GH-109329: Add tier 2 stats (GH-109913)

This commit is contained in:
Michael Droettboom 2023-10-04 17:52:28 -04:00 committed by GitHub
parent f7860295b1
commit e561e98058
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
9 changed files with 483 additions and 128 deletions

View file

@ -13,6 +13,7 @@ import os.path
from datetime import date
import itertools
import sys
import re
if os.name == "nt":
DEFAULT_DIR = "c:\\temp\\py_stats\\"
@ -21,6 +22,7 @@ else:
TOTAL = "specialization.hit", "specialization.miss", "execution_count"
def format_ratio(num, den):
"""
Format a ratio as a percentage. When the denominator is 0, returns the empty
@ -31,6 +33,7 @@ def format_ratio(num, den):
else:
return f"{num/den:.01%}"
def percentage_to_float(s):
"""
Converts a percentage string to a float. The empty string is returned as 0.0
@ -41,6 +44,7 @@ def percentage_to_float(s):
assert s[-1] == "%"
return float(s[:-1])
def join_rows(a_rows, b_rows):
"""
Joins two tables together, side-by-side, where the first column in each is a
@ -79,40 +83,53 @@ def join_rows(a_rows, b_rows):
keys = list(a_data.keys()) + [k for k in b_data.keys() if k not in a_data]
return [(k, *a_data.get(k, default), *b_data.get(k, default)) for k in keys]
def calculate_specialization_stats(family_stats, total):
rows = []
for key in sorted(family_stats):
if key.startswith("specialization.failure_kinds"):
continue
if key in ("specialization.hit", "specialization.miss"):
label = key[len("specialization."):]
label = key[len("specialization.") :]
elif key == "execution_count":
continue
elif key in ("specialization.success", "specialization.failure", "specializable"):
elif key in (
"specialization.success",
"specialization.failure",
"specializable",
):
continue
elif key.startswith("pair"):
continue
else:
label = key
rows.append((f"{label:>12}", f"{family_stats[key]:>12}", format_ratio(family_stats[key], total)))
rows.append(
(
f"{label:>12}",
f"{family_stats[key]:>12}",
format_ratio(family_stats[key], total),
)
)
return rows
def calculate_specialization_success_failure(family_stats):
total_attempts = 0
for key in ("specialization.success", "specialization.failure"):
for key in ("specialization.success", "specialization.failure"):
total_attempts += family_stats.get(key, 0)
rows = []
if total_attempts:
for key in ("specialization.success", "specialization.failure"):
label = key[len("specialization."):]
for key in ("specialization.success", "specialization.failure"):
label = key[len("specialization.") :]
label = label[0].upper() + label[1:]
val = family_stats.get(key, 0)
rows.append((label, val, format_ratio(val, total_attempts)))
return rows
def calculate_specialization_failure_kinds(name, family_stats, defines):
total_failures = family_stats.get("specialization.failure", 0)
failure_kinds = [ 0 ] * 40
failure_kinds = [0] * 40
for key in family_stats:
if not key.startswith("specialization.failure_kind"):
continue
@ -125,9 +142,16 @@ def calculate_specialization_failure_kinds(name, family_stats, defines):
for value, index in failures:
if not value:
continue
rows.append((kind_to_text(index, defines, name), value, format_ratio(value, total_failures)))
rows.append(
(
kind_to_text(index, defines, name),
value,
format_ratio(value, total_failures),
)
)
return rows
def print_specialization_stats(name, family_stats, defines):
if "specializable" not in family_stats:
return
@ -144,7 +168,10 @@ def print_specialization_stats(name, family_stats, defines):
rows = calculate_specialization_failure_kinds(name, family_stats, defines)
emit_table(("Failure kind", "Count:", "Ratio:"), rows)
def print_comparative_specialization_stats(name, base_family_stats, head_family_stats, defines):
def print_comparative_specialization_stats(
name, base_family_stats, head_family_stats, defines
):
if "specializable" not in base_family_stats:
return
@ -157,20 +184,33 @@ def print_comparative_specialization_stats(name, base_family_stats, head_family_
