mirror of
https://github.com/python/cpython.git
synced 2025-08-27 04:05:34 +00:00
Issue #8188: Introduce a new scheme for computing hashes of numbers
(instances of int, float, complex, decimal.Decimal and fractions.Fraction) that makes it easy to maintain the invariant that hash(x) == hash(y) whenever x and y have equal value.
This commit is contained in:
parent
03721133a6
commit
dc787d2055
14 changed files with 566 additions and 137 deletions
|
@ -862,7 +862,7 @@ class Decimal(object):
|
|||
# that specified by IEEE 754.
|
||||
|
||||
def __eq__(self, other, context=None):
|
||||
other = _convert_other(other, allow_float=True)
|
||||
other = _convert_other(other, allow_float = True)
|
||||
if other is NotImplemented:
|
||||
return other
|
||||
if self._check_nans(other, context):
|
||||
|
@ -870,7 +870,7 @@ class Decimal(object):
|
|||
return self._cmp(other) == 0
|
||||
|
||||
def __ne__(self, other, context=None):
|
||||
other = _convert_other(other, allow_float=True)
|
||||
other = _convert_other(other, allow_float = True)
|
||||
if other is NotImplemented:
|
||||
return other
|
||||
if self._check_nans(other, context):
|
||||
|
@ -879,7 +879,7 @@ class Decimal(object):
|
|||
|
||||
|
||||
def __lt__(self, other, context=None):
|
||||
other = _convert_other(other, allow_float=True)
|
||||
other = _convert_other(other, allow_float = True)
|
||||
if other is NotImplemented:
|
||||
return other
|
||||
ans = self._compare_check_nans(other, context)
|
||||
|
@ -888,7 +888,7 @@ class Decimal(object):
|
|||
return self._cmp(other) < 0
|
||||
|
||||
def __le__(self, other, context=None):
|
||||
other = _convert_other(other, allow_float=True)
|
||||
other = _convert_other(other, allow_float = True)
|
||||
if other is NotImplemented:
|
||||
return other
|
||||
ans = self._compare_check_nans(other, context)
|
||||
|
@ -897,7 +897,7 @@ class Decimal(object):
|
|||
return self._cmp(other) <= 0
|
||||
|
||||
def __gt__(self, other, context=None):
|
||||
other = _convert_other(other, allow_float=True)
|
||||
other = _convert_other(other, allow_float = True)
|
||||
if other is NotImplemented:
|
||||
return other
|
||||
ans = self._compare_check_nans(other, context)
|
||||
|
@ -906,7 +906,7 @@ class Decimal(object):
|
|||
return self._cmp(other) > 0
|
||||
|
||||
def __ge__(self, other, context=None):
|
||||
other = _convert_other(other, allow_float=True)
|
||||
other = _convert_other(other, allow_float = True)
|
||||
if other is NotImplemented:
|
||||
return other
|
||||
ans = self._compare_check_nans(other, context)
|
||||
|
@ -935,55 +935,28 @@ class Decimal(object):
|
|||
|
||||
def __hash__(self):
|
||||
"""x.__hash__() <==> hash(x)"""
|
||||
# Decimal integers must hash the same as the ints
|
||||
#
|
||||
# The hash of a nonspecial noninteger Decimal must depend only
|
||||
# on the value of that Decimal, and not on its representation.
|
||||
# For example: hash(Decimal('100E-1')) == hash(Decimal('10')).
|
||||
|
||||
# Equality comparisons involving signaling nans can raise an
|
||||
# exception; since equality checks are implicitly and
|
||||
# unpredictably used when checking set and dict membership, we
|
||||
# prevent signaling nans from being used as set elements or
|
||||
# dict keys by making __hash__ raise an exception.
|
||||
# In order to make sure that the hash of a Decimal instance
|
||||
# agrees with the hash of a numerically equal integer, float
|
||||
# or Fraction, we follow the rules for numeric hashes outlined
|
||||
# in the documentation. (See library docs, 'Built-in Types').
|
||||
if self._is_special:
|
||||
if self.is_snan():
|
||||
raise TypeError('Cannot hash a signaling NaN value.')
|
||||
elif self.is_nan():
|
||||
# 0 to match hash(float('nan'))
|
||||
return 0
|
||||
return _PyHASH_NAN
|
||||
else:
|
||||
# values chosen to match hash(float('inf')) and
|
||||
# hash(float('-inf')).
|
||||
if self._sign:
|
||||
return -271828
|
||||
return -_PyHASH_INF
|
||||
else:
|
||||
return 314159
|
||||
return _PyHASH_INF
|
||||
|
||||
# In Python 2.7, we're allowing comparisons (but not
|
||||
# arithmetic operations) between floats and Decimals; so if
|
||||
# a Decimal instance is exactly representable as a float then
|
||||
# its hash should match that of the float.
|
||||
self_as_float = float(self)
|
||||
if Decimal.from_float(self_as_float) == self:
|
||||
return hash(self_as_float)
|
||||
|
||||
if self._isinteger():
|
||||
op = _WorkRep(self.to_integral_value())
|
||||
# to make computation feasible for Decimals with large
|
||||
# exponent, we use the fact that hash(n) == hash(m) for
|
||||
# any two nonzero integers n and m such that (i) n and m
|
||||
# have the same sign, and (ii) n is congruent to m modulo
|
||||
# 2**64-1. So we can replace hash((-1)**s*c*10**e) with
|
||||
# hash((-1)**s*c*pow(10, e, 2**64-1).
|
||||
return hash((-1)**op.sign*op.int*pow(10, op.exp, 2**64-1))
|
||||
# The value of a nonzero nonspecial Decimal instance is
|
||||
# faithfully represented by the triple consisting of its sign,
|
||||
# its adjusted exponent, and its coefficient with trailing
|
||||
# zeros removed.
|
||||
return hash((self._sign,
|
||||
self._exp+len(self._int),
|
||||
self._int.rstrip('0')))
|
||||
if self._exp >= 0:
|
||||
exp_hash = pow(10, self._exp, _PyHASH_MODULUS)
|
||||
else:
|
||||
exp_hash = pow(_PyHASH_10INV, -self._exp, _PyHASH_MODULUS)
|
||||
hash_ = int(self._int) * exp_hash % _PyHASH_MODULUS
|
||||
return hash_ if self >= 0 else -hash_
|
||||
|
||||
def as_tuple(self):
|
||||
"""Represents the number as a triple tuple.
|
||||
|
@ -6218,6 +6191,17 @@ _NegativeOne = Decimal(-1)
|
|||
# _SignedInfinity[sign] is infinity w/ that sign
|
||||
_SignedInfinity = (_Infinity, _NegativeInfinity)
|
||||
|
||||
# Constants related to the hash implementation; hash(x) is based
|
||||
# on the reduction of x modulo _PyHASH_MODULUS
|
||||
import sys
|
||||
_PyHASH_MODULUS = sys.hash_info.modulus
|
||||
# hash values to use for positive and negative infinities, and nans
|
||||
_PyHASH_INF = sys.hash_info.inf
|
||||
_PyHASH_NAN = sys.hash_info.nan
|
||||
del sys
|
||||
|
||||
# _PyHASH_10INV is the inverse of 10 modulo the prime _PyHASH_MODULUS
|
||||
_PyHASH_10INV = pow(10, _PyHASH_MODULUS - 2, _PyHASH_MODULUS)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue