|
the lower and upper bound expressions are evaluated, insofar they are
|
||||||
|
present; defaults are zero and the sequence's length. The bounds
|
||||||
|
should evaluate to (small) integers. If either bound is negative, the
|
||||||
|
sequence's length is added to it. The resulting bounds are clipped to
|
||||||
|
lie between zero and the sequence's length, inclusive. Finally, the
|
||||||
|
sequence object is asked to replace the items indicated by the slice
|
||||||
|
with the items of the assigned sequence. This may change the
|
||||||
|
sequence's length, if it allows it.
|
||||||
|
\indexii{slicing}{assignment}
|
||||||
|
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
(In the original implementation, the syntax for targets is taken
|
||||||
|
to be the same as for expressions, and invalid syntax is rejected
|
||||||
|
during the code generation phase, causing less detailed error
|
||||||
|
messages.)
|
||||||
|
|
||||||
|
\section{The {\tt pass} statement}
|
||||||
|
\stindex{pass}
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
pass_stmt: "pass"
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
\verb\pass\ is a null operation --- when it is executed, nothing
|
||||||
|
happens. It is useful as a placeholder when a statement is
|
||||||
|
required syntactically, but no code needs to be executed, for example:
|
||||||
|
\indexii{null}{operation}
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
def f(arg): pass # a function that does nothing (yet)
|
||||||
|
|
||||||
|
class C: pass # an class with no methods (yet)
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
\section{The {\tt del} statement}
|
||||||
|
\stindex{del}
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
del_stmt: "del" target_list
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
Deletion is recursively defined very similar to the way assignment is
|
||||||
|
defined. Rather that spelling it out in full details, here are some
|
||||||
|
hints.
|
||||||
|
\indexii{deletion}{target}
|
||||||
|
\indexiii{deletion}{target}{list}
|
||||||
|
|
||||||
|
Deletion of a target list recursively deletes each target, from left
|
||||||
|
to right.
|
||||||
|
|
||||||
|
Deletion of a name removes the binding of that name (which must exist)
|
||||||
|
from the local or global name space, depending on whether the name
|
||||||
|
occurs in a \verb\global\ statement in the same code block.
|
||||||
|
\stindex{global}
|
||||||
|
\indexii{unbinding}{name}
|
||||||
|
|
||||||
|
Deletion of attribute references, subscriptions and slicings
|
||||||
|
is passed to the primary object involved; deletion of a slicing
|
||||||
|
is in general equivalent to assignment of an empty slice of the
|
||||||
|
right type (but even this is determined by the sliced object).
|
||||||
|
\indexii{attribute}{deletion}
|
||||||
|
|
||||||
|
\section{The {\tt print} statement} \label{print}
|
||||||
|
\stindex{print}
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
print_stmt: "print" [ condition ("," condition)* [","] ]
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
\verb\print\ evaluates each condition in turn and writes the resulting
|
||||||
|
object to standard output (see below). If an object is not a string,
|
||||||
|
it is first converted to a string using the rules for string
|
||||||
|
conversions. The (resulting or original) string is then written. A
|
||||||
|
space is written before each object is (converted and) written, unless
|
||||||
|
the output system believes it is positioned at the beginning of a
|
||||||
|
line. This is the case: (1) when no characters have yet been written
|
||||||
|
to standard output; or (2) when the last character written to standard
|
||||||
|
output is \verb/\n/; or (3) when the last write operation on standard
|
||||||
|
output was not a \verb\print\ statement. (In some cases it may be
|
||||||
|
functional to write an empty string to standard output for this
|
||||||
|
reason.)
|
||||||
|
\index{output}
|
||||||
|
\indexii{writing}{values}
|
||||||
|
|
||||||
|
A \verb/"\n"/ character is written at the end, unless the \verb\print\
|
||||||
|
statement ends with a comma. This is the only action if the statement
|
||||||
|
contains just the keyword \verb\print\.
|
||||||
|
\indexii{trailing}{comma}
|
||||||
|
\indexii{newline}{suppression}
|
||||||
|
|
||||||
|
Standard output is defined as the file object named \verb\stdout\
|
||||||
|
in the built-in module \verb\sys\. If no such object exists,
|
||||||
|
or if it is not a writable file, a \verb\RuntimeError\ exception is raised.
|
||||||
|
(The original implementation attempts to write to the system's original
|
||||||
|
standard output instead, but this is not safe, and should be fixed.)
|
||||||
|
\indexii{standard}{output}
|
||||||
|
\bimodindex{sys}
|
||||||
|
\ttindex{stdout}
|
||||||
|
\exindex{RuntimeError}
|
||||||
|
|
||||||
|
\section{The {\tt return} statement}
|
||||||
|
\stindex{return}
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
return_stmt: "return" [condition_list]
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
\verb\return\ may only occur syntactically nested in a function
|
||||||
|
definition, not within a nested class definition.
|
||||||
|
\indexii{function}{definition}
|
||||||
|
\indexii{class}{definition}
|
||||||
|
|
||||||
|
If a condition list is present, it is evaluated, else \verb\None\
|
||||||
|
is substituted.
|
||||||
|
|
||||||
|
\verb\return\ leaves the current function call with the condition
|
||||||
|
list (or \verb\None\) as return value.
|
||||||
|
|
||||||
|
When \verb\return\ passes control out of a \verb\try\ statement
|
||||||
|
with a \verb\finally\ clause, that finally clause is executed
|
||||||
|
before really leaving the function.
|
||||||
|
\kwindex{finally}
|
||||||
|
|
||||||
|
\section{The {\tt raise} statement}
|
||||||
|
\stindex{raise}
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
raise_stmt: "raise" condition ["," condition]
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
\verb\raise\ evaluates its first condition, which must yield
|
||||||
|
a string object. If there is a second condition, this is evaluated,
|
||||||
|
else \verb\None\ is substituted.
|
||||||
|
\index{exception}
|
||||||
|
\indexii{raising}{exception}
|
||||||
|
|
||||||
|
It then raises the exception identified by the first object,
|
||||||
|
with the second one (or \verb\None\) as its parameter.
|
||||||
|
|
||||||
|
\section{The {\tt break} statement}
|
||||||
|
\stindex{break}
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
break_stmt: "break"
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
\verb\break\ may only occur syntactically nested in a \verb\for\
|
||||||
|
or \verb\while\ loop, not nested in a function or class definition.
|
||||||
|
\stindex{for}
|
||||||
|
\stindex{while}
|
||||||
|
\indexii{loop}{statement}
|
||||||
|
|
||||||
|
It terminates the neares enclosing loop, skipping the optional
|
||||||
|
\verb\else\ clause if the loop has one.
|
||||||
|
\kwindex{else}
|
||||||
|
|
||||||
|
If a \verb\for\ loop is terminated by \verb\break\, the loop control
|
||||||
|
target keeps its current value.
|
||||||
|
\indexii{loop control}{target}
|
||||||
|
|
||||||
|
When \verb\break\ passes control out of a \verb\try\ statement
|
||||||
|
with a \verb\finally\ clause, that finally clause is executed
|
||||||
|
before really leaving the loop.
|
||||||
|
\kwindex{finally}
|
||||||
|
|
||||||
|
\section{The {\tt continue} statement}
|
||||||
|
\stindex{continue}
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
continue_stmt: "continue"
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
\verb\continue\ may only occur syntactically nested in a \verb\for\ or
|
||||||
|
\verb\while\ loop, not nested in a function or class definition, and
|
||||||
|
not nested in the \verb\try\ clause of a \verb\try\ statement with a
|
||||||
|
\verb\finally\ clause (it may occur nested in a \verb\except\ or
|
||||||
|
\verb\finally\ clause of a \verb\try\ statement though).
|
||||||
|
\stindex{for}
|
||||||
|
\stindex{while}
|
||||||
|
\indexii{loop}{statement}
|
||||||
|
\kwindex{finally}
|
||||||
|
|
||||||
|
It continues with the next cycle of the nearest enclosing loop.
|
||||||
|
|
||||||
|
\section{The {\tt import} statement} \label{import}
|
||||||
|
\stindex{import}
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
import_stmt: "import" identifier ("," identifier)*
|
||||||
|
| "from" identifier "import" identifier ("," identifier)*
|
||||||
|
| "from" identifier "import" "*"
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
Import statements are executed in two steps: (1) find a module, and
|
||||||
|
initialize it if necessary; (2) define a name or names in the local
|
||||||
|
name space (of the scope where the \verb\import\ statement occurs).
|
||||||
|
The first form (without \verb\from\) repeats these steps for each
|
||||||
|
identifier in the list, the \verb\from\ form performs them once, with
|
||||||
|
the first identifier specifying the module name.
|
||||||
|
\indexii{importing}{module}
|
||||||
|
\indexii{name}{binding}
|
||||||
|
\kwindex{from}
|
||||||
|
|
||||||
|
The system maintains a table of modules that have been initialized,
|
||||||
|
indexed by module name. (The current implementation makes this table
|
||||||
|
accessible as \verb\sys.modules\.) When a module name is found in
|
||||||
|
this table, step (1) is finished. If not, a search for a module
|
||||||
|
definition is started. This first looks for a built-in module
|
||||||
|
definition, and if no built-in module if the given name is found, it
|
||||||
|
searches a user-specified list of directories for a file whose name is
|
||||||
|
the module name with extension \verb\".py"\. (The current
|
||||||
|
implementation uses the list of strings \verb\sys.path\ as the search
|
||||||
|
path; it is initialized from the shell environment variable
|
||||||
|
\verb\$PYTHONPATH\, with an installation-dependent default.)
|
||||||
|
\ttindex{modules}
|
||||||
|
\ttindex{sys.modules}
|
||||||
|
\indexii{module}{name}
|
||||||
|
\indexii{built-in}{module}
|
||||||
|
\indexii{user-defined}{module}
|
||||||
|
\bimodindex{sys}
|
||||||
|
\ttindex{path}
|
||||||
|
\ttindex{sys.path}
|
||||||
|
\indexii{filename}{extension}
|
||||||
|
|
||||||
|
If a built-in module is found, its built-in initialization code is
|
||||||
|
executed and step (1) is finished. If no matching file is found,
|
||||||
|
\verb\ImportError\ is raised. If a file is found, it is parsed,
|
||||||
|
yielding an executable code block. If a syntax error occurs,
|
||||||
|
\verb\SyntaxError\ is raised. Otherwise, an empty module of the given
|
||||||
|
name is created and inserted in the module table, and then the code
|
||||||
|
block is executed in the context of this module. Exceptions during
|
||||||
|
this execution terminate step (1).
|
||||||
|
\indexii{module}{initialization}
|
||||||
|
\exindex{SyntaxError}
|
||||||
|
\exindex{ImportError}
|
||||||
|
\index{code block}
|
||||||
|
|
||||||
|
When step (1) finishes without raising an exception, step (2) can
|
||||||
|
begin.
|
||||||
|
|
||||||
|
The first form of \verb\import\ statement binds the module name in the
|
||||||
|
local name space to the module object, and then goes on to import the
|
||||||
|
next identifier, if any. The \verb\from\ from does not bind the
|
||||||
|
module name: it goes through the list of identifiers, looks each one
|
||||||
|
of them up in the module found in step (1), and binds the name in the
|
||||||
|
local name space to the object thus found. If a name is not found,
|
||||||
|
\verb\ImportError\ is raised. If the list of identifiers is replaced
|
||||||
|
by a star (\verb\*\), all names defined in the module are bound,
|
||||||
|
except those beginning with an underscore(\verb\_\).
|
||||||
|
\indexii{name}{binding}
|
||||||
|
\exindex{ImportError}
|
||||||
|
|
||||||
|
Names bound by import statements may not occur in \verb\global\
|
||||||
|
statements in the same scope.
|
||||||
|
\stindex{global}
|
||||||
|
|
||||||
|
The \verb\from\ form with \verb\*\ may only occur in a module scope.
|
||||||
|
\kwindex{from}
|
||||||
|
\ttindex{from ... import *}
|
||||||
|
|
||||||
|
(The current implementation does not enforce the latter two
|
||||||
|
restrictions, but programs should not abuse this freedom, as future
|
||||||
|
implementations may enforce them or silently change the meaning of the
|
||||||
|
program.)
|
||||||
|
|
||||||
|
\section{The {\tt global} statement} \label{global}
|
||||||
|
\stindex{global}
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
global_stmt: "global" identifier ("," identifier)*
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
The \verb\global\ statement is a declaration which holds for the
|
||||||
|
entire current scope. It means that the listed identifiers are to be
|
||||||
|
interpreted as globals. While {\em using} global names is automatic
|
||||||
|
if they are not defined in the local scope, {\em assigning} to global
|
||||||
|
names would be impossible without \verb\global\.
|
||||||
|
\indexiii{global}{name}{binding}
|
||||||
|
|
||||||
|
Names listed in a \verb\global\ statement must not be used in the same
|
||||||
|
scope before that \verb\global\ statement is executed.
|
||||||
|
|
||||||
|
Names listed in a \verb\global\ statement must not be defined as formal
|
||||||
|
parameters or in a \verb\for\ loop control target, \verb\class\
|
||||||
|
definition, function definition, or \verb\import\ statement.
|
||||||
|
|
||||||
|
(The current implementation does not enforce the latter two
|
||||||
|
restrictions, but programs should not abuse this freedom, as future
|
||||||
|
implementations may enforce them or silently change the meaning of the
|
||||||
|
program.)
|
||||||
347
Doc/ref7.tex
Normal file
347
Doc/ref7.tex
Normal file
|
|
@ -0,0 +1,347 @@
|
||||||
|
\chapter{Compound statements}
|
||||||
|
\indexii{compound}{statement}
|
||||||
|
|
||||||
|
Compound statements contain (groups of) other statements; they affect
|
||||||
|
or control the execution of those other statements in some way. In
|
||||||
|
general, compound statements span multiple lines, although in simple
|
||||||
|
incarnations a whole compound statement may be contained in one line.
|
||||||
|
|
||||||
|
The \verb\if\, \verb\while\ and \verb\for\ statements implement
|
||||||
|
traditional control flow constructs. \verb\try\ specifies exception
|
||||||
|
handlers and/or cleanup code for a group of statements. Function and
|
||||||
|
class definitions are also syntactically compound statements.
|
||||||
|
|
||||||
|
Compound statements consist of one or more `clauses'. A clause
|
||||||
|
consists of a header and a `suite'. The clause headers of a
|
||||||
|
particular compound statement are all at the same indentation level.
|
||||||
|
Each clause header begins with a uniquely identifying keyword and ends
|
||||||
|
with a colon. A suite is a group of statements controlled by a
|
||||||
|
clause. A suite can be one or more semicolon-separated simple
|
||||||
|
statements on the same line as the header, following the header's
|
||||||
|
colon, or it can be one or more indented statements on subsequent
|
||||||
|
lines. Only the latter form of suite can contain nested compound
|
||||||
|
statements; the following is illegal, mostly because it wouldn't be
|
||||||
|
clear to which \verb\if\ clause a following \verb\else\ clause would
|
||||||
|
belong:
|
||||||
|
\index{clause}
|
||||||
|
\index{suite}
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
if test1: if test2: print x
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
Also note that the semicolon binds tighter than the colon in this
|
||||||
|
context, so that in the following example, either all or none of the
|
||||||
|
\verb\print\ statements are executed:
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
if x < y < z: print x; print y; print z
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
Summarizing:
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
compound_stmt: if_stmt | while_stmt | for_stmt
|
||||||
|
| try_stmt | funcdef | classdef
|
||||||
|
suite: stmt_list NEWLINE | NEWLINE INDENT statement+ DEDENT
|
||||||
|
statement: stmt_list NEWLINE | compound_stmt
|
||||||
|
stmt_list: simple_stmt (";" simple_stmt)* [";"]
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
Note that statements always end in a \verb\NEWLINE\ possibly followed
|
||||||
|
by a \verb\DEDENT\.
|
||||||
|
\index{NEWLINE token}
|
||||||
|
\index{DEDENT token}
|
||||||
|
|
||||||
|
Also note that optional continuation clauses always begin with a
|
||||||
|
keyword that cannot start a statement, thus there are no ambiguities
|
||||||
|
(the `dangling \verb\else\' problem is solved in Python by requiring
|
||||||
|
nested \verb\if\ statements to be indented).
|
||||||
|
\indexii{dangling}{else}
|
||||||
|
|
||||||
|
The formatting of the grammar rules in the following sections places
|
||||||
|
each clause on a separate line for clarity.
|
||||||
|
|
||||||
|
\section{The {\tt if} statement}
|
||||||
|
\stindex{if}
|
||||||
|
|
||||||
|
The \verb\if\ statement is used for conditional execution:
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
if_stmt: "if" condition ":" suite
|
||||||
|
("elif" condition ":" suite)*
|
||||||
|
["else" ":" suite]
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
It selects exactly one of the suites by evaluating the conditions one
|
||||||
|
by one until one is found to be true (see section \ref{Booleans} for
|
||||||
|
the definition of true and false); then that suite is executed (and no
|
||||||
|
other part of the \verb\if\ statement is executed or evaluated). If
|
||||||
|
all conditions are false, the suite of the \verb\else\ clause, if
|
||||||
|
present, is executed.
|
||||||
|
\kwindex{elif}
|
||||||
|
\kwindex{else}
|
||||||
|
|
||||||
|
\section{The {\tt while} statement}
|
||||||
|
\stindex{while}
|
||||||
|
\indexii{loop}{statement}
|
||||||
|
|
||||||
|
The \verb\while\ statement is used for repeated execution as long as a
|
||||||
|
condition is true:
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
while_stmt: "while" condition ":" suite
|
||||||
|
["else" ":" suite]
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
This repeatedly tests the condition and, if it is true, executes the
|
||||||
|
first suite; if the condition is false (which may be the first time it
|
||||||
|
is tested) the suite of the \verb\else\ clause, if present, is
|
||||||
|
executed and the loop terminates.
|
||||||
|
\kwindex{else}
|
||||||
|
|
||||||
|
A \verb\break\ statement executed in the first suite terminates the
|
||||||
|
loop without executing the \verb\else\ clause's suite. A
|
||||||
|
\verb\continue\ statement executed in the first suite skips the rest
|
||||||
|
of the suite and goes back to testing the condition.
|
||||||
|
\stindex{break}
|
||||||
|
\stindex{continue}
|
||||||
|
|
||||||
|
\section{The {\tt for} statement}
|
||||||
|
\stindex{for}
|
||||||
|
\indexii{loop}{statement}
|
||||||
|
|
||||||
|
The \verb\for\ statement is used to iterate over the elements of a
|
||||||
|
sequence (string, tuple or list):
|
||||||
|
\obindex{sequence}
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
for_stmt: "for" target_list "in" condition_list ":" suite
|
||||||
|
["else" ":" suite]
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
The condition list is evaluated once; it should yield a sequence. The
|
||||||
|
suite is then executed once for each item in the sequence, in the
|
||||||
|
order of ascending indices. Each item in turn is assigned to the
|
||||||
|
target list using the standard rules for assignments, and then the
|
||||||
|
suite is executed. When the items are exhausted (which is immediately
|
||||||
|
when the sequence is empty), the suite in the \verb\else\ clause, if
|
||||||
|
present, is executed, and the loop terminates.
|
||||||
|
\kwindex{in}
|
||||||
|
\kwindex{else}
|
||||||
|
\indexii{target}{list}
|
||||||
|
|
||||||
|
A \verb\break\ statement executed in the first suite terminates the
|
||||||
|
loop without executing the \verb\else\ clause's suite. A
|
||||||
|
\verb\continue\ statement executed in the first suite skips the rest
|
||||||
|
of the suite and continues with the next item, or with the \verb\else\
|
||||||
|
clause if there was no next item.
|
||||||
|
\stindex{break}
|
||||||
|
\stindex{continue}
|
||||||
|
|
||||||
|
The suite may assign to the variable(s) in the target list; this does
|
||||||
|
not affect the next item assigned to it.
|
||||||
|
|
||||||
|
The target list is not deleted when the loop is finished, but if the
|
||||||
|
sequence is empty, it will not have been assigned to at all by the
|
||||||
|
loop.
|
||||||
|
|
||||||
|
Hint: the built-in function \verb\range()\ returns a sequence of
|
||||||
|
integers suitable to emulate the effect of Pascal's \verb\for i := a
|
||||||
|
to b do\; e.g. \verb\range(3)\ returns the list \verb\[0, 1, 2]\.
|
||||||
|
\bifuncindex{range}
|
||||||
|
\index{Pascal}
|
||||||
|
|
||||||
|
{\bf Warning:} There is a subtlety when the sequence is being modified
|
||||||
|
by the loop (this can only occur for mutable sequences, i.e. lists).
|
||||||
|
An internal counter is used to keep track of which item is used next,
|
||||||
|
and this is incremented on each iteration. When this counter has
|
||||||
|
reached the length of the sequence the loop terminates. This means that
|
||||||
|
if the suite deletes the current (or a previous) item from the
|
||||||
|
sequence, the next item will be skipped (since it gets the index of
|
||||||
|
the current item which has already been treated). Likewise, if the
|
||||||
|
suite inserts an item in the sequence before the current item, the
|
||||||
|
current item will be treated again the next time through the loop.
|
||||||
|
This can lead to nasty bugs that can be avoided by making a temporary
|
||||||
|
copy using a slice of the whole sequence, e.g.
|
||||||
|
\index{loop!over mutable sequence}
|
||||||
|
\index{mutable sequence!loop over}
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
for x in a[:]:
|
||||||
|
if x < 0: a.remove(x)
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
\section{The {\tt try} statement}
|
||||||
|
\stindex{try}
|
||||||
|
|
||||||
|
The \verb\try\ statement specifies exception handlers and/or cleanup
|
||||||
|
code for a group of statements:
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
try_stmt: try_exc_stmt | try_fin_stmt
|
||||||
|
try_exc_stmt: "try" ":" suite
|
||||||
|
("except" [condition ["," target]] ":" suite)+
|
||||||
|
try_fin_stmt: "try" ":" suite
|
||||||
|
"finally" ":" suite
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
There are two forms of \verb\try\ statement: \verb\try...except\ and
|
||||||
|
\verb\try...finally\. These forms cannot be mixed.
|
||||||
|
|
||||||
|
The \verb\try...except\ form specifies one or more exception handlers
|
||||||
|
(the \verb\except\ clauses). When no exception occurs in the
|
||||||
|
\verb\try\ clause, no exception handler is executed. When an
|
||||||
|
exception occurs in the \verb\try\ suite, a search for an exception
|
||||||
|
handler is started. This inspects the except clauses in turn until
|
||||||
|
one is found that matches the exception. A condition-less except
|
||||||
|
clause, if present, must be last; it matches any exception. For an
|
||||||
|
except clause with a condition, that condition is evaluated, and the
|
||||||
|
clause matches the exception if the resulting object is ``compatible''
|
||||||
|
with the exception. An object is compatible with an exception if it
|
||||||
|
is either the object that identifies the exception or it is a tuple
|
||||||
|
containing an item that is compatible with the exception. Note that
|
||||||
|
the object identities must match, i.e. it must be the same object, not
|
||||||
|
just an object with the same value.
|
||||||
|
\kwindex{except}
|
||||||
|
|
||||||
|
If no except clause matches the exception, the search for an exception
|
||||||
|
handler continues in the surrounding code and on the invocation stack.
|
||||||
|
|
||||||
|
If the evaluation of a condition in the header of an except clause
|
||||||
|
raises an exception, the original search for a handler is cancelled
|
||||||
|
and a search starts for the new exception in the surrounding code and
|
||||||
|
on the call stack (it is treated as if the entire \verb\try\ statement
|
||||||
|
raised the exception).
|
||||||
|
|
||||||
|
When a matching except clause is found, the exception's parameter is
|
||||||
|
assigned to the target specified in that except clause, if present,
|
||||||
|
and the except clause's suite is executed. When the end of this suite
|
||||||
|
is reached, execution continues normally after the entire try
|
||||||
|
statement. (This means that if two nested handlers exist for the same
|
||||||
|
exception, and the exception occurs in the try clause of the inner
|
||||||
|
handler, the outer handler will not handle the exception.)
|
||||||
|
|
||||||
|
The \verb\try...finally\ form specifies a `cleanup' handler. The
|
||||||
|
\verb\try\ clause is executed. When no exception occurs, the
|
||||||
|
\verb\finally\ clause is executed. When an exception occurs in the
|
||||||
|
\verb\try\ clause, the exception is temporarily saved, the
|
||||||
|
\verb\finally\ clause is executed, and then the saved exception is
|
||||||
|
re-raised. If the \verb\finally\ clause raises another exception or
|
||||||
|
executes a \verb\return\, \verb\break\ or \verb\continue\ statement,
|
||||||
|
the saved exception is lost.
|
||||||
|
\kwindex{finally}
|
||||||
|
|
||||||
|
When a \verb\return\ or \verb\break\ statement is executed in the
|
||||||
|
\verb\try\ suite of a \verb\try...finally\ statement, the
|
||||||
|
\verb\finally\ clause is also executed `on the way out'. A
|
||||||
|
\verb\continue\ statement is illegal in the \verb\try\ clause. (The
|
||||||
|
reason is a problem with the current implementation --- this
|
||||||
|
restriction may be lifted in the future).
|
||||||
|
\stindex{return}
|
||||||
|
\stindex{break}
|
||||||
|
\stindex{continue}
|
||||||
|
|
||||||
|
\section{Function definitions} \label{function}
|
||||||
|
\indexii{function}{definition}
|
||||||
|
|
||||||
|
A function definition defines a user-defined function object (see
|
||||||
|
section \ref{types}):
|
||||||
|
\obindex{user-defined function}
|
||||||
|
\obindex{function}
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
funcdef: "def" funcname "(" [parameter_list] ")" ":" suite
|
||||||
|
parameter_list: (parameter ",")* ("*" identifier | parameter [","])
|
||||||
|
sublist: parameter ("," parameter)* [","]
|
||||||
|
parameter: identifier | "(" sublist ")"
|
||||||
|
funcname: identifier
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
A function definition is an executable statement. Its execution binds
|
||||||
|
the function name in the current local name space to a function object
|
||||||
|
(a wrapper around the executable code for the function). This
|
||||||
|
function object contains a reference to the current global name space
|
||||||
|
as the global name space to be used when the function is called.
