mirror of
https://github.com/python/cpython.git
synced 2025-11-25 21:11:09 +00:00
Implementation of Fraction.limit_denominator.
Remove Fraction.to_continued_fraction and Fraction.from_continued_fraction
This commit is contained in:
parent
a37430a0ce
commit
e1b824793a
3 changed files with 77 additions and 54 deletions
|
|
@ -140,42 +140,60 @@ class Fraction(Rational):
|
|||
else:
|
||||
return Fraction(digits, 10 ** -exp)
|
||||
|
||||
@staticmethod
|
||||
def from_continued_fraction(seq):
|
||||
'Build a Fraction from a continued fraction expessed as a sequence'
|
||||
n, d = 1, 0
|
||||
for e in reversed(seq):
|
||||
n, d = d, n
|
||||
n += e * d
|
||||
return Fraction(n, d) if seq else Fraction(0)
|
||||
def limit_denominator(self, max_denominator=1000000):
|
||||
"""Closest Fraction to self with denominator at most max_denominator.
|
||||
|
||||
def as_continued_fraction(self):
|
||||
'Return continued fraction expressed as a list'
|
||||
n = self.numerator
|
||||
d = self.denominator
|
||||
cf = []
|
||||
while d:
|
||||
e = int(n // d)
|
||||
cf.append(e)
|
||||
n -= e * d
|
||||
n, d = d, n
|
||||
return cf
|
||||
>>> Fraction('3.141592653589793').limit_denominator(10)
|
||||
Fraction(22, 7)
|
||||
>>> Fraction('3.141592653589793').limit_denominator(100)
|
||||
Fraction(311, 99)
|
||||
>>> Fraction(1234, 5678).limit_denominator(10000)
|
||||
Fraction(1234, 5678)
|
||||
|
||||
def approximate(self, max_denominator):
|
||||
'Best rational approximation with a denominator <= max_denominator'
|
||||
# XXX First cut at algorithm
|
||||
# Still needs rounding rules as specified at
|
||||
# http://en.wikipedia.org/wiki/Continued_fraction
|
||||
"""
|
||||
# Algorithm notes: For any real number x, define a *best upper
|
||||
# approximation* to x to be a rational number p/q such that:
|
||||
#
|
||||
# (1) p/q >= x, and
|
||||
# (2) if p/q > r/s >= x then s > q, for any rational r/s.
|
||||
#
|
||||
# Define *best lower approximation* similarly. Then it can be
|
||||
# proved that a rational number is a best upper or lower
|
||||
# approximation to x if, and only if, it is a convergent or
|
||||
# semiconvergent of the (unique shortest) continued fraction
|
||||
# associated to x.
|
||||
#
|
||||
# To find a best rational approximation with denominator <= M,
|
||||
# we find the best upper and lower approximations with
|
||||
# denominator <= M and take whichever of these is closer to x.
|
||||
# In the event of a tie, the bound with smaller denominator is
|
||||
# chosen. If both denominators are equal (which can happen
|
||||
# only when max_denominator == 1 and self is midway between
|
||||
# two integers) the lower bound---i.e., the floor of self, is
|
||||
# taken.
|
||||
|
||||
if max_denominator < 1:
|
||||
raise ValueError("max_denominator should be at least 1")
|
||||
if self.denominator <= max_denominator:
|
||||
return self
|
||||
cf = self.as_continued_fraction()
|
||||
result = Fraction(0)
|
||||
for i in range(1, len(cf)):
|
||||
new = self.from_continued_fraction(cf[:i])
|
||||
if new.denominator > max_denominator:
|
||||
return Fraction(self)
|
||||
|
||||
p0, q0, p1, q1 = 0, 1, 1, 0
|
||||
n, d = self.numerator, self.denominator
|
||||
while True:
|
||||
a = n//d
|
||||
q2 = q0+a*q1
|
||||
if q2 > max_denominator:
|
||||
break
|
||||
result = new
|
||||
return result
|
||||
p0, q0, p1, q1 = p1, q1, p0+a*p1, q2
|
||||
n, d = d, n-a*d
|
||||
|
||||
k = (max_denominator-q0)//q1
|
||||
bound1 = Fraction(p0+k*p1, q0+k*q1)
|
||||
bound2 = Fraction(p1, q1)
|
||||
if abs(bound2 - self) <= abs(bound1-self):
|
||||
return bound2
|
||||
else:
|
||||
return bound1
|
||||
|
||||
@property
|
||||
def numerator(a):
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue