mirror of
				https://github.com/python/cpython.git
				synced 2025-11-04 03:44:55 +00:00 
			
		
		
		
	Issue #29062: Merge hashlib-blake2.rst into hashlib.rst
This commit is contained in:
		
							parent
							
								
									4c4ff5f4d4
								
							
						
					
					
						commit
						e2f9e77df2
					
				
					 3 changed files with 434 additions and 447 deletions
				
			
		| 
						 | 
					@ -15,6 +15,5 @@ Here's an overview:
 | 
				
			||||||
.. toctree::
 | 
					.. toctree::
 | 
				
			||||||
 | 
					
 | 
				
			||||||
   hashlib.rst
 | 
					   hashlib.rst
 | 
				
			||||||
   hashlib-blake2.rst
 | 
					 | 
				
			||||||
   hmac.rst
 | 
					   hmac.rst
 | 
				
			||||||
   secrets.rst
 | 
					   secrets.rst
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -1,444 +0,0 @@
 | 
				
			||||||
.. _hashlib-blake2:
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
:mod:`hashlib` --- BLAKE2 hash functions
 | 
					 | 
				
			||||||
========================================
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
.. module:: hashlib
 | 
					 | 
				
			||||||
   :synopsis: BLAKE2 hash function for Python
 | 
					 | 
				
			||||||
.. sectionauthor:: Dmitry Chestnykh
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
.. index::
 | 
					 | 
				
			||||||
   single: blake2b, blake2s
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
BLAKE2_ is a cryptographic hash function defined in RFC-7693_ that comes in two
 | 
					 | 
				
			||||||
flavors:
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
* **BLAKE2b**, optimized for 64-bit platforms and produces digests of any size
 | 
					 | 
				
			||||||
  between 1 and 64 bytes,
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
* **BLAKE2s**, optimized for 8- to 32-bit platforms and produces digests of any
 | 
					 | 
				
			||||||
  size between 1 and 32 bytes.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
BLAKE2 supports **keyed mode** (a faster and simpler replacement for HMAC_),
 | 
					 | 
				
			||||||
**salted hashing**, **personalization**, and **tree hashing**.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Hash objects from this module follow the API of standard library's
 | 
					 | 
				
			||||||
:mod:`hashlib` objects.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Module
 | 
					 | 
				
			||||||
======
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Creating hash objects
 | 
					 | 
				
			||||||
---------------------
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
New hash objects are created by calling constructor functions:
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
.. function:: blake2b(data=b'', digest_size=64, key=b'', salt=b'', \
 | 
					 | 
				
			||||||
                person=b'', fanout=1, depth=1, leaf_size=0, node_offset=0,  \
 | 
					 | 
				
			||||||
                node_depth=0, inner_size=0, last_node=False)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
.. function:: blake2s(data=b'', digest_size=32, key=b'', salt=b'', \
 | 
					 | 
				
			||||||
                person=b'', fanout=1, depth=1, leaf_size=0, node_offset=0,  \
 | 
					 | 
				
			||||||
                node_depth=0, inner_size=0, last_node=False)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
These functions return the corresponding hash objects for calculating
 | 
					 | 
				
			||||||
BLAKE2b or BLAKE2s. They optionally take these general parameters:
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
* *data*: initial chunk of data to hash, which must be interpretable as buffer
 | 
					 | 
				
			||||||
  of bytes.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
* *digest_size*: size of output digest in bytes.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
* *key*: key for keyed hashing (up to 64 bytes for BLAKE2b, up to 32 bytes for
 | 
					 | 
				
			||||||
  BLAKE2s).
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
* *salt*: salt for randomized hashing (up to 16 bytes for BLAKE2b, up to 8
 | 
					 | 
				
			||||||
  bytes for BLAKE2s).
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
* *person*: personalization string (up to 16 bytes for BLAKE2b, up to 8 bytes
 | 
					 | 
				
			||||||
  for BLAKE2s).
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
The following table shows limits for general parameters (in bytes):
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
======= =========== ======== ========= ===========
 | 
					 | 
				
			||||||
Hash    digest_size len(key) len(salt) len(person)
 | 
					 | 
				
			||||||
======= =========== ======== ========= ===========
 | 
					 | 
				
			||||||
BLAKE2b     64         64       16        16
 | 
					 | 
				
			||||||
BLAKE2s     32         32       8         8
 | 
					 | 
				
			||||||
======= =========== ======== ========= ===========
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
.. note::
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    BLAKE2 specification defines constant lengths for salt and personalization
 | 
					 | 
				
			||||||
    parameters, however, for convenience, this implementation accepts byte
 | 
					 | 
				
			||||||
    strings of any size up to the specified length. If the length of the
 | 
					 | 
				
			||||||
    parameter is less than specified, it is padded with zeros, thus, for
 | 
					 | 
				
			||||||
    example, ``b'salt'`` and ``b'salt\x00'`` is the same value. (This is not
 | 
					 | 
				
			||||||
    the case for *key*.)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
These sizes are available as module `constants`_ described below.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Constructor functions also accept the following tree hashing parameters:
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
* *fanout*: fanout (0 to 255, 0 if unlimited, 1 in sequential mode).
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
* *depth*: maximal depth of tree (1 to 255, 255 if unlimited, 1 in
 | 
					 | 
				
			||||||
  sequential mode).
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
* *leaf_size*: maximal byte length of leaf (0 to 2**32-1, 0 if unlimited or in
 | 
					 | 
				
			||||||
  sequential mode).
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
* *node_offset*: node offset (0 to 2**64-1 for BLAKE2b, 0 to 2**48-1 for
 | 
					 | 
				
			||||||
  BLAKE2s, 0 for the first, leftmost, leaf, or in sequential mode).
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
* *node_depth*: node depth (0 to 255, 0 for leaves, or in sequential mode).
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
* *inner_size*: inner digest size (0 to 64 for BLAKE2b, 0 to 32 for
 | 
					 | 
				
			||||||
  BLAKE2s, 0 in sequential mode).
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
* *last_node*: boolean indicating whether the processed node is the last
 | 
					 | 
				
			||||||
  one (`False` for sequential mode).
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
.. figure:: hashlib-blake2-tree.png
 | 
					 | 
				
			||||||
   :alt: Explanation of tree mode parameters.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
See section 2.10 in `BLAKE2 specification
 | 
					 | 
				
			||||||
<https://blake2.net/blake2_20130129.pdf>`_ for comprehensive review of tree
 | 
					 | 
				
			||||||
hashing.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Constants
 | 
					 | 
				
			||||||
---------
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
.. data:: blake2b.SALT_SIZE
 | 
					 | 
				
			||||||
.. data:: blake2s.SALT_SIZE
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Salt length (maximum length accepted by constructors).
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
.. data:: blake2b.PERSON_SIZE
 | 
					 | 
				
			||||||
.. data:: blake2s.PERSON_SIZE
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Personalization string length (maximum length accepted by constructors).
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
.. data:: blake2b.MAX_KEY_SIZE
 | 
					 | 
				
			||||||
.. data:: blake2s.MAX_KEY_SIZE
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Maximum key size.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
.. data:: blake2b.MAX_DIGEST_SIZE
 | 
					 | 
				
			||||||
.. data:: blake2s.MAX_DIGEST_SIZE
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Maximum digest size that the hash function can output.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Examples
 | 
					 | 
				
			||||||
========
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Simple hashing
 | 
					 | 
				
			||||||
--------------
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
To calculate hash of some data, you should first construct a hash object by
 | 
					 | 
				
			||||||
calling the appropriate constructor function (:func:`blake2b` or
 | 
					 | 
				
			||||||
:func:`blake2s`), then update it with the data by calling :meth:`update` on the
 | 
					 | 
				
			||||||
object, and, finally, get the digest out of the object by calling
 | 
					 | 
				
			||||||
:meth:`digest` (or :meth:`hexdigest` for hex-encoded string).
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    >>> from hashlib import blake2b
 | 
					 | 
				
			||||||
    >>> h = blake2b()
 | 
					 | 
				
			||||||
    >>> h.update(b'Hello world')
 | 
					 | 
				
			||||||
    >>> h.hexdigest()
 | 
					 | 
				
			||||||
    '6ff843ba685842aa82031d3f53c48b66326df7639a63d128974c5c14f31a0f33343a8c65551134ed1ae0f2b0dd2bb495dc81039e3eeb0aa1bb0388bbeac29183'
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
As a shortcut, you can pass the first chunk of data to update directly to the
 | 
					 | 
				
			||||||
constructor as the first argument (or as *data* keyword argument):
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    >>> from hashlib import blake2b
 | 
					 | 
				
			||||||
    >>> blake2b(b'Hello world').hexdigest()
 | 
					 | 
				
			||||||
    '6ff843ba685842aa82031d3f53c48b66326df7639a63d128974c5c14f31a0f33343a8c65551134ed1ae0f2b0dd2bb495dc81039e3eeb0aa1bb0388bbeac29183'
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
You can call :meth:`hash.update` as many times as you need to iteratively
 | 
					 | 
				
			||||||
update the hash:
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    >>> from hashlib import blake2b
 | 
					 | 
				
			||||||
    >>> items = [b'Hello', b' ', b'world']
 | 
					 | 
				
			||||||
    >>> h = blake2b()
 | 
					 | 
				
			||||||
    >>> for item in items:
 | 
					 | 
				
			||||||
    ...     h.update(item)
 | 
					 | 
				
			||||||
    >>> h.hexdigest()
 | 
					 | 
				
			||||||
    '6ff843ba685842aa82031d3f53c48b66326df7639a63d128974c5c14f31a0f33343a8c65551134ed1ae0f2b0dd2bb495dc81039e3eeb0aa1bb0388bbeac29183'
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Using different digest sizes
 | 
					 | 
				
			||||||
----------------------------
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
BLAKE2 has configurable size of digests up to 64 bytes for BLAKE2b and up to 32
 | 
					 | 
				
			||||||
bytes for BLAKE2s. For example, to replace SHA-1 with BLAKE2b without changing
 | 
					 | 
				
			||||||
the size of output, we can tell BLAKE2b to produce 20-byte digests:
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    >>> from hashlib import blake2b
 | 
					 | 
				
			||||||
    >>> h = blake2b(digest_size=20)
 | 
					 | 
				
			||||||
    >>> h.update(b'Replacing SHA1 with the more secure function')
 | 
					 | 
				
			||||||
    >>> h.hexdigest()
 | 
					 | 
				
			||||||
    'd24f26cf8de66472d58d4e1b1774b4c9158b1f4c'
 | 
					 | 
				
			||||||
    >>> h.digest_size
 | 
					 | 
				
			||||||
    20
 | 
					 | 
				
			||||||
    >>> len(h.digest())
 | 
					 | 
				
			||||||
    20
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Hash objects with different digest sizes have completely different outputs
 | 
					 | 
				
			||||||
(shorter hashes are *not* prefixes of longer hashes); BLAKE2b and BLAKE2s
 | 
					 | 
				
			||||||
produce different outputs even if the output length is the same:
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    >>> from hashlib import blake2b, blake2s
 | 
					 | 
				
			||||||
    >>> blake2b(digest_size=10).hexdigest()
 | 
					 | 
				
			||||||
    '6fa1d8fcfd719046d762'
 | 
					 | 
				
			||||||
    >>> blake2b(digest_size=11).hexdigest()
 | 
					 | 
				
			||||||
    'eb6ec15daf9546254f0809'
 | 
					 | 
				
			||||||
    >>> blake2s(digest_size=10).hexdigest()
 | 
					 | 
				
			||||||
    '1bf21a98c78a1c376ae9'
 | 
					 | 
				
			||||||
    >>> blake2s(digest_size=11).hexdigest()
 | 
					 | 
				
			||||||
    '567004bf96e4a25773ebf4'
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Keyed hashing
 | 
					 | 
				
			||||||
-------------
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Keyed hashing can be used for authentication as a faster and simpler
 | 
					 | 
				
			||||||
replacement for `Hash-based message authentication code
 | 
					 | 
				
			||||||
<http://en.wikipedia.org/wiki/Hash-based_message_authentication_code>`_ (HMAC).
 | 
					 | 
				
			||||||
BLAKE2 can be securely used in prefix-MAC mode thanks to the
 | 
					 | 
				
			||||||
indifferentiability property inherited from BLAKE.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
This example shows how to get a (hex-encoded) 128-bit authentication code for
 | 
					 | 
				
			||||||
message ``b'message data'`` with key ``b'pseudorandom key'``::
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    >>> from hashlib import blake2b
 | 
					 | 
				
			||||||
    >>> h = blake2b(key=b'pseudorandom key', digest_size=16)
 | 
					 | 
				
			||||||
    >>> h.update(b'message data')
 | 
					 | 
				
			||||||
    >>> h.hexdigest()
 | 
					 | 
				
			||||||
    '3d363ff7401e02026f4a4687d4863ced'
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
As a practical example, a web application can symmetrically sign cookies sent
 | 
					 | 
				
			||||||
to users and later verify them to make sure they weren't tampered with::
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    >>> from hashlib import blake2b
 | 
					 | 
				
			||||||
    >>> from hmac import compare_digest
 | 
					 | 
				
			||||||
    >>>
 | 
					 | 
				
			||||||
    >>> SECRET_KEY = b'pseudorandomly generated server secret key'
 | 
					 | 
				
			||||||
    >>> AUTH_SIZE = 16
 | 
					 | 
				
			||||||
    >>>
 | 
					 | 
				
			||||||
    >>> def sign(cookie):
 | 
					 | 
				
			||||||
    ...     h = blake2b(data=cookie, digest_size=AUTH_SIZE, key=SECRET_KEY)
 | 
					 | 
				
			||||||
    ...     return h.hexdigest()
 | 
					 | 
				
			||||||
    >>>
 | 
					 | 
				
			||||||
    >>> cookie = b'user:vatrogasac'
 | 
					 | 
				
			||||||
    >>> sig = sign(cookie)
 | 
					 | 
				
			||||||
    >>> print("{0},{1}".format(cookie.decode('utf-8'), sig))
 | 
					 | 
				
			||||||
    user:vatrogasac,349cf904533767ed2d755279a8df84d0
 | 
					 | 
				
			||||||
    >>> compare_digest(cookie, sig)
 | 
					 | 
				
			||||||
    True
 | 
					 | 
				
			||||||
    >>> compare_digest(b'user:policajac', sig)
 | 
					 | 
				
			||||||
    False
 | 
					 | 
				
			||||||
    >>> compare_digesty(cookie, '0102030405060708090a0b0c0d0e0f00')
 | 
					 | 
				
			||||||
    False
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Even though there's a native keyed hashing mode, BLAKE2 can, of course, be used
 | 
					 | 
				
			||||||
in HMAC construction with :mod:`hmac` module::
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    >>> import hmac, hashlib
 | 
					 | 
				
			||||||
    >>> m = hmac.new(b'secret key', digestmod=hashlib.blake2s)
 | 
					 | 
				
			||||||
    >>> m.update(b'message')
 | 
					 | 
				
			||||||
    >>> m.hexdigest()
 | 
					 | 
				
			||||||
    'e3c8102868d28b5ff85fc35dda07329970d1a01e273c37481326fe0c861c8142'
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Randomized hashing
 | 
					 | 
				
			||||||
------------------
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
By setting *salt* parameter users can introduce randomization to the hash
 | 
					 | 
				
			||||||
function. Randomized hashing is useful for protecting against collision attacks
 | 
					 | 
				
			||||||
on the hash function used in digital signatures.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    Randomized hashing is designed for situations where one party, the message
 | 
					 | 
				
			||||||
    preparer, generates all or part of a message to be signed by a second
 | 
					 | 
				
			||||||
    party, the message signer. If the message preparer is able to find
 | 
					 | 
				
			||||||
    cryptographic hash function collisions (i.e., two messages producing the
 | 
					 | 
				
			||||||
    same hash value), then she might prepare meaningful versions of the message
 | 
					 | 
				
			||||||
    that would produce the same hash value and digital signature, but with
 | 
					 | 
				
			||||||
    different results (e.g., transferring $1,000,000 to an account, rather than
 | 
					 | 
				
			||||||
    $10). Cryptographic hash functions have been designed with collision
 | 
					 | 
				
			||||||
    resistance as a major goal, but the current concentration on attacking
 | 
					 | 
				
			||||||
    cryptographic hash functions may result in a given cryptographic hash
 | 
					 | 
				
			||||||
    function providing less collision resistance than expected. Randomized
 | 
					 | 
				
			||||||
    hashing offers the signer additional protection by reducing the likelihood
 | 
					 | 
				
			||||||
    that a preparer can generate two or more messages that ultimately yield the
 | 
					 | 
				
			||||||
    same hash value during the digital signature generation process --- even if
 | 
					 | 
				
			||||||
    it is practical to find collisions for the hash function. However, the use
 | 
					 | 
				
			||||||
    of randomized hashing may reduce the amount of security provided by a
 | 
					 | 
				
			||||||
    digital signature when all portions of the message are prepared
 | 
					 | 
				
			||||||
    by the signer.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    (`NIST SP-800-106 "Randomized Hashing for Digital Signatures"
 | 
					 | 
				
			||||||
    <http://csrc.nist.gov/publications/nistpubs/800-106/NIST-SP-800-106.pdf>`_)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
In BLAKE2 the salt is processed as a one-time input to the hash function during
 | 
					 | 
				
			||||||
initialization, rather than as an input to each compression function.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
.. warning::
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    *Salted hashing* (or just hashing) with BLAKE2 or any other general-purpose
 | 
					 | 
				
			||||||
    cryptographic hash function, such as SHA-256, is not suitable for hashing
 | 
					 | 
				
			||||||
    passwords.  See `BLAKE2 FAQ <https://blake2.net/#qa>`_ for more
 | 
					 | 
				
			||||||
    information.
 | 
					 | 
				
			||||||
..
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    >>> import os
 | 
					 | 
				
			||||||
    >>> from hashlib import blake2b
 | 
					 | 
				
			||||||
    >>> msg = b'some message'
 | 
					 | 
				
			||||||
    >>> # Calculate the first hash with a random salt.
 | 
					 | 
				
			||||||
    >>> salt1 = os.urandom(blake2b.SALT_SIZE)
 | 
					 | 
				
			||||||
    >>> h1 = blake2b(salt=salt1)
 | 
					 | 
				
			||||||
    >>> h1.update(msg)
 | 
					 | 
				
			||||||
    >>> # Calculate the second hash with a different random salt.
 | 
					 | 
				
			||||||
    >>> salt2 = os.urandom(blake2b.SALT_SIZE)
 | 
					 | 
				
			||||||
    >>> h2 = blake2b(salt=salt2)
 | 
					 | 
				
			||||||
    >>> h2.update(msg)
 | 
					 | 
				
			||||||
    >>> # The digests are different.
 | 
					 | 
				
			||||||
    >>> h1.digest() != h2.digest()
 | 
					 | 
				
			||||||
    True
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Personalization
 | 
					 | 
				
			||||||
---------------
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Sometimes it is useful to force hash function to produce different digests for
 | 
					 | 
				
			||||||
the same input for different purposes. Quoting the authors of the Skein hash
 | 
					 | 
				
			||||||
function:
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    We recommend that all application designers seriously consider doing this;
 | 
					 | 
				
			||||||
    we have seen many protocols where a hash that is computed in one part of
 | 
					 | 
				
			||||||
    the protocol can be used in an entirely different part because two hash
 | 
					 | 
				
			||||||
    computations were done on similar or related data, and the attacker can
 | 
					 | 
				
			||||||
    force the application to make the hash inputs the same. Personalizing each
 | 
					 | 
				
			||||||
    hash function used in the protocol summarily stops this type of attack.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    (`The Skein Hash Function Family
 | 
					 | 
				
			||||||
    <http://www.skein-hash.info/sites/default/files/skein1.3.pdf>`_,
 | 
					 | 
				
			||||||
    p. 21)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
BLAKE2 can be personalized by passing bytes to the *person* argument::
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    >>> from hashlib import blake2b
 | 
					 | 
				
			||||||
    >>> FILES_HASH_PERSON = b'MyApp Files Hash'
 | 
					 | 
				
			||||||
    >>> BLOCK_HASH_PERSON = b'MyApp Block Hash'
 | 
					 | 
				
			||||||
    >>> h = blake2b(digest_size=32, person=FILES_HASH_PERSON)
 | 
					 | 
				
			||||||
    >>> h.update(b'the same content')
 | 
					 | 
				
			||||||
    >>> h.hexdigest()
 | 
					 | 
				
			||||||
    '20d9cd024d4fb086aae819a1432dd2466de12947831b75c5a30cf2676095d3b4'
 | 
					 | 
				
			||||||
    >>> h = blake2b(digest_size=32, person=BLOCK_HASH_PERSON)
 | 
					 | 
				
			||||||
    >>> h.update(b'the same content')
 | 
					 | 
				
			||||||
    >>> h.hexdigest()
 | 
					 | 
				
			||||||
    'cf68fb5761b9c44e7878bfb2c4c9aea52264a80b75005e65619778de59f383a3'
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Personalization together with the keyed mode can also be used to derive different
 | 
					 | 
				
			||||||
keys from a single one.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    >>> from hashlib import blake2s
 | 
					 | 
				
			||||||
    >>> from base64 import b64decode, b64encode
 | 
					 | 
				
			||||||
    >>> orig_key = b64decode(b'Rm5EPJai72qcK3RGBpW3vPNfZy5OZothY+kHY6h21KM=')
 | 
					 | 
				
			||||||
    >>> enc_key = blake2s(key=orig_key, person=b'kEncrypt').digest()
 | 
					 | 
				
			||||||
    >>> mac_key = blake2s(key=orig_key, person=b'kMAC').digest()
 | 
					 | 
				
			||||||
    >>> print(b64encode(enc_key).decode('utf-8'))
 | 
					 | 
				
			||||||
    rbPb15S/Z9t+agffno5wuhB77VbRi6F9Iv2qIxU7WHw=
 | 
					 | 
				
			||||||
    >>> print(b64encode(mac_key).decode('utf-8'))
 | 
					 | 
				
			||||||
    G9GtHFE1YluXY1zWPlYk1e/nWfu0WSEb0KRcjhDeP/o=
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Tree mode
 | 
					 | 
				
			||||||
---------
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Here's an example of hashing a minimal tree with two leaf nodes::
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
       10
 | 
					 | 
				
			||||||
      /  \
 | 
					 | 
				
			||||||
     00  01
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
This example uses 64-byte internal digests, and returns the 32-byte final
 | 
					 | 
				
			||||||
digest::
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    >>> from hashlib import blake2b
 | 
					 | 
				
			||||||
    >>>
 | 
					 | 
				
			||||||
    >>> FANOUT = 2
 | 
					 | 
				
			||||||
    >>> DEPTH = 2
 | 
					 | 
				
			||||||
    >>> LEAF_SIZE = 4096
 | 
					 | 
				
			||||||
    >>> INNER_SIZE = 64
 | 
					 | 
				
			||||||
    >>>
 | 
					 | 
				
			||||||
    >>> buf = bytearray(6000)
 | 
					 | 
				
			||||||
    >>>
 | 
					 | 
				
			||||||
    >>> # Left leaf
 | 
					 | 
				
			||||||
    ... h00 = blake2b(buf[0:LEAF_SIZE], fanout=FANOUT, depth=DEPTH,
 | 
					 | 
				
			||||||
    ...               leaf_size=LEAF_SIZE, inner_size=INNER_SIZE,
 | 
					 | 
				
			||||||
    ...               node_offset=0, node_depth=0, last_node=False)
 | 
					 | 
				
			||||||
    >>> # Right leaf
 | 
					 | 
				
			||||||
    ... h01 = blake2b(buf[LEAF_SIZE:], fanout=FANOUT, depth=DEPTH,
 | 
					 | 
				
			||||||
    ...               leaf_size=LEAF_SIZE, inner_size=INNER_SIZE,
 | 
					 | 
				
			||||||
    ...               node_offset=1, node_depth=0, last_node=True)
 | 
					 | 
				
			||||||
    >>> # Root node
 | 
					 | 
				
			||||||
    ... h10 = blake2b(digest_size=32, fanout=FANOUT, depth=DEPTH,
 | 
					 | 
				
			||||||
    ...               leaf_size=LEAF_SIZE, inner_size=INNER_SIZE,
 | 
					 | 
				
			||||||
    ...               node_offset=0, node_depth=1, last_node=True)
 | 
					 | 
				
			||||||
    >>> h10.update(h00.digest())
 | 
					 | 
				
			||||||
    >>> h10.update(h01.digest())
 | 
					 | 
				
			||||||
    >>> h10.hexdigest()
 | 
					 | 
				
			||||||
    '3ad2a9b37c6070e374c7a8c508fe20ca86b6ed54e286e93a0318e95e881db5aa'
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Credits
 | 
					 | 
				
			||||||
=======
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
BLAKE2_ was designed by *Jean-Philippe Aumasson*, *Samuel Neves*, *Zooko
 | 
					 | 
				
			||||||
Wilcox-O'Hearn*, and *Christian Winnerlein* based on SHA-3_ finalist BLAKE_
 | 
					 | 
				
			||||||
created by *Jean-Philippe Aumasson*, *Luca Henzen*, *Willi Meier*, and
 | 
					 | 
				
			||||||
*Raphael C.-W. Phan*.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
It uses core algorithm from ChaCha_ cipher designed by *Daniel J.  Bernstein*.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
The stdlib implementation is based on pyblake2_ module. It was written by
 | 
					 | 
				
			||||||
*Dmitry Chestnykh* based on C implementation written by *Samuel Neves*. The
 | 
					 | 
				
			||||||
documentation was copied from pyblake2_ and written by *Dmitry Chestnykh*.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
The C code was partly rewritten for Python by *Christian Heimes*.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
The following public domain dedication applies for both C hash function
 | 
					 | 
				
			||||||
implementation, extension code, and this documentation:
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   To the extent possible under law, the author(s) have dedicated all copyright
 | 
					 | 
				
			||||||
   and related and neighboring rights to this software to the public domain
 | 
					 | 
				
			||||||
   worldwide. This software is distributed without any warranty.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
   You should have received a copy of the CC0 Public Domain Dedication along
 | 
					 | 
				
			||||||
   with this software. If not, see
 | 
					 | 
				
			||||||
   http://creativecommons.org/publicdomain/zero/1.0/.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
The following people have helped with development or contributed their changes
 | 
					 | 
				
			||||||
to the project and the public domain according to the Creative Commons Public
 | 
					 | 
				
			||||||
Domain Dedication 1.0 Universal:
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
* *Alexandr Sokolovskiy*
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
.. seealso:: Official BLAKE2 website: https://blake2.net
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
.. _RFC-7693: https://tools.ietf.org/html/rfc7693
 | 
					 | 
				
			||||||
.. _BLAKE2: https://blake2.net
 | 
					 | 
				
			||||||
.. _HMAC: https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
 | 
					 | 
				
			||||||
.. _BLAKE: https://131002.net/blake/
 | 
					 | 
				
			||||||
.. _SHA-3: https://en.wikipedia.org/wiki/NIST_hash_function_competition
 | 
					 | 
				
			||||||
.. _ChaCha: https://cr.yp.to/chacha.html
 | 
					 | 
				
			||||||
.. _pyblake2: https://pythonhosted.org/pyblake2/
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
| 
						 | 
					@ -278,7 +278,438 @@ include a `salt <https://en.wikipedia.org/wiki/Salt_%28cryptography%29>`_.
 | 
				
			||||||
BLAKE2
 | 
					BLAKE2
 | 
				
			||||||
------
 | 
					------
 | 
				
			||||||
 | 
					
 | 
				
			||||||
BLAKE2 takes additional arguments, see :ref:`hashlib-blake2`.
 | 
					.. sectionauthor:: Dmitry Chestnykh
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					.. index::
 | 
				
			||||||
 | 
					   single: blake2b, blake2s
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					BLAKE2_ is a cryptographic hash function defined in RFC-7693_ that comes in two
 | 
				
			||||||
 | 
					flavors:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					* **BLAKE2b**, optimized for 64-bit platforms and produces digests of any size
 | 
				
			||||||
 | 
					  between 1 and 64 bytes,
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					* **BLAKE2s**, optimized for 8- to 32-bit platforms and produces digests of any
 | 
				
			||||||
 | 
					  size between 1 and 32 bytes.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					BLAKE2 supports **keyed mode** (a faster and simpler replacement for HMAC_),
 | 
				
			||||||
 | 
					**salted hashing**, **personalization**, and **tree hashing**.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Hash objects from this module follow the API of standard library's
 | 
				
			||||||
 | 
					:mod:`hashlib` objects.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Creating hash objects
 | 
				
			||||||
 | 
					^^^^^^^^^^^^^^^^^^^^^
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					New hash objects are created by calling constructor functions:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					.. function:: blake2b(data=b'', digest_size=64, key=b'', salt=b'', \
 | 
				
			||||||
 | 
					                person=b'', fanout=1, depth=1, leaf_size=0, node_offset=0,  \
 | 
				
			||||||
 | 
					                node_depth=0, inner_size=0, last_node=False)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					.. function:: blake2s(data=b'', digest_size=32, key=b'', salt=b'', \
 | 
				
			||||||
 | 
					                person=b'', fanout=1, depth=1, leaf_size=0, node_offset=0,  \
 | 
				
			||||||
 | 
					                node_depth=0, inner_size=0, last_node=False)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					These functions return the corresponding hash objects for calculating
 | 
				
			||||||
 | 
					BLAKE2b or BLAKE2s. They optionally take these general parameters:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					* *data*: initial chunk of data to hash, which must be interpretable as buffer
 | 
				
			||||||
 | 
					  of bytes.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					* *digest_size*: size of output digest in bytes.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					* *key*: key for keyed hashing (up to 64 bytes for BLAKE2b, up to 32 bytes for
 | 
				
			||||||
 | 
					  BLAKE2s).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					* *salt*: salt for randomized hashing (up to 16 bytes for BLAKE2b, up to 8
 | 
				
			||||||
 | 
					  bytes for BLAKE2s).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					* *person*: personalization string (up to 16 bytes for BLAKE2b, up to 8 bytes
 | 
				
			||||||
 | 
					  for BLAKE2s).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					The following table shows limits for general parameters (in bytes):
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					======= =========== ======== ========= ===========
 | 
				
			||||||
 | 
					Hash    digest_size len(key) len(salt) len(person)
 | 
				
			||||||
 | 
					======= =========== ======== ========= ===========
 | 
				
			||||||
 | 
					BLAKE2b     64         64       16        16
 | 
				
			||||||
 | 
					BLAKE2s     32         32       8         8
 | 
				
			||||||
 | 
					======= =========== ======== ========= ===========
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					.. note::
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    BLAKE2 specification defines constant lengths for salt and personalization
 | 
				
			||||||
 | 
					    parameters, however, for convenience, this implementation accepts byte
 | 
				
			||||||
 | 
					    strings of any size up to the specified length. If the length of the
 | 
				
			||||||
 | 
					    parameter is less than specified, it is padded with zeros, thus, for
 | 
				
			||||||
 | 
					    example, ``b'salt'`` and ``b'salt\x00'`` is the same value. (This is not
 | 
				
			||||||
 | 
					    the case for *key*.)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					These sizes are available as module `constants`_ described below.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Constructor functions also accept the following tree hashing parameters:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					* *fanout*: fanout (0 to 255, 0 if unlimited, 1 in sequential mode).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					* *depth*: maximal depth of tree (1 to 255, 255 if unlimited, 1 in
 | 
				
			||||||
 | 
					  sequential mode).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					* *leaf_size*: maximal byte length of leaf (0 to 2**32-1, 0 if unlimited or in
 | 
				
			||||||
 | 
					  sequential mode).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					* *node_offset*: node offset (0 to 2**64-1 for BLAKE2b, 0 to 2**48-1 for
 | 
				
			||||||
 | 
					  BLAKE2s, 0 for the first, leftmost, leaf, or in sequential mode).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					* *node_depth*: node depth (0 to 255, 0 for leaves, or in sequential mode).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					* *inner_size*: inner digest size (0 to 64 for BLAKE2b, 0 to 32 for
 | 
				
			||||||
 | 
					  BLAKE2s, 0 in sequential mode).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					* *last_node*: boolean indicating whether the processed node is the last
 | 
				
			||||||
 | 
					  one (`False` for sequential mode).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					.. figure:: hashlib-blake2-tree.png
 | 
				
			||||||
 | 
					   :alt: Explanation of tree mode parameters.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					See section 2.10 in `BLAKE2 specification
 | 
				
			||||||
 | 
					<https://blake2.net/blake2_20130129.pdf>`_ for comprehensive review of tree
 | 
				
			||||||
 | 
					hashing.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Constants
 | 
				
			||||||
 | 
					^^^^^^^^^
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					.. data:: blake2b.SALT_SIZE
 | 
				
			||||||
 | 
					.. data:: blake2s.SALT_SIZE
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Salt length (maximum length accepted by constructors).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					.. data:: blake2b.PERSON_SIZE
 | 
				
			||||||
 | 
					.. data:: blake2s.PERSON_SIZE
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Personalization string length (maximum length accepted by constructors).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					.. data:: blake2b.MAX_KEY_SIZE
 | 
				
			||||||
 | 
					.. data:: blake2s.MAX_KEY_SIZE
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Maximum key size.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					.. data:: blake2b.MAX_DIGEST_SIZE
 | 
				
			||||||
 | 
					.. data:: blake2s.MAX_DIGEST_SIZE
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Maximum digest size that the hash function can output.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Examples
 | 
				
			||||||
 | 
					^^^^^^^^
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Simple hashing
 | 
				
			||||||
 | 
					""""""""""""""
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					To calculate hash of some data, you should first construct a hash object by
 | 
				
			||||||
 | 
					calling the appropriate constructor function (:func:`blake2b` or
 | 
				
			||||||
 | 
					:func:`blake2s`), then update it with the data by calling :meth:`update` on the
 | 
				
			||||||
 | 
					object, and, finally, get the digest out of the object by calling
 | 
				
			||||||
 | 
					:meth:`digest` (or :meth:`hexdigest` for hex-encoded string).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    >>> from hashlib import blake2b
 | 
				
			||||||
 | 
					    >>> h = blake2b()
 | 
				
			||||||
 | 
					    >>> h.update(b'Hello world')
 | 
				
			||||||
 | 
					    >>> h.hexdigest()
 | 
				
			||||||
 | 
					    '6ff843ba685842aa82031d3f53c48b66326df7639a63d128974c5c14f31a0f33343a8c65551134ed1ae0f2b0dd2bb495dc81039e3eeb0aa1bb0388bbeac29183'
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					As a shortcut, you can pass the first chunk of data to update directly to the
 | 
				
			||||||
 | 
					constructor as the first argument (or as *data* keyword argument):
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    >>> from hashlib import blake2b
 | 
				
			||||||
 | 
					    >>> blake2b(b'Hello world').hexdigest()
 | 
				
			||||||
 | 
					    '6ff843ba685842aa82031d3f53c48b66326df7639a63d128974c5c14f31a0f33343a8c65551134ed1ae0f2b0dd2bb495dc81039e3eeb0aa1bb0388bbeac29183'
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					You can call :meth:`hash.update` as many times as you need to iteratively
 | 
				
			||||||
 | 
					update the hash:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    >>> from hashlib import blake2b
 | 
				
			||||||
 | 
					    >>> items = [b'Hello', b' ', b'world']
 | 
				
			||||||
 | 
					    >>> h = blake2b()
 | 
				
			||||||
 | 
					    >>> for item in items:
 | 
				
			||||||
 | 
					    ...     h.update(item)
 | 
				
			||||||
 | 
					    >>> h.hexdigest()
 | 
				
			||||||
 | 
					    '6ff843ba685842aa82031d3f53c48b66326df7639a63d128974c5c14f31a0f33343a8c65551134ed1ae0f2b0dd2bb495dc81039e3eeb0aa1bb0388bbeac29183'
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Using different digest sizes
 | 
				
			||||||
 | 
					""""""""""""""""""""""""""""
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					BLAKE2 has configurable size of digests up to 64 bytes for BLAKE2b and up to 32
 | 
				
			||||||
 | 
					bytes for BLAKE2s. For example, to replace SHA-1 with BLAKE2b without changing
 | 
				
			||||||
 | 
					the size of output, we can tell BLAKE2b to produce 20-byte digests:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    >>> from hashlib import blake2b
 | 
				
			||||||
 | 
					    >>> h = blake2b(digest_size=20)
 | 
				
			||||||
 | 
					    >>> h.update(b'Replacing SHA1 with the more secure function')
 | 
				
			||||||
 | 
					    >>> h.hexdigest()
 | 
				
			||||||
 | 
					    'd24f26cf8de66472d58d4e1b1774b4c9158b1f4c'
 | 
				
			||||||
 | 
					    >>> h.digest_size
 | 
				
			||||||
 | 
					    20
 | 
				
			||||||
 | 
					    >>> len(h.digest())
 | 
				
			||||||
 | 
					    20
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Hash objects with different digest sizes have completely different outputs
 | 
				
			||||||
 | 
					(shorter hashes are *not* prefixes of longer hashes); BLAKE2b and BLAKE2s
 | 
				
			||||||
 | 
					produce different outputs even if the output length is the same:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    >>> from hashlib import blake2b, blake2s
 | 
				
			||||||
 | 
					    >>> blake2b(digest_size=10).hexdigest()
 | 
				
			||||||
 | 
					    '6fa1d8fcfd719046d762'
 | 
				
			||||||
 | 
					    >>> blake2b(digest_size=11).hexdigest()
 | 
				
			||||||
 | 
					    'eb6ec15daf9546254f0809'
 | 
				
			||||||
 | 
					    >>> blake2s(digest_size=10).hexdigest()
 | 
				
			||||||
 | 
					    '1bf21a98c78a1c376ae9'
 | 
				
			||||||
 | 
					    >>> blake2s(digest_size=11).hexdigest()
 | 
				
			||||||
 | 
					    '567004bf96e4a25773ebf4'
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Keyed hashing
 | 
				
			||||||
 | 
					"""""""""""""
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Keyed hashing can be used for authentication as a faster and simpler
 | 
				
			||||||
 | 
					replacement for `Hash-based message authentication code
 | 
				
			||||||
 | 
					<http://en.wikipedia.org/wiki/Hash-based_message_authentication_code>`_ (HMAC).
 | 
				
			||||||
 | 
					BLAKE2 can be securely used in prefix-MAC mode thanks to the
 | 
				
			||||||
 | 
					indifferentiability property inherited from BLAKE.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					This example shows how to get a (hex-encoded) 128-bit authentication code for
 | 
				
			||||||
 | 
					message ``b'message data'`` with key ``b'pseudorandom key'``::
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    >>> from hashlib import blake2b
 | 
				
			||||||
 | 
					    >>> h = blake2b(key=b'pseudorandom key', digest_size=16)
 | 
				
			||||||
 | 
					    >>> h.update(b'message data')
 | 
				
			||||||
 | 
					    >>> h.hexdigest()
 | 
				
			||||||
 | 
					    '3d363ff7401e02026f4a4687d4863ced'
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					As a practical example, a web application can symmetrically sign cookies sent
 | 
				
			||||||
 | 
					to users and later verify them to make sure they weren't tampered with::
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    >>> from hashlib import blake2b
 | 
				
			||||||
 | 
					    >>> from hmac import compare_digest
 | 
				
			||||||
 | 
					    >>>
 | 
				
			||||||
 | 
					    >>> SECRET_KEY = b'pseudorandomly generated server secret key'
 | 
				
			||||||
 | 
					    >>> AUTH_SIZE = 16
 | 
				
			||||||
 | 
					    >>>
 | 
				
			||||||
 | 
					    >>> def sign(cookie):
 | 
				
			||||||
 | 
					    ...     h = blake2b(data=cookie, digest_size=AUTH_SIZE, key=SECRET_KEY)
 | 
				
			||||||
 | 
					    ...     return h.hexdigest()
 | 
				
			||||||
 | 
					    >>>
 | 
				
			||||||
 | 
					    >>> cookie = b'user:vatrogasac'
 | 
				
			||||||
 | 
					    >>> sig = sign(cookie)
 | 
				
			||||||
 | 
					    >>> print("{0},{1}".format(cookie.decode('utf-8'), sig))
 | 
				
			||||||
 | 
					    user:vatrogasac,349cf904533767ed2d755279a8df84d0
 | 
				
			||||||
 | 
					    >>> compare_digest(cookie, sig)
 | 
				
			||||||
 | 
					    True
 | 
				
			||||||
 | 
					    >>> compare_digest(b'user:policajac', sig)
 | 
				
			||||||
 | 
					    False
 | 
				
			||||||
 | 
					    >>> compare_digesty(cookie, '0102030405060708090a0b0c0d0e0f00')
 | 
				
			||||||
 | 
					    False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Even though there's a native keyed hashing mode, BLAKE2 can, of course, be used
 | 
				
			||||||
 | 
					in HMAC construction with :mod:`hmac` module::
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    >>> import hmac, hashlib
 | 
				
			||||||
 | 
					    >>> m = hmac.new(b'secret key', digestmod=hashlib.blake2s)
 | 
				
			||||||
 | 
					    >>> m.update(b'message')
 | 
				
			||||||
 | 
					    >>> m.hexdigest()
 | 
				
			||||||
 | 
					    'e3c8102868d28b5ff85fc35dda07329970d1a01e273c37481326fe0c861c8142'
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Randomized hashing
 | 
				
			||||||
 | 
					""""""""""""""""""
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					By setting *salt* parameter users can introduce randomization to the hash
 | 
				
			||||||
 | 
					function. Randomized hashing is useful for protecting against collision attacks
 | 
				
			||||||
 | 
					on the hash function used in digital signatures.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Randomized hashing is designed for situations where one party, the message
 | 
				
			||||||
 | 
					    preparer, generates all or part of a message to be signed by a second
 | 
				
			||||||
 | 
					    party, the message signer. If the message preparer is able to find
 | 
				
			||||||
 | 
					    cryptographic hash function collisions (i.e., two messages producing the
 | 
				
			||||||
 | 
					    same hash value), then she might prepare meaningful versions of the message
 | 
				
			||||||
 | 
					    that would produce the same hash value and digital signature, but with
 | 
				
			||||||
 | 
					    different results (e.g., transferring $1,000,000 to an account, rather than
 | 
				
			||||||
 | 
					    $10). Cryptographic hash functions have been designed with collision
 | 
				
			||||||
 | 
					    resistance as a major goal, but the current concentration on attacking
 | 
				
			||||||
 | 
					    cryptographic hash functions may result in a given cryptographic hash
 | 
				
			||||||
 | 
					    function providing less collision resistance than expected. Randomized
 | 
				
			||||||
 | 
					    hashing offers the signer additional protection by reducing the likelihood
 | 
				
			||||||
 | 
					    that a preparer can generate two or more messages that ultimately yield the
 | 
				
			||||||
 | 
					    same hash value during the digital signature generation process --- even if
 | 
				
			||||||
 | 
					    it is practical to find collisions for the hash function. However, the use
 | 
				
			||||||
 | 
					    of randomized hashing may reduce the amount of security provided by a
 | 
				
			||||||
 | 
					    digital signature when all portions of the message are prepared
 | 
				
			||||||
 | 
					    by the signer.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    (`NIST SP-800-106 "Randomized Hashing for Digital Signatures"
 | 
				
			||||||
 | 
					    <http://csrc.nist.gov/publications/nistpubs/800-106/NIST-SP-800-106.pdf>`_)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					In BLAKE2 the salt is processed as a one-time input to the hash function during
 | 
				
			||||||
 | 
					initialization, rather than as an input to each compression function.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					.. warning::
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    *Salted hashing* (or just hashing) with BLAKE2 or any other general-purpose
 | 
				
			||||||
 | 
					    cryptographic hash function, such as SHA-256, is not suitable for hashing
 | 
				
			||||||
 | 
					    passwords.  See `BLAKE2 FAQ <https://blake2.net/#qa>`_ for more
 | 
				
			||||||
 | 
					    information.
 | 
				
			||||||
 | 
					..
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    >>> import os
 | 
				
			||||||
 | 
					    >>> from hashlib import blake2b
 | 
				
			||||||
 | 
					    >>> msg = b'some message'
 | 
				
			||||||
 | 
					    >>> # Calculate the first hash with a random salt.
 | 
				
			||||||
 | 
					    >>> salt1 = os.urandom(blake2b.SALT_SIZE)
 | 
				
			||||||
 | 
					    >>> h1 = blake2b(salt=salt1)
 | 
				
			||||||
 | 
					    >>> h1.update(msg)
 | 
				
			||||||
 | 
					    >>> # Calculate the second hash with a different random salt.
 | 
				
			||||||
 | 
					    >>> salt2 = os.urandom(blake2b.SALT_SIZE)
 | 
				
			||||||
 | 
					    >>> h2 = blake2b(salt=salt2)
 | 
				
			||||||
 | 
					    >>> h2.update(msg)
 | 
				
			||||||
 | 
					    >>> # The digests are different.
 | 
				
			||||||
 | 
					    >>> h1.digest() != h2.digest()
 | 
				
			||||||
 | 
					    True
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Personalization
 | 
				
			||||||
 | 
					"""""""""""""""
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Sometimes it is useful to force hash function to produce different digests for
 | 
				
			||||||
 | 
					the same input for different purposes. Quoting the authors of the Skein hash
 | 
				
			||||||
 | 
					function:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    We recommend that all application designers seriously consider doing this;
 | 
				
			||||||
 | 
					    we have seen many protocols where a hash that is computed in one part of
 | 
				
			||||||
 | 
					    the protocol can be used in an entirely different part because two hash
 | 
				
			||||||
 | 
					    computations were done on similar or related data, and the attacker can
 | 
				
			||||||
 | 
					    force the application to make the hash inputs the same. Personalizing each
 | 
				
			||||||
 | 
					    hash function used in the protocol summarily stops this type of attack.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    (`The Skein Hash Function Family
 | 
				
			||||||
 | 
					    <http://www.skein-hash.info/sites/default/files/skein1.3.pdf>`_,
 | 
				
			||||||
 | 
					    p. 21)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					BLAKE2 can be personalized by passing bytes to the *person* argument::
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    >>> from hashlib import blake2b
 | 
				
			||||||
 | 
					    >>> FILES_HASH_PERSON = b'MyApp Files Hash'
 | 
				
			||||||
 | 
					    >>> BLOCK_HASH_PERSON = b'MyApp Block Hash'
 | 
				
			||||||
 | 
					    >>> h = blake2b(digest_size=32, person=FILES_HASH_PERSON)
 | 
				
			||||||
 | 
					    >>> h.update(b'the same content')
 | 
				
			||||||
 | 
					    >>> h.hexdigest()
 | 
				
			||||||
 | 
					    '20d9cd024d4fb086aae819a1432dd2466de12947831b75c5a30cf2676095d3b4'
 | 
				
			||||||
 | 
					    >>> h = blake2b(digest_size=32, person=BLOCK_HASH_PERSON)
 | 
				
			||||||
 | 
					    >>> h.update(b'the same content')
 | 
				
			||||||
 | 
					    >>> h.hexdigest()
 | 
				
			||||||
 | 
					    'cf68fb5761b9c44e7878bfb2c4c9aea52264a80b75005e65619778de59f383a3'
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Personalization together with the keyed mode can also be used to derive different
 | 
				
			||||||
 | 
					keys from a single one.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    >>> from hashlib import blake2s
 | 
				
			||||||
 | 
					    >>> from base64 import b64decode, b64encode
 | 
				
			||||||
 | 
					    >>> orig_key = b64decode(b'Rm5EPJai72qcK3RGBpW3vPNfZy5OZothY+kHY6h21KM=')
 | 
				
			||||||
 | 
					    >>> enc_key = blake2s(key=orig_key, person=b'kEncrypt').digest()
 | 
				
			||||||
 | 
					    >>> mac_key = blake2s(key=orig_key, person=b'kMAC').digest()
 | 
				
			||||||
 | 
					    >>> print(b64encode(enc_key).decode('utf-8'))
 | 
				
			||||||
 | 
					    rbPb15S/Z9t+agffno5wuhB77VbRi6F9Iv2qIxU7WHw=
 | 
				
			||||||
 | 
					    >>> print(b64encode(mac_key).decode('utf-8'))
 | 
				
			||||||
 | 
					    G9GtHFE1YluXY1zWPlYk1e/nWfu0WSEb0KRcjhDeP/o=
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Tree mode
 | 
				
			||||||
 | 
					"""""""""
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Here's an example of hashing a minimal tree with two leaf nodes::
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					       10
 | 
				
			||||||
 | 
					      /  \
 | 
				
			||||||
 | 
					     00  01
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					This example uses 64-byte internal digests, and returns the 32-byte final
 | 
				
			||||||
 | 
					digest::
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    >>> from hashlib import blake2b
 | 
				
			||||||
 | 
					    >>>
 | 
				
			||||||
 | 
					    >>> FANOUT = 2
 | 
				
			||||||
 | 
					    >>> DEPTH = 2
 | 
				
			||||||
 | 
					    >>> LEAF_SIZE = 4096
 | 
				
			||||||
 | 
					    >>> INNER_SIZE = 64
 | 
				
			||||||
 | 
					    >>>
 | 
				
			||||||
 | 
					    >>> buf = bytearray(6000)
 | 
				
			||||||
 | 
					    >>>
 | 
				
			||||||
 | 
					    >>> # Left leaf
 | 
				
			||||||
 | 
					    ... h00 = blake2b(buf[0:LEAF_SIZE], fanout=FANOUT, depth=DEPTH,
 | 
				
			||||||
 | 
					    ...               leaf_size=LEAF_SIZE, inner_size=INNER_SIZE,
 | 
				
			||||||
 | 
					    ...               node_offset=0, node_depth=0, last_node=False)
 | 
				
			||||||
 | 
					    >>> # Right leaf
 | 
				
			||||||
 | 
					    ... h01 = blake2b(buf[LEAF_SIZE:], fanout=FANOUT, depth=DEPTH,
 | 
				
			||||||
 | 
					    ...               leaf_size=LEAF_SIZE, inner_size=INNER_SIZE,
 | 
				
			||||||
 | 
					    ...               node_offset=1, node_depth=0, last_node=True)
 | 
				
			||||||
 | 
					    >>> # Root node
 | 
				
			||||||
 | 
					    ... h10 = blake2b(digest_size=32, fanout=FANOUT, depth=DEPTH,
 | 
				
			||||||
 | 
					    ...               leaf_size=LEAF_SIZE, inner_size=INNER_SIZE,
 | 
				
			||||||
 | 
					    ...               node_offset=0, node_depth=1, last_node=True)
 | 
				
			||||||
 | 
					    >>> h10.update(h00.digest())
 | 
				
			||||||
 | 
					    >>> h10.update(h01.digest())
 | 
				
			||||||
 | 
					    >>> h10.hexdigest()
 | 
				
			||||||
 | 
					    '3ad2a9b37c6070e374c7a8c508fe20ca86b6ed54e286e93a0318e95e881db5aa'
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Credits
 | 
				
			||||||
 | 
					^^^^^^^
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					BLAKE2_ was designed by *Jean-Philippe Aumasson*, *Samuel Neves*, *Zooko
 | 
				
			||||||
 | 
					Wilcox-O'Hearn*, and *Christian Winnerlein* based on SHA-3_ finalist BLAKE_
 | 
				
			||||||
 | 
					created by *Jean-Philippe Aumasson*, *Luca Henzen*, *Willi Meier*, and
 | 
				
			||||||
 | 
					*Raphael C.-W. Phan*.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					It uses core algorithm from ChaCha_ cipher designed by *Daniel J.  Bernstein*.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					The stdlib implementation is based on pyblake2_ module. It was written by
 | 
				
			||||||
 | 
					*Dmitry Chestnykh* based on C implementation written by *Samuel Neves*. The
 | 
				
			||||||
 | 
					documentation was copied from pyblake2_ and written by *Dmitry Chestnykh*.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					The C code was partly rewritten for Python by *Christian Heimes*.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					The following public domain dedication applies for both C hash function
 | 
				
			||||||
 | 
					implementation, extension code, and this documentation:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   To the extent possible under law, the author(s) have dedicated all copyright
 | 
				
			||||||
 | 
					   and related and neighboring rights to this software to the public domain
 | 
				
			||||||
 | 
					   worldwide. This software is distributed without any warranty.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					   You should have received a copy of the CC0 Public Domain Dedication along
 | 
				
			||||||
 | 
					   with this software. If not, see
 | 
				
			||||||
 | 
					   http://creativecommons.org/publicdomain/zero/1.0/.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					The following people have helped with development or contributed their changes
 | 
				
			||||||
 | 
					to the project and the public domain according to the Creative Commons Public
 | 
				
			||||||
 | 
					Domain Dedication 1.0 Universal:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					* *Alexandr Sokolovskiy*
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					.. _RFC-7693: https://tools.ietf.org/html/rfc7693
 | 
				
			||||||
 | 
					.. _BLAKE2: https://blake2.net
 | 
				
			||||||
 | 
					.. _HMAC: https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
 | 
				
			||||||
 | 
					.. _BLAKE: https://131002.net/blake/
 | 
				
			||||||
 | 
					.. _SHA-3: https://en.wikipedia.org/wiki/NIST_hash_function_competition
 | 
				
			||||||
 | 
					.. _ChaCha: https://cr.yp.to/chacha.html
 | 
				
			||||||
 | 
					.. _pyblake2: https://pythonhosted.org/pyblake2/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
.. seealso::
 | 
					.. seealso::
 | 
				
			||||||
| 
						 | 
					@ -289,7 +720,8 @@ BLAKE2 takes additional arguments, see :ref:`hashlib-blake2`.
 | 
				
			||||||
   Module :mod:`base64`
 | 
					   Module :mod:`base64`
 | 
				
			||||||
      Another way to encode binary hashes for non-binary environments.
 | 
					      Another way to encode binary hashes for non-binary environments.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
   See :ref:`hashlib-blake2`.
 | 
					   https://blake2.net
 | 
				
			||||||
 | 
					      Official BLAKE2 website.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
   http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
 | 
					   http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
 | 
				
			||||||
      The FIPS 180-2 publication on Secure Hash Algorithms.
 | 
					      The FIPS 180-2 publication on Secure Hash Algorithms.
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue