New versions straight from Jeffrey Ollie's web site

This commit is contained in:
Guido van Rossum 1997-07-10 14:31:32 +00:00
parent db9e20f418
commit db25f32849
3 changed files with 698 additions and 167 deletions

View file

@ -1,3 +1,7 @@
/*
* -*- mode: c-mode; c-file-style: python -*-
*/
/* regexpr.c
*
* Author: Tatu Ylonen <ylo@ngs.fi>
@ -57,6 +61,12 @@ char *realloc();
#endif /* __STDC__ */
#endif /* THINK_C */
/* The original code blithely assumed that sizeof(short) == 2. Not
* always true. Original instances of "(short)x" were replaced by
* SHORT(x), where SHORT is #defined below. */
#define SHORT(x) ((x) & 0x8000 ? (x) - 0x10000 : (x))
/* The stack implementation is taken from an idea by Andrew Kuchling.
* It's a doubly linked list of arrays. The advantages of this over a
* simple linked list are that the number of mallocs required are
@ -75,27 +85,27 @@ char *realloc();
typedef union item_t
{
struct
{
int num;
int level;
char *start;
char *end;
} reg;
struct
{
int count;
int level;
int phantom;
char *code;
char *text;
} fail;
struct
{
int num;
int level;
int count;
} cntr;
struct
{
int num;
int level;
char *start;
char *end;
} reg;
struct
{
int count;
int level;
int phantom;
char *code;
char *text;
} fail;
struct
{
int num;
int level;
int count;
} cntr;
} item_t;
#define STACK_PAGE_SIZE 256
@ -105,43 +115,98 @@ typedef union item_t
typedef struct item_page_t
{
item_t items[STACK_PAGE_SIZE];
struct item_page_t *prev;
struct item_page_t *next;
item_t items[STACK_PAGE_SIZE];
struct item_page_t *prev;
struct item_page_t *next;
} item_page_t;
typedef struct match_state
{
/* Structure to encapsulate the stack. */
struct
{
/* index into the curent page. If index == 0 and you need
* to pop and item, move to the previous page and set
* index = STACK_PAGE_SIZE - 1. Otherwise decrement index
* to push a page. If index == STACK_PAGE_SIZE and you
* need to push a page move to the next page and set index
* = 0. If there is no new next page, allocate a new page
* and link it in. Otherwise, increment index to push a
* page. */
int index;
item_page_t *current; /* Pointer to the current page. */
item_page_t first; /* First page is statically allocated. */
} stack;
char *start[NUM_REGISTERS];
char *end[NUM_REGISTERS];
/* The number of registers that have been pushed onto the stack
* since the last failure point. */
int changed[NUM_REGISTERS];
/* The number of registers that have been pushed onto the stack
* since the last failure point. */
int count;
/* Used to control when registers need to be pushed onto the
* stack. */
int level;
/* The number of failure points on the stack. */
int point;
int count;
/* Used to control when registers need to be pushed onto the
* stack. */
int level;
/* The number of failure points on the stack. */
int point;
/* Storage for the registers. Each register consists of two
* pointers to characters. So register N is represented as
* start[N] and end[N]. The pointers must be converted to
* offsets from the beginning of the string before returning the
* registers to the calling program. */
char *start[NUM_REGISTERS];
char *end[NUM_REGISTERS];
/* Keeps track of whether a register has changed recently. */
int changed[NUM_REGISTERS];
/* Structure to encapsulate the stack. */
struct
{
/* index into the curent page. If index == 0 and you need
* to pop an item, move to the previous page and set index
* = STACK_PAGE_SIZE - 1. Otherwise decrement index to
* push a page. If index == STACK_PAGE_SIZE and you need
* to push a page move to the next page and set index =
* 0. If there is no new next page, allocate a new page
* and link it in. Otherwise, increment index to push a
* page. */
int index;
item_page_t *current; /* Pointer to the current page. */
item_page_t first; /* First page is statically allocated. */
} stack;
} match_state;
/* Initialize a state object */
/* #define NEW_STATE(state) \ */
/* memset(&state, 0, (void *)(&state.stack) - (void *)(&state)); \ */
/* state.stack.current = &state.stack.first; \ */
/* state.stack.first.prev = NULL; \ */
/* state.stack.first.next = NULL; \ */
/* state.stack.index = 0; \ */
/* state.level = 1 */
#define NEW_STATE(state, nregs) \
{ \
int i; \
for (i = 0; i < nregs; i++) \
{ \
state.start[i] = NULL; \
state.end[i] = NULL; \
state.changed[i] = 0; \
} \
state.stack.current = &state.stack.first; \
state.stack.first.prev = NULL; \
state.stack.first.next = NULL; \
state.stack.index = 0; \
state.level = 1; \
state.count = 0; \
state.level = 0; \
state.point = 0; \
}
/* Free any memory that might have been malloc'd */
#define FREE_STATE(state) \
while(state.stack.first.next != NULL) \
{ \
state.stack.current = state.stack.first.next; \
state.stack.first.next = state.stack.current->next; \
free(state.stack.current); \
}
/* Discard the top 'count' stack items. */
#define STACK_DISCARD(stack, count, on_error) \
@ -226,24 +291,6 @@ else \
#define STACK_EMPTY(stack) ((stack.index == 0) && \
(stack.current->prev == NULL))
/* Initialize a state object */
#define NEW_STATE(state) \
memset(&state, 0, sizeof(match_state)); \
state.stack.current = &state.stack.first; \
state.level = 1
/* Free any memory that might have been malloc'd */
#define FREE_STATE(state) \
while(state.stack.first.next != NULL) \
{ \
state.stack.current = state.stack.first.next; \
state.stack.first.next = state.stack.current->next; \
free(state.stack.current); \
}
/* Return the start of register 'reg' */
#define GET_REG_START(state, reg) (state.start[reg])
@ -302,22 +349,6 @@ state.end[reg] = text
/* Update the last failure point with a new position in the text. */
/* #define UPDATE_FAILURE(state, xtext, on_error) \ */
/* { \ */
/* item_t *item; \ */
/* STACK_DISCARD(state.stack, state.count, on_error); \ */
/* STACK_TOP(state.stack, item, on_error); \ */
/* item->fail.text = xtext; \ */
/* state.count = 0; \ */
/* } */
/* #define UPDATE_FAILURE(state, xtext, on_error) \ */
/* { \ */
/* item_t *item; \ */
/* STACK_BACK(state.stack, item, state.count + 1, on_error); \ */
/* item->fail.text = xtext; \ */
/* } */
#define UPDATE_FAILURE(state, xtext, on_error) \
{ \
item_t *item; \
@ -391,7 +422,8 @@ enum regexp_compiled_ops /* opcodes for compiled regexp */
Cwordbound, /* match if at word boundary */
Cnotwordbound, /* match if not at word boundary */
Csyntaxspec, /* matches syntax code (1 byte follows) */
Cnotsyntaxspec /* matches if syntax code does not match (1 byte foll)*/
Cnotsyntaxspec, /* matches if syntax code does not match (1 byte foll)*/
Crepeat1
};
enum regexp_syntax_op /* syntax codes for plain and quoted characters */
@ -581,6 +613,8 @@ static void re_compile_fastmap_aux(char *code,
case Cwordbound:
case Cnotwordbound:
{
for (a = 0; a < 256; a++)
fastmap[a] = 1;
break;
}
case Csyntaxspec:
@ -648,7 +682,7 @@ static void re_compile_fastmap_aux(char *code,
{
a = (unsigned char)code[pos++];
a |= (unsigned char)code[pos++] << 8;
pos += (int)(short)a;
pos += (int)SHORT(a);
if (visited[pos])
{
/* argh... the regexp contains empty loops. This is not
@ -664,10 +698,15 @@ static void re_compile_fastmap_aux(char *code,
{
a = (unsigned char)code[pos++];
a |= (unsigned char)code[pos++] << 8;
a = pos + (int)(short)a;
a = pos + (int)SHORT(a);
re_compile_fastmap_aux(code, a, visited, can_be_null, fastmap);
break;
}
case Crepeat1:
{
pos += 2;
break;
}
default:
{
abort(); /* probably some opcode is missing from this switch */
@ -754,10 +793,11 @@ static int re_optimize_star_jump(regexp_t bufp, char *code)
char ch;
int a;
int b;
int num_instructions = 0;
a = (unsigned char)*code++;
a |= (unsigned char)*code++ << 8;
a = (int)(short)a;
a = (int)SHORT(a);
p1 = code + a + 3; /* skip the failure_jump */
assert(p1[-3] == Cfailure_jump);
@ -775,6 +815,7 @@ static int re_optimize_star_jump(regexp_t bufp, char *code)
/* loop until we find something that consumes a character */
loop_p1:
num_instructions++;
switch (*p1++)
{
case Cbol:
@ -824,6 +865,7 @@ static int re_optimize_star_jump(regexp_t bufp, char *code)
/* now we know that we can't backtrack. */
while (p1 != p2 - 3)
{
num_instructions++;
switch (*p1++)
{
case Cend:
@ -873,11 +915,22 @@ static int re_optimize_star_jump(regexp_t bufp, char *code)
}
}
make_update_jump:
code -= 3;
a += 3; /* jump to after the Cfailure_jump */
code[0] = Cupdate_failure_jump;
code[1] = a & 0xff;
code[2] = a >> 8;
if (num_instructions > 1)
return 1;
assert(num_instructions == 1);
/* if the only instruction matches a single character, we can do
* better
*/
p1 = code + 3 + a; /* start of sole instruction */
if (*p1 == Cset || *p1 == Cexact || *p1 == Canychar ||
*p1 == Csyntaxspec || *p1 == Cnotsyntaxspec)
code[0] = Crepeat1;
return 1;
make_normal_jump:
@ -939,6 +992,7 @@ static int re_optimize(regexp_t bufp)
case Cjump:
case Cdummy_failure_jump:
case Cfailure_jump:
case Crepeat1:
{
code += 2;
break;
@ -1111,7 +1165,8 @@ char *re_compile_pattern(char *regex, int size, regexp_t bufp)
re_compile_initialize();
bufp->used = 0;
bufp->fastmap_accurate = 0;
bufp->uses_registers = 0;
bufp->uses_registers = 1;
bufp->num_registers = 1;
translate = bufp->translate;
pattern = bufp->buffer;
alloc = bufp->allocated;
@ -1289,6 +1344,7 @@ char *re_compile_pattern(char *regex, int size, regexp_t bufp)
STORE(Cstart_memory);
STORE(next_register);
open_registers[num_open_registers++] = next_register;
bufp->num_registers++;
next_register++;
}
paren_depth++;
@ -1545,27 +1601,8 @@ int re_match(regexp_t bufp,
code = bufp->buffer;
translate = bufp->translate;
/* translated = NULL; */
/* if (bufp->translate) */
/* { */
/* char *t1; */
/* char *t2; */
/* translated = malloc(size); */
/* if (translated == NULL) */
/* goto error; */
/* t1 = string; */
/* t2 = translated; */
/* while(t1 < textend) */
/* *t2++ = bufp->translate[*t1++]; */
/* text = translated + pos; */
/* textstart = translated; */
/* textend = translated + size; */
/* } */
NEW_STATE(state);
NEW_STATE(state, bufp->num_registers);
continue_matching:
switch (*code++)
@ -1587,7 +1624,7 @@ int re_match(regexp_t bufp,
}
else
{
for (a = 1; a < RE_NREGS; a++)
for (a = 1; a < bufp->num_registers; a++)
{
if ((GET_REG_START(state, a) == NULL) ||
(GET_REG_END(state, a) == NULL))
@ -1599,10 +1636,13 @@ int re_match(regexp_t bufp,
old_regs->start[a] = GET_REG_START(state, a) - textstart;
old_regs->end[a] = GET_REG_END(state, a) - textstart;
}
for (; a < RE_NREGS; a++)
{
old_regs->start[a] = -1;
old_regs->end[a] = -1;
}
}
}
/* if(translated) */
/* free(translated); */
FREE_STATE(state);
return match_end - pos;
}
@ -1703,18 +1743,18 @@ int re_match(regexp_t bufp,
{
a = (unsigned char)*code++;
a |= (unsigned char)*code++ << 8;
code += (int)(short)a;
code += (int)SHORT(a);
goto continue_matching;
}
case Cdummy_failure_jump:
{
a = (unsigned char)*code++;
a |= (unsigned char)*code++ << 8;
a = (int)(short)a;
a = (int)SHORT(a);
assert(*code == Cfailure_jump);
b = (unsigned char)code[1];
b |= (unsigned char)code[2] << 8;
PUSH_FAILURE(state, code + (int)(short)b + 3, NULL, goto error);
PUSH_FAILURE(state, code + (int)SHORT(b) + 3, NULL, goto error);
code += a;
goto continue_matching;
}
@ -1722,10 +1762,120 @@ int re_match(regexp_t bufp,
{
a = (unsigned char)*code++;
a |= (unsigned char)*code++ << 8;
a = (int)(short)a;
a = (int)SHORT(a);
PUSH_FAILURE(state, code + a, text, goto error);
goto continue_matching;
}
case Crepeat1:
{
char *pinst;
a = (unsigned char)*code++;
a |= (unsigned char)*code++ << 8;
a = (int)SHORT(a);
pinst = code + a;
/* pinst is sole instruction in loop, and it matches a
* single character. Since Crepeat1 was originally a
* Cupdate_failure_jump, we also know that backtracking is
* useless: so long as the single-character expression matches,
* it must be used. Also, in the case of +, we've already
* matched one character, so + can't fail: nothing here can
* cause a failure.
*/
switch (*pinst++)
{
case Cset:
{
if (translate)
{
while (text < textend)
{
ch = translate[(unsigned char)*text];
if (pinst[ch/8] & (1<<(ch & 7)))
text++;
else
break;
}
}
else
{
while (text < textend)
{
ch = (unsigned char)*text;
if (pinst[ch/8] & (1<<(ch & 7)))
text++;
else
break;
}
}
break;
}
case Cexact:
{
ch = (unsigned char)*pinst;
if (translate)
{
while (text < textend &&
translate[(unsigned char)*text] == ch)
text++;
}
else
{
while (text < textend && (unsigned char)*text == ch)
text++;
}
break;
}
case Canychar:
{
while (text < textend && (unsigned char)*text != '\n')
text++;
break;
}
case Csyntaxspec:
{
a = (unsigned char)*pinst;
if (translate)
{
while (text < textend &&
translate[SYNTAX(*text)] == a)
text++;
}
else
{
while (text < textend && SYNTAX(*text) == a)
text++;
}
break;
}
case Cnotsyntaxspec:
{
a = (unsigned char)*pinst;
if (translate)
{
while (text < textend &&
translate[SYNTAX(*text)] != a)
text++;
}
else
{
while (text < textend && SYNTAX(*text) != a)
text++;
}
break;
}
default:
{
abort();
/*NOTREACHED*/
}
}
/* due to the funky way + and * are compiled, the top failure-
* stack entry at this point is actually a success entry --
* update it & pop it
*/
UPDATE_FAILURE(state, text, goto error);
goto fail; /* i.e., succeed <wink/sigh> */
}
case Cbegbuf:
{
if (text == textstart)