head_rows = calculate_specialization_stats(head_family_stats, head_total)
emit_table(
("Kind", "Base Count", "Base Ratio", "Head Count", "Head Ratio"),
join_rows(base_rows, head_rows)
join_rows(base_rows, head_rows),
)
base_rows = calculate_specialization_success_failure(base_family_stats)
head_rows = calculate_specialization_success_failure(head_family_stats)
rows = join_rows(base_rows, head_rows)
if rows:
print_title("Specialization attempts", 4)
emit_table(("", "Base Count:", "Base Ratio:", "Head Count:", "Head Ratio:"), rows)
base_rows = calculate_specialization_failure_kinds(name, base_family_stats, defines)
head_rows = calculate_specialization_failure_kinds(name, head_family_stats, defines)
emit_table(
("Failure kind", "Base Count:", "Base Ratio:", "Head Count:", "Head Ratio:"),
join_rows(base_rows, head_rows)
("", "Base Count:", "Base Ratio:", "Head Count:", "Head Ratio:"), rows
)
base_rows = calculate_specialization_failure_kinds(
name, base_family_stats, defines
)
head_rows = calculate_specialization_failure_kinds(
name, head_family_stats, defines
)
emit_table(
(
"Failure kind",
"Base Count:",
"Base Ratio:",
"Head Count:",
"Head Ratio:",
),
join_rows(base_rows, head_rows),
)
def gather_stats(input):
# Note the output of this function must be JSON-serializable
@ -179,7 +219,9 @@ def gather_stats(input):
with open(input, "r") as fd:
stats = json.load(fd)
stats["_stats_defines"] = {int(k): v for k, v in stats["_stats_defines"].items()}
stats["_stats_defines"] = {
int(k): v for k, v in stats["_stats_defines"].items()
}
stats["_defines"] = {int(k): v for k, v in stats["_defines"].items()}
return stats
@ -191,18 +233,20 @@ def gather_stats(input):
try:
key, value = line.split(":")
except ValueError:
print(f"Unparsable line: '{line.strip()}' in {filename}", file=sys.stderr)
print(
f"Unparsable line: '{line.strip()}' in {filename}",
file=sys.stderr,
)
continue
key = key.strip()
value = int(value)
stats[key] += value
stats['__nfiles__'] += 1
stats["__nfiles__"] += 1
import opcode
stats["_specialized_instructions"] = [
op for op in opcode._specialized_opmap.keys()
if "__" not in op
op for op in opcode._specialized_opmap.keys() if "__" not in op
]
stats["_stats_defines"] = get_stats_defines()
stats["_defines"] = get_defines()
@ -211,15 +255,17 @@ def gather_stats(input):
else:
raise ValueError(f"{input:r} is not a file or directory path")
def extract_opcode_stats(stats):
def extract_opcode_stats(stats, prefix):
opcode_stats = collections.defaultdict(dict)
for key, value in stats.items():
if not key.startswith("opcode"):
if not key.startswith(prefix):
continue
name, _, rest = key[7:].partition("]")
name, _, rest = key[len(prefix) + 1 :].partition("]")
opcode_stats[name][rest.strip(".")] = value
return opcode_stats
def parse_kinds(spec_src, prefix="SPEC_FAIL"):
defines = collections.defaultdict(list)
start = "#define " + prefix + "_"
@ -227,14 +273,16 @@ def parse_kinds(spec_src, prefix="SPEC_FAIL"):
line = line.strip()
if not line.startswith(start):
continue
line = line[len(start):]
line = line[len(start) :]
name, val = line.split()
defines[int(val.strip())].append(name.strip())
return defines
def pretty(defname):
return defname.replace("_", " ").lower()
def kind_to_text(kind, defines, opname):
if kind <= 8:
return pretty(defines[kind][0])
@ -248,9 +296,10 @@ def kind_to_text(kind, defines, opname):
opname = "SUBSCR"
for name in defines[kind]:
if name.startswith(opname):
return pretty(name[len(opname)+1:])
return pretty(name[len(opname) + 1 :])
return "kind " + str(kind)
def categorized_counts(opcode_stats, specialized_instructions):
basic = 0
specialized = 0
@ -258,7 +307,7 @@ def categorized_counts(opcode_stats, specialized_instructions):
for name, opcode_stat in opcode_stats.items():
if "execution_count" not in opcode_stat:
continue
count = opcode_stat['execution_count']
count = opcode_stat["execution_count"]
if "specializable" in opcode_stat:
not_specialized += count
elif name in specialized_instructions:
@ -269,12 +318,13 @@ def categorized_counts(opcode_stats, specialized_instructions):
basic += count
return basic, not_specialized, specialized
def print_title(name, level=2):
print("#"*level, name)
print("#" * level, name)
print()
class Section:
class Section:
def __init__(self, title, level=2, summary=None):
self.title = title
self.level = level
@ -295,12 +345,14 @@ class Section:
print("</details>")
print()
def to_str(x):
if isinstance(x, int):
return format(x, ",d")
else:
return str(x)
def emit_table(header, rows):
width = len(header)
header_line = "|"
@ -320,11 +372,28 @@ def emit_table(header, rows):
print("|", " | ".join(to_str(i) for i in row), "|")
print()
def emit_histogram(title, stats, key, total):
rows = []
for k, v in stats.items():
if k.startswith(key):
entry = int(re.match(r".+\[([0-9]+)\]", k).groups()[0])
rows.append((f"<= {entry}", int(v), format_ratio(int(v), total)))
# Don't include larger buckets with 0 entries
for j in range(len(rows) - 1, -1, -1):
if rows[j][1] != 0:
break
rows = rows[: j + 1]
print(f"**{title}**\n")
emit_table(("Range", "Count:", "Ratio:"), rows)
def calculate_execution_counts(opcode_stats, total):
counts = []
for name, opcode_stat in opcode_stats.items():
if "execution_count" in opcode_stat:
count = opcode_stat['execution_count']
count = opcode_stat["execution_count"]
miss = 0
if "specializable" not in opcode_stat:
miss = opcode_stat.get("specialization.miss")
@ -332,53 +401,61 @@ def calculate_execution_counts(opcode_stats, total):
counts.sort(reverse=True)
cumulative = 0
rows = []
for (count, name, miss) in counts:
for count, name, miss in counts:
cumulative += count
if miss:
miss = format_ratio(miss, count)
else:
miss = ""
rows.append((name, count, format_ratio(count, total),
format_ratio(cumulative, total), miss))
rows.append(
(
name,
count,
format_ratio(count, total),
format_ratio(cumulative, total),
miss,
)
)
return rows
def emit_execution_counts(opcode_stats, total):
with Section("Execution counts", summary="execution counts for all instructions"):
rows = calculate_execution_counts(opcode_stats, total)
emit_table(
("Name", "Count:", "Self:", "Cumulative:", "Miss ratio:"),
rows
)
emit_table(("Name", "Count:", "Self:", "Cumulative:", "Miss ratio:"), rows)
def _emit_comparative_execution_counts(base_rows, head_rows):
base_data = {x[0]: x[1:] for x in base_rows}
head_data = {x[0]: x[1:] for x in head_rows}
opcodes = base_data.keys() | head_data.keys()
rows = []
default = [0, "0.0%", "0.0%", 0]
for opcode in opcodes:
base_entry = base_data.get(opcode, default)
head_entry = head_data.get(opcode, default)
if base_entry[0] == 0:
change = 1
else:
change = (head_entry[0] - base_entry[0]) / base_entry[0]
rows.append((opcode, base_entry[0], head_entry[0], f"{change:0.1%}"))
rows.sort(key=lambda x: abs(percentage_to_float(x[-1])), reverse=True)
emit_table(("Name", "Base Count:", "Head Count:", "Change:"), rows)
def emit_comparative_execution_counts(
base_opcode_stats, base_total, head_opcode_stats, head_total
base_opcode_stats, base_total, head_opcode_stats, head_total, level=2
):
with Section("Execution counts", summary="execution counts for all instructions"):
with Section(
"Execution counts", summary="execution counts for all instructions", level=level
):
base_rows = calculate_execution_counts(base_opcode_stats, base_total)
head_rows = calculate_execution_counts(head_opcode_stats, head_total)
base_data = dict((x[0], x[1:]) for x in base_rows)
head_data = dict((x[0], x[1:]) for x in head_rows)
opcodes = set(base_data.keys()) | set(head_data.keys())
_emit_comparative_execution_counts(base_rows, head_rows)
rows = []
default = [0, "0.0%", "0.0%", 0]
for opcode in opcodes:
base_entry = base_data.get(opcode, default)
head_entry = head_data.get(opcode, default)
if base_entry[0] == 0:
change = 1
else:
change = (head_entry[0] - base_entry[0]) / base_entry[0]
rows.append(
(opcode, base_entry[0], head_entry[0],
f"{100*change:0.1f}%"))
rows.sort(key=lambda x: -abs(percentage_to_float(x[-1])))
emit_table(
("Name", "Base Count:", "Head Count:", "Change:"),
rows
)
def get_defines():
spec_path = os.path.join(os.path.dirname(__file__), "../../Python/specialize.c")
@ -386,12 +463,16 @@ def get_defines():
defines = parse_kinds(spec_src)
return defines
def emit_specialization_stats(opcode_stats, defines):
with Section("Specialization stats", summary="specialization stats by family"):
for name, opcode_stat in opcode_stats.items():
print_specialization_stats(name, opcode_stat, defines)
def emit_comparative_specialization_stats(base_opcode_stats, head_opcode_stats, defines):
def emit_comparative_specialization_stats(
base_opcode_stats, head_opcode_stats, defines
):
with Section("Specialization stats", summary="specialization stats by family"):
opcodes = set(base_opcode_stats.keys()) & set(head_opcode_stats.keys())
for opcode in opcodes:
@ -399,6 +480,7 @@ def emit_comparative_specialization_stats(base_opcode_stats, head_opcode_stats,
opcode, base_opcode_stats[opcode], head_opcode_stats[opcode], defines
)
def calculate_specialization_effectiveness(
opcode_stats, total, specialized_instructions
):
@ -411,11 +493,17 @@ def calculate_specialization_effectiveness(
("Specialized", specialized, format_ratio(specialized, total)),
]
def emit_specialization_overview(opcode_stats, total, specialized_instructions):
with Section("Specialization effectiveness"):
rows = calculate_specialization_effectiveness(opcode_stats, total, specialized_instructions)
rows = calculate_specialization_effectiveness(
opcode_stats, total, specialized_instructions
)
emit_table(("Instructions", "Count:", "Ratio:"), rows)
for title, field in (("Deferred", "specialization.deferred"), ("Misses", "specialization.miss")):
for title, field in (
("Deferred", "specialization.deferred"),
("Misses", "specialization.miss"),
):
total = 0
counts = []
for name, opcode_stat in opcode_stats.items():
@ -428,11 +516,19 @@ def emit_specialization_overview(opcode_stats, total, specialized_instructions):
counts.sort(reverse=True)
if total:
with Section(f"{title} by instruction", 3):
rows = [ (name, count, format_ratio(count, total)) for (count, name) in counts[:10] ]
rows = [
(name, count, format_ratio(count, total))
for (count, name) in counts[:10]
]
emit_table(("Name", "Count:", "Ratio:"), rows)
def emit_comparative_specialization_overview(
base_opcode_stats, base_total, head_opcode_stats, head_total, specialized_instructions
base_opcode_stats,
base_total,
head_opcode_stats,
head_total,
specialized_instructions,
):
with Section("Specialization effectiveness"):
base_rows = calculate_specialization_effectiveness(
@ -442,16 +538,26 @@ def emit_comparative_specialization_overview(
head_opcode_stats, head_total, specialized_instructions
)
emit_table(
("Instructions", "Base Count:", "Base Ratio:", "Head Count:", "Head Ratio:"),
join_rows(base_rows, head_rows)
(
"Instructions",
"Base Count:",
"Base Ratio:",
"Head Count:",
"Head Ratio:",
),
join_rows(base_rows, head_rows),
)
def get_stats_defines():
stats_path = os.path.join(os.path.dirname(__file__), "../../Include/cpython/pystats.h")
stats_path = os.path.join(
os.path.dirname(__file__), "../../Include/cpython/pystats.h"
)
with open(stats_path) as stats_src:
defines = parse_kinds(stats_src, prefix="EVAL_CALL")
return defines
def calculate_call_stats(stats, defines):
total = 0
for key, value in stats.items():
@ -463,7 +569,7 @@ def calculate_call_stats(stats, defines):
rows.append((key, value, format_ratio(value, total)))
elif key.startswith("Calls "):
name, index = key[:-1].split("[")
index = int(index)
index = int(index)
label = name + " (" + pretty(defines[index][0]) + ")"
rows.append((label, value, format_ratio(value, total)))
for key, value in stats.items():
@ -471,11 +577,13 @@ def calculate_call_stats(stats, defines):
rows.append((key, value, format_ratio(value, total)))
return rows
def emit_call_stats(stats, defines):
with Section("Call stats", summary="Inlined calls and frame stats"):
rows = calculate_call_stats(stats, defines)
emit_table(("", "Count:", "Ratio:"), rows)
def emit_comparative_call_stats(base_stats, head_stats, defines):
with Section("Call stats", summary="Inlined calls and frame stats"):
base_rows = calculate_call_stats(base_stats, defines)
@ -483,15 +591,21 @@ def emit_comparative_call_stats(base_stats, head_stats, defines):
rows = join_rows(base_rows, head_rows)
rows.sort(key=lambda x: -percentage_to_float(x[-1]))
emit_table(
("", "Base Count:", "Base Ratio:", "Head Count:", "Head Ratio:"),
rows
("", "Base Count:", "Base Ratio:", "Head Count:", "Head Ratio:"), rows
)
def calculate_object_stats(stats):
total_materializations = stats.get("Object new values")
total_allocations = stats.get("Object allocations") + stats.get("Object allocations from freelist")
total_increfs = stats.get("Object interpreter increfs") + stats.get("Object increfs")
total_decrefs = stats.get("Object interpreter decrefs") + stats.get("Object decrefs")
total_allocations = stats.get("Object allocations") + stats.get(
"Object allocations from freelist"
)
total_increfs = stats.get("Object interpreter increfs") + stats.get(
"Object increfs"
)
total_decrefs = stats.get("Object interpreter decrefs") + stats.get(
"Object decrefs"
)
rows = []
for key, value in stats.items():
if key.startswith("Object"):
@ -499,9 +613,9 @@ def calculate_object_stats(stats):
ratio = format_ratio(value, total_materializations)
elif "allocations" in key:
ratio = format_ratio(value, total_allocations)
elif "increfs" in key:
elif "increfs" in key:
ratio = format_ratio(value, total_increfs)
elif "decrefs" in key:
elif "decrefs" in key:
ratio = format_ratio(value, total_decrefs)
else:
ratio = ""
@ -510,6 +624,7 @@ def calculate_object_stats(stats):
rows.append((label, value, ratio))
return rows
def calculate_gc_stats(stats):
gc_stats = []
for key, value in stats.items():
@ -526,40 +641,58 @@ def calculate_gc_stats(stats):
for (i, gen) in enumerate(gc_stats)
]
def emit_object_stats(stats):
with Section("Object stats", summary="allocations, frees and dict materializatons"):
rows = calculate_object_stats(stats)
emit_table(("", "Count:", "Ratio:"), rows)
emit_table(("", "Count:", "Ratio:"), rows)
def emit_comparative_object_stats(base_stats, head_stats):
with Section("Object stats", summary="allocations, frees and dict materializatons"):
base_rows = calculate_object_stats(base_stats)
head_rows = calculate_object_stats(head_stats)
emit_table(("", "Base Count:", "Base Ratio:", "Head Count:", "Head Ratio:"), join_rows(base_rows, head_rows))
emit_table(
("", "Base Count:", "Base Ratio:", "Head Count:", "Head Ratio:"),
join_rows(base_rows, head_rows),
)
def emit_gc_stats(stats):
with Section("GC stats", summary="GC collections and effectiveness"):
rows = calculate_gc_stats(stats)
emit_table(("Generation:", "Collections:", "Objects collected:", "Object visits:"), rows)
emit_table(
("Generation:", "Collections:", "Objects collected:", "Object visits:"),
rows,
)
def emit_comparative_gc_stats(base_stats, head_stats):
with Section("GC stats", summary="GC collections and effectiveness"):
base_rows = calculate_gc_stats(base_stats)
head_rows = calculate_gc_stats(head_stats)
emit_table(
("Generation:",
"Base collections:", "Head collections:",
"Base objects collected:", "Head objects collected:",
"Base object visits:", "Head object visits:"),
join_rows(base_rows, head_rows))
(
"Generation:",
"Base collections:",
"Head collections:",
"Base objects collected:",
"Head objects collected:",
"Base object visits:",
"Head object visits:",
),
join_rows(base_rows, head_rows),
)
def get_total(opcode_stats):
total = 0
for opcode_stat in opcode_stats.values():
if "execution_count" in opcode_stat:
total += opcode_stat['execution_count']
total += opcode_stat["execution_count"]
return total
def emit_pair_counts(opcode_stats, total):
pair_counts = []
for name_i, opcode_stat in opcode_stats.items():
@ -572,15 +705,22 @@ def emit_pair_counts(opcode_stats, total):
pair_counts.sort(reverse=True)
cumulative = 0
rows = []
for (count, pair) in itertools.islice(pair_counts, 100):
for count, pair in itertools.islice(pair_counts, 100):
name_i, name_j = pair
cumulative += count
rows.append((f"{name_i} {name_j}", count, format_ratio(count, total),
format_ratio(cumulative, total)))
emit_table(("Pair", "Count:", "Self:", "Cumulative:"),
rows
)
with Section("Predecessor/Successor Pairs", summary="Top 5 predecessors and successors of each opcode"):
rows.append(
(
f"{name_i} {name_j}",
count,
format_ratio(count, total),
format_ratio(cumulative, total),
)
)
emit_table(("Pair", "Count:", "Self:", "Cumulative:"), rows)
with Section(
"Predecessor/Successor Pairs",
summary="Top 5 predecessors and successors of each opcode",
):
predecessors = collections.defaultdict(collections.Counter)
successors = collections.defaultdict(collections.Counter)
total_predecessors = collections.Counter()
@ -598,38 +738,135 @@ def emit_pair_counts(opcode_stats, total):
continue
pred_rows = succ_rows = ()
if total1:
pred_rows = [(pred, count, f"{count/total1:.1%}")
for (pred, count) in predecessors[name].most_common(5)]
pred_rows = [
(pred, count, f"{count/total1:.1%}")
for (pred, count) in predecessors[name].most_common(5)
]
if total2:
succ_rows = [(succ, count, f"{count/total2:.1%}")
for (succ, count) in successors[name].most_common(5)]
succ_rows = [
(succ, count, f"{count/total2:.1%}")
for (succ, count) in successors[name].most_common(5)
]
with Section(name, 3, f"Successors and predecessors for {name}"):
emit_table(("Predecessors", "Count:", "Percentage:"),
pred_rows
)
emit_table(("Successors", "Count:", "Percentage:"),
succ_rows
)
emit_table(("Predecessors", "Count:", "Percentage:"), pred_rows)
emit_table(("Successors", "Count:", "Percentage:"), succ_rows)
def calculate_optimization_stats(stats):
attempts = stats["Optimization attempts"]
created = stats["Optimization traces created"]
executed = stats["Optimization traces executed"]
uops = stats["Optimization uops executed"]
trace_stack_overflow = stats["Optimization trace stack overflow"]
trace_stack_underflow = stats["Optimization trace stack underflow"]
trace_too_long = stats["Optimization trace too long"]
inner_loop = stats["Optimization inner loop"]
recursive_call = stats["Optimization recursive call"]
return [
("Optimization attempts", attempts, ""),
("Traces created", created, format_ratio(created, attempts)),
("Traces executed", executed, ""),
("Uops executed", uops, int(uops / (executed or 1))),
("Trace stack overflow", trace_stack_overflow, ""),
("Trace stack underflow", trace_stack_underflow, ""),
("Trace too long", trace_too_long, ""),
("Inner loop found", inner_loop, ""),
("Recursive call", recursive_call, ""),
]
def calculate_uop_execution_counts(opcode_stats):
total = 0
counts = []
for name, opcode_stat in opcode_stats.items():
if "execution_count" in opcode_stat:
count = opcode_stat["execution_count"]
counts.append((count, name))
total += count
counts.sort(reverse=True)
cumulative = 0
rows = []
for count, name in counts:
cumulative += count
rows.append(
(name, count, format_ratio(count, total), format_ratio(cumulative, total))
)
return rows
def emit_optimization_stats(stats):
if "Optimization attempts" not in stats:
return
uop_stats = extract_opcode_stats(stats, "uops")
with Section(
"Optimization (Tier 2) stats", summary="statistics about the Tier 2 optimizer"
):
with Section("Overall stats", level=3):
rows = calculate_optimization_stats(stats)
emit_table(("", "Count:", "Ratio:"), rows)
emit_histogram(
"Trace length histogram",
