Issue #8188: Introduce a new scheme for computing hashes of numbers

(instances of int, float, complex, decimal.Decimal and
fractions.Fraction) that makes it easy to maintain the invariant that
hash(x) == hash(y) whenever x and y have equal value.
This commit is contained in:
Mark Dickinson 2010-05-23 13:33:13 +00:00
parent 03721133a6
commit dc787d2055
14 changed files with 566 additions and 137 deletions

View file

@ -426,6 +426,23 @@ class SysModuleTest(unittest.TestCase):
self.assertEqual(type(sys.int_info.bits_per_digit), int)
self.assertEqual(type(sys.int_info.sizeof_digit), int)
self.assertIsInstance(sys.hexversion, int)
self.assertEqual(len(sys.hash_info), 5)
self.assertLess(sys.hash_info.modulus, 2**sys.hash_info.width)
# sys.hash_info.modulus should be a prime; we do a quick
# probable primality test (doesn't exclude the possibility of
# a Carmichael number)
for x in range(1, 100):
self.assertEqual(
pow(x, sys.hash_info.modulus-1, sys.hash_info.modulus),
1,
"sys.hash_info.modulus {} is a non-prime".format(
sys.hash_info.modulus)
)
self.assertIsInstance(sys.hash_info.inf, int)
self.assertIsInstance(sys.hash_info.nan, int)
self.assertIsInstance(sys.hash_info.imag, int)
self.assertIsInstance(sys.maxsize, int)
self.assertIsInstance(sys.maxunicode, int)
self.assertIsInstance(sys.platform, str)