|
||||||
|
\indexii{function}{name}
|
||||||
|
\indexii{name}{binding}
|
||||||
|
|
||||||
|
The function definition does not execute the function body; this gets
|
||||||
|
executed only when the function is called.
|
||||||
|
|
||||||
|
Function call semantics are described in section \ref{calls}. When a
|
||||||
|
user-defined function is called, the arguments (a.k.a. actual
|
||||||
|
parameters) are bound to the (formal) parameters, as follows:
|
||||||
|
\indexii{function}{call}
|
||||||
|
\indexiii{user-defined}{function}{call}
|
||||||
|
\index{parameter}
|
||||||
|
\index{argument}
|
||||||
|
\indexii{parameter}{formal}
|
||||||
|
\indexii{parameter}{actual}
|
||||||
|
|
||||||
|
\begin{itemize}
|
||||||
|
|
||||||
|
\item
|
||||||
|
If there are no formal parameters, there must be no arguments.
|
||||||
|
|
||||||
|
\item
|
||||||
|
If the formal parameter list does not end in a star followed by an
|
||||||
|
identifier, there must be exactly as many arguments as there are
|
||||||
|
parameters in the formal parameter list (at the top level); the
|
||||||
|
arguments are assigned to the formal parameters one by one. Note that
|
||||||
|
the presence or absence of a trailing comma at the top level in either
|
||||||
|
the formal or the actual parameter list makes no difference. The
|
||||||
|
assignment to a formal parameter is performed as if the parameter
|
||||||
|
occurs on the left hand side of an assignment statement whose right
|
||||||
|
hand side's value is that of the argument.
|
||||||
|
|
||||||
|
\item
|
||||||
|
If the formal parameter list ends in a star followed by an identifier,
|
||||||
|
preceded by zero or more comma-followed parameters, there must be at
|
||||||
|
least as many arguments as there are parameters preceding the star.
|
||||||
|
Call this number {\em N}. The first {\em N} arguments are assigned to
|
||||||
|
the corresponding formal parameters in the way descibed above. A
|
||||||
|
tuple containing the remaining arguments, if any, is then assigned to
|
||||||
|
the identifier following the star. This variable will always be a
|
||||||
|
tuple: if there are no extra arguments, its value is \verb\()\, if
|
||||||
|
there is just one extra argument, it is a singleton tuple.
|
||||||
|
\indexii{variable length}{parameter list}
|
||||||
|
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
Note that the `variable length parameter list' feature only works at
|
||||||
|
the top level of the parameter list; individual parameters use a model
|
||||||
|
corresponding more closely to that of ordinary assignment. While the
|
||||||
|
latter model is generally preferable, because of the greater type
|
||||||
|
safety it offers (wrong-sized tuples aren't silently mistreated),
|
||||||
|
variable length parameter lists are a sufficiently accepted practice
|
||||||
|
in most programming languages that a compromise has been worked out.
|
||||||
|
(And anyway, assignment has no equivalent for empty argument lists.)
|
||||||
|
|
||||||
|
\section{Class definitions} \label{class}
|
||||||
|
\indexii{class}{definition}
|
||||||
|
|
||||||
|
A class definition defines a class object (see section \ref{types}):
|
||||||
|
\obindex{class}
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
classdef: "class" classname [inheritance] ":" suite
|
||||||
|
inheritance: "(" [condition_list] ")"
|
||||||
|
classname: identifier
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
A class definition is an executable statement. It first evaluates the
|
||||||
|
inheritance list, if present. Each item in the inheritance list
|
||||||
|
should evaluate to a class object. The class's suite is then executed
|
||||||
|
in a new execution frame (see section \ref{execframes}), using a newly
|
||||||
|
created local name space and the original global name space.
|
||||||
|
(Usually, the suite contains only function definitions.) When the
|
||||||
|
class's suite finishes execution, its execution frame is discarded but
|
||||||
|
its local name space is saved. A class object is then created using
|
||||||
|
the inheritance list for the base classes and the saved local name
|
||||||
|
space for the attribute dictionary. The class name is bound to this
|
||||||
|
class object in the original local name space.
|
||||||
|
\index{inheritance}
|
||||||
|
\indexii{class}{name}
|
||||||
|
\indexii{name}{binding}
|
||||||
|
\indexii{execution}{frame}
|
||||||
108
Doc/ref8.tex
Normal file
108
Doc/ref8.tex
Normal file
|
|
@ -0,0 +1,108 @@
|
||||||
|
\chapter{Top-level components}
|
||||||
|
|
||||||
|
The Python interpreter can get its input from a number of sources:
|
||||||
|
from a script passed to it as standard input or as program argument,
|
||||||
|
typed in interactively, from a module source file, etc. This chapter
|
||||||
|
gives the syntax used in these cases.
|
||||||
|
\index{interpreter}
|
||||||
|
|
||||||
|
\section{Complete Python programs}
|
||||||
|
\index{program}
|
||||||
|
|
||||||
|
While a language specification need not prescribe how the language
|
||||||
|
interpreter is invoked, it is useful to have a notion of a complete
|
||||||
|
Python program. A complete Python program is executed in a minimally
|
||||||
|
initialized environment: all built-in and standard modules are
|
||||||
|
available, but none have been initialized, except for \verb\sys\
|
||||||
|
(various system services), \verb\builtin\ (built-in functions,
|
||||||
|
exceptions and \verb\None\) and \verb\__main__\. The latter is used
|
||||||
|
to provide the local and global name space for execution of the
|
||||||
|
complete program.
|
||||||
|
\bimodindex{sys}
|
||||||
|
\bimodindex{__main__}
|
||||||
|
\bimodindex{builtin}
|
||||||
|
|
||||||
|
The syntax for a complete Python program is that for file input,
|
||||||
|
described in the next section.
|
||||||
|
|
||||||
|
The interpreter may also be invoked in interactive mode; in this case,
|
||||||
|
it does not read and execute a complete program but reads and executes
|
||||||
|
one statement (possibly compound) at a time. The initial environment
|
||||||
|
is identical to that of a complete program; each statement is executed
|
||||||
|
in the name space of \verb\__main__\.
|
||||||
|
\index{interactive mode}
|
||||||
|
|
||||||
|
Under {\UNIX}, a complete program can be passed to the interpreter in
|
||||||
|
three forms: with the {\bf -c} {\it string} command line option, as a
|
||||||
|
file passed as the first command line argument, or as standard input.
|
||||||
|
If the file or standard input is a tty device, the interpreter enters
|
||||||
|
interactive mode; otherwise, it executes the file as a complete
|
||||||
|
program.
|
||||||
|
\index{UNIX}
|
||||||
|
\index{command line}
|
||||||
|
\index{standard input}
|
||||||
|
|
||||||
|
\section{File input}
|
||||||
|
|
||||||
|
All input read from non-interactive files has the same form:
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
file_input: (NEWLINE | statement)*
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
This syntax is used in the following situations:
|
||||||
|
|
||||||
|
\begin{itemize}
|
||||||
|
|
||||||
|
\item when parsing a complete Python program (from a file or from a string);
|
||||||
|
|
||||||
|
\item when parsing a module;
|
||||||
|
|
||||||
|
\item when parsing a string passed to \verb\exec()\;
|
||||||
|
\bifuncindex{exec}
|
||||||
|
|
||||||
|
\item when parsing a file passed to \verb\execfile()\;
|
||||||
|
\bifuncindex{execfile}
|
||||||
|
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
\section{Interactive input}
|
||||||
|
|
||||||
|
Input in interactive mode is parsed using the following grammar:
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
interactive_input: [stmt_list] NEWLINE | compound_stmt NEWLINE
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
Note that a (top-level) compound statement must be followed by a blank
|
||||||
|
line in interactive mode; this is needed to help the parser detect the
|
||||||
|
end of the input.
|
||||||
|
|
||||||
|
\section{Expression input}
|
||||||
|
\index{input}
|
||||||
|
|
||||||
|
There are two forms of expression input. Both ignore leading
|
||||||
|
whitespace.
|
||||||
|
|
||||||
|
The string argument to \verb\eval()\ must have the following form:
|
||||||
|
\bifuncindex{eval}
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
eval_input: condition_list NEWLINE*
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
The input line read by \verb\input()\ must have the following form:
|
||||||
|
\bifuncindex{input}
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
input_input: condition_list NEWLINE
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
Note: to read `raw' input line without interpretation, you can use the
|
||||||
|
built-in function \verb\raw_input()\ or the \verb\readline()\ method
|
||||||
|
of file objects.
|
||||||
|
\obindex{file}
|
||||||
|
\index{input!raw}
|
||||||
|
\index{raw input}
|
||||||
|
\bifuncindex{raw_index}
|
||||||
|
\ttindex{readline}
|
||||||
Loading…
Add table
Add a link
Reference in a new issue