stats,
"Trace length",
stats["Optimization traces created"],
)
emit_histogram(
"Optimized trace length histogram",
stats,
"Optimized trace length",
stats["Optimization traces created"],
)
emit_histogram(
"Trace run length histogram",
stats,
"Trace run length",
stats["Optimization traces executed"],
)
with Section("Uop stats", level=3):
rows = calculate_uop_execution_counts(uop_stats)
emit_table(("Uop", "Count:", "Self:", "Cumulative:"), rows)
with Section("Unsupported opcodes", level=3):
unsupported_opcodes = extract_opcode_stats(stats, "unsupported_opcode")
data = []
for opcode, entry in unsupported_opcodes.items():
data.append((entry["count"], opcode))
data.sort(reverse=True)
rows = [(x[1], x[0]) for x in data]
emit_table(("Opcode", "Count"), rows)
def emit_comparative_optimization_stats(base_stats, head_stats):
print("## Comparative optimization stats not implemented\n\n")
def output_single_stats(stats):
opcode_stats = extract_opcode_stats(stats)
opcode_stats = extract_opcode_stats(stats, "opcode")
total = get_total(opcode_stats)
emit_execution_counts(opcode_stats, total)
emit_pair_counts(opcode_stats, total)
emit_specialization_stats(opcode_stats, stats["_defines"])
emit_specialization_overview(opcode_stats, total, stats["_specialized_instructions"])
emit_specialization_overview(
opcode_stats, total, stats["_specialized_instructions"]
)
emit_call_stats(stats, stats["_stats_defines"])
emit_object_stats(stats)
emit_gc_stats(stats)
emit_optimization_stats(stats)
with Section("Meta stats", summary="Meta statistics"):
emit_table(("", "Count:"), [('Number of data files', stats['__nfiles__'])])
emit_table(("", "Count:"), [("Number of data files", stats["__nfiles__"])])
def output_comparative_stats(base_stats, head_stats):
base_opcode_stats = extract_opcode_stats(base_stats)
base_opcode_stats = extract_opcode_stats(base_stats, "opcode")
base_total = get_total(base_opcode_stats)
head_opcode_stats = extract_opcode_stats(head_stats)
head_opcode_stats = extract_opcode_stats(head_stats, "opcode")
head_total = get_total(head_opcode_stats)
emit_comparative_execution_counts(
@ -639,12 +876,17 @@ def output_comparative_stats(base_stats, head_stats):
base_opcode_stats, head_opcode_stats, head_stats["_defines"]
)
emit_comparative_specialization_overview(
base_opcode_stats, base_total, head_opcode_stats, head_total,
head_stats["_specialized_instructions"]
base_opcode_stats,
base_total,
head_opcode_stats,
head_total,
head_stats["_specialized_instructions"],
)
emit_comparative_call_stats(base_stats, head_stats, head_stats["_stats_defines"])
emit_comparative_object_stats(base_stats, head_stats)
emit_comparative_gc_stats(base_stats, head_stats)
emit_comparative_optimization_stats(base_stats, head_stats)
def output_stats(inputs, json_output=None):
if len(inputs) == 1:
@ -654,9 +896,7 @@ def output_stats(inputs, json_output=None):
output_single_stats(stats)
elif len(inputs) == 2:
if json_output is not None:
raise ValueError(
"Can not output to JSON when there are multiple inputs"
)
raise ValueError("Can not output to JSON when there are multiple inputs")
base_stats = gather_stats(inputs[0])
head_stats = gather_stats(inputs[1])
@ -665,6 +905,7 @@ def output_stats(inputs, json_output=None):
print("---")
print("Stats gathered on:", date.today())
def main():
parser = argparse.ArgumentParser(description="Summarize pystats results")
@ -680,14 +921,14 @@ def main():
If one source is provided, its stats are printed.
If two sources are provided, comparative stats are printed.
Default is {DEFAULT_DIR}.
"""
""",
)
parser.add_argument(
"--json-output",
nargs="?",
type=argparse.FileType("w"),
help="Output complete raw results to the given JSON file."
help="Output complete raw results to the given JSON file.",
)
args = parser.parse_args()
@ -697,5 +938,6 @@ def main():
output_stats(args.inputs, json_output=args.json_output)
if __name__ == "__main__":
main()