mirror of
https://github.com/python/cpython.git
synced 2025-08-04 08:59:19 +00:00
Issue #10199: Moved Demo/turtle under Lib/
This commit is contained in:
parent
8291af2354
commit
ea13d9d86b
29 changed files with 32 additions and 481 deletions
0
Lib/turtledemo/__init__.py
Normal file
0
Lib/turtledemo/__init__.py
Normal file
76
Lib/turtledemo/about_turtle.txt
Normal file
76
Lib/turtledemo/about_turtle.txt
Normal file
|
@ -0,0 +1,76 @@
|
|||
|
||||
========================================================
|
||||
A new turtle module for Python
|
||||
========================================================
|
||||
|
||||
Turtle graphics is a popular way for introducing programming to
|
||||
kids. It was part of the original Logo programming language developed
|
||||
by Wally Feurzig and Seymour Papert in 1966.
|
||||
|
||||
Imagine a robotic turtle starting at (0, 0) in the x-y plane. Give it
|
||||
the command turtle.forward(15), and it moves (on-screen!) 15 pixels in
|
||||
the direction it is facing, drawing a line as it moves. Give it the
|
||||
command turtle.left(25), and it rotates in-place 25 degrees clockwise.
|
||||
|
||||
By combining together these and similar commands, intricate shapes and
|
||||
pictures can easily be drawn.
|
||||
|
||||
----- turtle.py
|
||||
|
||||
This module is an extended reimplementation of turtle.py from the
|
||||
Python standard distribution up to Python 2.5. (See: http:\\www.python.org)
|
||||
|
||||
It tries to keep the merits of turtle.py and to be (nearly) 100%
|
||||
compatible with it. This means in the first place to enable the
|
||||
learning programmer to use all the commands, classes and methods
|
||||
interactively when using the module from within IDLE run with
|
||||
the -n switch.
|
||||
|
||||
Roughly it has the following features added:
|
||||
|
||||
- Better animation of the turtle movements, especially of turning the
|
||||
turtle. So the turtles can more easily be used as a visual feedback
|
||||
instrument by the (beginning) programmer.
|
||||
|
||||
- Different turtle shapes, gif-images as turtle shapes, user defined
|
||||
and user controllable turtle shapes, among them compound
|
||||
(multicolored) shapes. Turtle shapes can be stgretched and tilted, which
|
||||
makes turtles zu very versatile geometrical objects.
|
||||
|
||||
- Fine control over turtle movement and screen updates via delay(),
|
||||
and enhanced tracer() and speed() methods.
|
||||
|
||||
- Aliases for the most commonly used commands, like fd for forward etc.,
|
||||
following the early Logo traditions. This reduces the boring work of
|
||||
typing long sequences of commands, which often occur in a natural way
|
||||
when kids try to program fancy pictures on their first encounter with
|
||||
turtle graphcis.
|
||||
|
||||
- Turtles now have an undo()-method with configurable undo-buffer.
|
||||
|
||||
- Some simple commands/methods for creating event driven programs
|
||||
(mouse-, key-, timer-events). Especially useful for programming games.
|
||||
|
||||
- A scrollable Canvas class. The default scrollable Canvas can be
|
||||
extended interactively as needed while playing around with the turtle(s).
|
||||
|
||||
- A TurtleScreen class with methods controlling background color or
|
||||
background image, window and canvas size and other properties of the
|
||||
TurtleScreen.
|
||||
|
||||
- There is a method, setworldcoordinates(), to install a user defined
|
||||
coordinate-system for the TurtleScreen.
|
||||
|
||||
- The implementation uses a 2-vector class named Vec2D, derived from tuple.
|
||||
This class is public, so it can be imported by the application programmer,
|
||||
which makes certain types of computations very natural and compact.
|
||||
|
||||
- Appearance of the TurtleScreen and the Turtles at startup/import can be
|
||||
configured by means of a turtle.cfg configuration file.
|
||||
The default configuration mimics the appearance of the old turtle module.
|
||||
|
||||
- If configured appropriately the module reads in docstrings from a docstring
|
||||
dictionary in some different language, supplied separately and replaces
|
||||
the english ones by those read in. There is a utility function
|
||||
write_docstringdict() to write a dictionary with the original (english)
|
||||
docstrings to disc, so it can serve as a template for translations.
|
13
Lib/turtledemo/about_turtledemo.txt
Normal file
13
Lib/turtledemo/about_turtledemo.txt
Normal file
|
@ -0,0 +1,13 @@
|
|||
|
||||
--------------------------------------
|
||||
About turtleDemo.py
|
||||
--------------------------------------
|
||||
|
||||
Tiny demo Viewer to view turtle graphics example scripts.
|
||||
|
||||
Quickly and dirtyly assembled by Gregor Lingl.
|
||||
June, 2006
|
||||
|
||||
For more information see: turtleDemo - Help
|
||||
|
||||
Have fun!
|
162
Lib/turtledemo/bytedesign.py
Normal file
162
Lib/turtledemo/bytedesign.py
Normal file
|
@ -0,0 +1,162 @@
|
|||
#!/usr/bin/env python3
|
||||
""" turtle-example-suite:
|
||||
|
||||
tdemo_bytedesign.py
|
||||
|
||||
An example adapted from the example-suite
|
||||
of PythonCard's turtle graphcis.
|
||||
|
||||
It's based on an article in BYTE magazine
|
||||
Problem Solving with Logo: Using Turtle
|
||||
Graphics to Redraw a Design
|
||||
November 1982, p. 118 - 134
|
||||
|
||||
-------------------------------------------
|
||||
|
||||
Due to the statement
|
||||
|
||||
t.delay(0)
|
||||
|
||||
in line 152, which sets the animation delay
|
||||
to 0, this animation runs in "line per line"
|
||||
mode as fast as possible.
|
||||
"""
|
||||
|
||||
import math
|
||||
from turtle import Turtle, mainloop
|
||||
from time import clock
|
||||
|
||||
# wrapper for any additional drawing routines
|
||||
# that need to know about each other
|
||||
class Designer(Turtle):
|
||||
|
||||
def design(self, homePos, scale):
|
||||
self.up()
|
||||
for i in range(5):
|
||||
self.forward(64.65 * scale)
|
||||
self.down()
|
||||
self.wheel(self.position(), scale)
|
||||
self.up()
|
||||
self.backward(64.65 * scale)
|
||||
self.right(72)
|
||||
self.up()
|
||||
self.goto(homePos)
|
||||
self.right(36)
|
||||
self.forward(24.5 * scale)
|
||||
self.right(198)
|
||||
self.down()
|
||||
self.centerpiece(46 * scale, 143.4, scale)
|
||||
self.getscreen().tracer(True)
|
||||
|
||||
def wheel(self, initpos, scale):
|
||||
self.right(54)
|
||||
for i in range(4):
|
||||
self.pentpiece(initpos, scale)
|
||||
self.down()
|
||||
self.left(36)
|
||||
for i in range(5):
|
||||
self.tripiece(initpos, scale)
|
||||
self.left(36)
|
||||
for i in range(5):
|
||||
self.down()
|
||||
self.right(72)
|
||||
self.forward(28 * scale)
|
||||
self.up()
|
||||
self.backward(28 * scale)
|
||||
self.left(54)
|
||||
self.getscreen().update()
|
||||
|
||||
def tripiece(self, initpos, scale):
|
||||
oldh = self.heading()
|
||||
self.down()
|
||||
self.backward(2.5 * scale)
|
||||
self.tripolyr(31.5 * scale, scale)
|
||||
self.up()
|
||||
self.goto(initpos)
|
||||
self.setheading(oldh)
|
||||
self.down()
|
||||
self.backward(2.5 * scale)
|
||||
self.tripolyl(31.5 * scale, scale)
|
||||
self.up()
|
||||
self.goto(initpos)
|
||||
self.setheading(oldh)
|
||||
self.left(72)
|
||||
self.getscreen().update()
|
||||
|
||||
def pentpiece(self, initpos, scale):
|
||||
oldh = self.heading()
|
||||
self.up()
|
||||
self.forward(29 * scale)
|
||||
self.down()
|
||||
for i in range(5):
|
||||
self.forward(18 * scale)
|
||||
self.right(72)
|
||||
self.pentr(18 * scale, 75, scale)
|
||||
self.up()
|
||||
self.goto(initpos)
|
||||
self.setheading(oldh)
|
||||
self.forward(29 * scale)
|
||||
self.down()
|
||||
for i in range(5):
|
||||
self.forward(18 * scale)
|
||||
self.right(72)
|
||||
self.pentl(18 * scale, 75, scale)
|
||||
self.up()
|
||||
self.goto(initpos)
|
||||
self.setheading(oldh)
|
||||
self.left(72)
|
||||
self.getscreen().update()
|
||||
|
||||
def pentl(self, side, ang, scale):
|
||||
if side < (2 * scale): return
|
||||
self.forward(side)
|
||||
self.left(ang)
|
||||
self.pentl(side - (.38 * scale), ang, scale)
|
||||
|
||||
def pentr(self, side, ang, scale):
|
||||
if side < (2 * scale): return
|
||||
self.forward(side)
|
||||
self.right(ang)
|
||||
self.pentr(side - (.38 * scale), ang, scale)
|
||||
|
||||
def tripolyr(self, side, scale):
|
||||
if side < (4 * scale): return
|
||||
self.forward(side)
|
||||
self.right(111)
|
||||
self.forward(side / 1.78)
|
||||
self.right(111)
|
||||
self.forward(side / 1.3)
|
||||
self.right(146)
|
||||
self.tripolyr(side * .75, scale)
|
||||
|
||||
def tripolyl(self, side, scale):
|
||||
if side < (4 * scale): return
|
||||
self.forward(side)
|
||||
self.left(111)
|
||||
self.forward(side / 1.78)
|
||||
self.left(111)
|
||||
self.forward(side / 1.3)
|
||||
self.left(146)
|
||||
self.tripolyl(side * .75, scale)
|
||||
|
||||
def centerpiece(self, s, a, scale):
|
||||
self.forward(s); self.left(a)
|
||||
if s < (7.5 * scale):
|
||||
return
|
||||
self.centerpiece(s - (1.2 * scale), a, scale)
|
||||
|
||||
def main():
|
||||
t = Designer()
|
||||
t.speed(0)
|
||||
t.hideturtle()
|
||||
t.getscreen().delay(0)
|
||||
t.getscreen().tracer(0)
|
||||
at = clock()
|
||||
t.design(t.position(), 2)
|
||||
et = clock()
|
||||
return "runtime: %.2f sec." % (et-at)
|
||||
|
||||
if __name__ == '__main__':
|
||||
msg = main()
|
||||
print(msg)
|
||||
mainloop()
|
59
Lib/turtledemo/chaos.py
Normal file
59
Lib/turtledemo/chaos.py
Normal file
|
@ -0,0 +1,59 @@
|
|||
# File: tdemo_chaos.py
|
||||
# Author: Gregor Lingl
|
||||
# Date: 2009-06-24
|
||||
|
||||
# A demonstration of chaos
|
||||
|
||||
from turtle import *
|
||||
|
||||
N = 80
|
||||
|
||||
def f(x):
|
||||
return 3.9*x*(1-x)
|
||||
|
||||
def g(x):
|
||||
return 3.9*(x-x**2)
|
||||
|
||||
def h(x):
|
||||
return 3.9*x-3.9*x*x
|
||||
|
||||
def jumpto(x, y):
|
||||
penup(); goto(x,y)
|
||||
|
||||
def line(x1, y1, x2, y2):
|
||||
jumpto(x1, y1)
|
||||
pendown()
|
||||
goto(x2, y2)
|
||||
|
||||
def coosys():
|
||||
line(-1, 0, N+1, 0)
|
||||
line(0, -0.1, 0, 1.1)
|
||||
|
||||
def plot(fun, start, colour):
|
||||
pencolor(colour)
|
||||
x = start
|
||||
jumpto(0, x)
|
||||
pendown()
|
||||
dot(5)
|
||||
for i in range(N):
|
||||
x=fun(x)
|
||||
goto(i+1,x)
|
||||
dot(5)
|
||||
|
||||
def main():
|
||||
reset()
|
||||
setworldcoordinates(-1.0,-0.1, N+1, 1.1)
|
||||
speed(0)
|
||||
hideturtle()
|
||||
coosys()
|
||||
plot(f, 0.35, "blue")
|
||||
plot(g, 0.35, "green")
|
||||
plot(h, 0.35, "red")
|
||||
# Now zoom in:
|
||||
for s in range(100):
|
||||
setworldcoordinates(0.5*s,-0.1, N+1, 1.1)
|
||||
return "Done!"
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
mainloop()
|
132
Lib/turtledemo/clock.py
Normal file
132
Lib/turtledemo/clock.py
Normal file
|
@ -0,0 +1,132 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: cp1252 -*-
|
||||
""" turtle-example-suite:
|
||||
|
||||
tdemo_clock.py
|
||||
|
||||
Enhanced clock-program, showing date
|
||||
and time
|
||||
------------------------------------
|
||||
Press STOP to exit the program!
|
||||
------------------------------------
|
||||
"""
|
||||
from turtle import *
|
||||
from datetime import datetime
|
||||
|
||||
mode("logo")
|
||||
|
||||
def jump(distanz, winkel=0):
|
||||
penup()
|
||||
right(winkel)
|
||||
forward(distanz)
|
||||
left(winkel)
|
||||
pendown()
|
||||
|
||||
def hand(laenge, spitze):
|
||||
fd(laenge*1.15)
|
||||
rt(90)
|
||||
fd(spitze/2.0)
|
||||
lt(120)
|
||||
fd(spitze)
|
||||
lt(120)
|
||||
fd(spitze)
|
||||
lt(120)
|
||||
fd(spitze/2.0)
|
||||
|
||||
def make_hand_shape(name, laenge, spitze):
|
||||
reset()
|
||||
jump(-laenge*0.15)
|
||||
begin_poly()
|
||||
hand(laenge, spitze)
|
||||
end_poly()
|
||||
hand_form = get_poly()
|
||||
register_shape(name, hand_form)
|
||||
|
||||
|
||||
def clockface(radius):
|
||||
reset()
|
||||
pensize(7)
|
||||
for i in range(60):
|
||||
jump(radius)
|
||||
if i % 5 == 0:
|
||||
fd(25)
|
||||
jump(-radius-25)
|
||||
else:
|
||||
dot(3)
|
||||
jump(-radius)
|
||||
rt(6)
|
||||
|
||||
def setup():
|
||||
global second_hand, minute_hand, hour_hand, writer
|
||||
mode("logo")
|
||||
make_hand_shape("second_hand", 125, 25)
|
||||
make_hand_shape("minute_hand", 130, 25)
|
||||
make_hand_shape("hour_hand", 90, 25)
|
||||
clockface(160)
|
||||
second_hand = Turtle()
|
||||
second_hand.shape("second_hand")
|
||||
second_hand.color("gray20", "gray80")
|
||||
minute_hand = Turtle()
|
||||
minute_hand.shape("minute_hand")
|
||||
minute_hand.color("blue1", "red1")
|
||||
hour_hand = Turtle()
|
||||
hour_hand.shape("hour_hand")
|
||||
hour_hand.color("blue3", "red3")
|
||||
for hand in second_hand, minute_hand, hour_hand:
|
||||
hand.resizemode("user")
|
||||
hand.shapesize(1, 1, 3)
|
||||
hand.speed(0)
|
||||
ht()
|
||||
writer = Turtle()
|
||||
#writer.mode("logo")
|
||||
writer.ht()
|
||||
writer.pu()
|
||||
writer.bk(85)
|
||||
|
||||
|
||||
def wochentag(t):
|
||||
wochentag = ["Monday", "Tuesday", "Wednesday",
|
||||
"Thursday", "Friday", "Saturday", "Sunday"]
|
||||
return wochentag[t.weekday()]
|
||||
|
||||
def datum(z):
|
||||
monat = ["Jan.", "Feb.", "Mar.", "Apr.", "May", "June",
|
||||
"July", "Aug.", "Sep.", "Oct.", "Nov.", "Dec."]
|
||||
j = z.year
|
||||
m = monat[z.month - 1]
|
||||
t = z.day
|
||||
return "%s %d %d" % (m, t, j)
|
||||
|
||||
def tick():
|
||||
t = datetime.today()
|
||||
sekunde = t.second + t.microsecond*0.000001
|
||||
minute = t.minute + sekunde/60.0
|
||||
stunde = t.hour + minute/60.0
|
||||
tracer(False)
|
||||
writer.clear()
|
||||
writer.home()
|
||||
writer.forward(65)
|
||||
writer.write(wochentag(t),
|
||||
align="center", font=("Courier", 14, "bold"))
|
||||
writer.back(150)
|
||||
writer.write(datum(t),
|
||||
align="center", font=("Courier", 14, "bold"))
|
||||
writer.forward(85)
|
||||
tracer(True)
|
||||
second_hand.setheading(6*sekunde)
|
||||
minute_hand.setheading(6*minute)
|
||||
hour_hand.setheading(30*stunde)
|
||||
tracer(True)
|
||||
ontimer(tick, 100)
|
||||
|
||||
def main():
|
||||
tracer(False)
|
||||
setup()
|
||||
tracer(True)
|
||||
tick()
|
||||
return "EVENTLOOP"
|
||||
|
||||
if __name__ == "__main__":
|
||||
msg = main()
|
||||
print(msg)
|
||||
mainloop()
|
60
Lib/turtledemo/colormixer.py
Normal file
60
Lib/turtledemo/colormixer.py
Normal file
|
@ -0,0 +1,60 @@
|
|||
# colormixer
|
||||
|
||||
from turtle import Screen, Turtle, mainloop
|
||||
import sys
|
||||
sys.setrecursionlimit(20000) # overcomes, for now, an instability of Python 3.0
|
||||
|
||||
class ColorTurtle(Turtle):
|
||||
|
||||
def __init__(self, x, y):
|
||||
Turtle.__init__(self)
|
||||
self.shape("turtle")
|
||||
self.resizemode("user")
|
||||
self.shapesize(3,3,5)
|
||||
self.pensize(10)
|
||||
self._color = [0,0,0]
|
||||
self.x = x
|
||||
self._color[x] = y
|
||||
self.color(self._color)
|
||||
self.speed(0)
|
||||
self.left(90)
|
||||
self.pu()
|
||||
self.goto(x,0)
|
||||
self.pd()
|
||||
self.sety(1)
|
||||
self.pu()
|
||||
self.sety(y)
|
||||
self.pencolor("gray25")
|
||||
self.ondrag(self.shift)
|
||||
|
||||
def shift(self, x, y):
|
||||
self.sety(max(0,min(y,1)))
|
||||
self._color[self.x] = self.ycor()
|
||||
self.fillcolor(self._color)
|
||||
setbgcolor()
|
||||
|
||||
def setbgcolor():
|
||||
screen.bgcolor(red.ycor(), green.ycor(), blue.ycor())
|
||||
|
||||
def main():
|
||||
global screen, red, green, blue
|
||||
screen = Screen()
|
||||
screen.delay(0)
|
||||
screen.setworldcoordinates(-1, -0.3, 3, 1.3)
|
||||
|
||||
red = ColorTurtle(0, .5)
|
||||
green = ColorTurtle(1, .5)
|
||||
blue = ColorTurtle(2, .5)
|
||||
setbgcolor()
|
||||
|
||||
writer = Turtle()
|
||||
writer.ht()
|
||||
writer.pu()
|
||||
writer.goto(1,1.15)
|
||||
writer.write("DRAG!",align="center",font=("Arial",30,("bold","italic")))
|
||||
return "EVENTLOOP"
|
||||
|
||||
if __name__ == "__main__":
|
||||
msg = main()
|
||||
print(msg)
|
||||
mainloop()
|
75
Lib/turtledemo/demohelp.txt
Normal file
75
Lib/turtledemo/demohelp.txt
Normal file
|
@ -0,0 +1,75 @@
|
|||
|
||||
|
||||
----------------------------------------------
|
||||
|
||||
turtleDemo - Help
|
||||
|
||||
----------------------------------------------
|
||||
|
||||
This document has two sections:
|
||||
|
||||
(1) How to use the demo viewer
|
||||
(2) How to add your own demos to the demo repository
|
||||
|
||||
|
||||
(1) How to use the demo viewer.
|
||||
|
||||
Select a demoscript from the example menu.
|
||||
The (syntax coloured) source code appears in the left
|
||||
source code window. IT CANNOT BE EDITED, but ONLY VIEWED!
|
||||
|
||||
- Press START button to start the demo.
|
||||
- Stop execution by pressing the STOP button.
|
||||
- Clear screen by pressing the CLEAR button.
|
||||
- Restart by pressing the START button again.
|
||||
|
||||
SPECIAL demos are those which run EVENTDRIVEN.
|
||||
(For example clock.py - or oldTurtleDemo.py which
|
||||
in the end expects a mouse click.):
|
||||
|
||||
Press START button to start the demo.
|
||||
|
||||
- Until the EVENTLOOP is entered everything works
|
||||
as in an ordinary demo script.
|
||||
|
||||
- When the EVENTLOOP is entered, you control the
|
||||
application by using the mouse and/or keys (or it's
|
||||
controlled by some timer events)
|
||||
To stop it you can and must press the STOP button.
|
||||
|
||||
While the EVENTLOOP is running, the examples menu is disabled.
|
||||
|
||||
- Only after having pressed the STOP button, you may
|
||||
restart it or choose another example script.
|
||||
|
||||
* * * * * * * *
|
||||
In some rare situations there may occur interferences/conflicts
|
||||
between events concerning the demo script and those concerning the
|
||||
demo-viewer. (They run in the same process.) Strange behaviour may be
|
||||
the consequence and in the worst case you must close and restart the
|
||||
viewer.
|
||||
* * * * * * * *
|
||||
|
||||
|
||||
(2) How to add your own demos to the demo repository
|
||||
|
||||
- scriptname: must begin with tdemo_ ,
|
||||
so it must have the form tdemo_<your-script-name>.py
|
||||
|
||||
- place: same directory as turtleDemo.py or some
|
||||
subdirectory, the name of which must also begin with
|
||||
tdemo_.....
|
||||
|
||||
- requirements on source code:
|
||||
code must contain a main() function which will
|
||||
be executed by the viewer (see provided example scripts)
|
||||
main() may return a string which will be displayed
|
||||
in the Label below the source code window (when execution
|
||||
has finished.)
|
||||
|
||||
!! For programs, which are EVENT DRIVEN, main must return
|
||||
!! the string "EVENTLOOP". This informs the viewer, that the
|
||||
!! script is still running and must be stopped by the user!
|
||||
|
||||
|
||||
|
109
Lib/turtledemo/forest.py
Normal file
109
Lib/turtledemo/forest.py
Normal file
|
@ -0,0 +1,109 @@
|
|||
#!/usr/bin/env python3
|
||||
""" turtlegraphics-example-suite:
|
||||
|
||||
tdemo_forest.py
|
||||
|
||||
Displays a 'forest' of 3 'breadth-first-trees'
|
||||
similar to the one from example tree.
|
||||
For further remarks see xtx_tree.py
|
||||
|
||||
This example is a 'breadth-first'-rewrite of
|
||||
a Logo program written by Erich Neuwirth. See:
|
||||
http://homepage.univie.ac.at/erich.neuwirth/
|
||||
"""
|
||||
from turtle import Turtle, colormode, tracer, mainloop
|
||||
from random import randrange
|
||||
from time import clock
|
||||
|
||||
def symRandom(n):
|
||||
return randrange(-n,n+1)
|
||||
|
||||
def randomize( branchlist, angledist, sizedist ):
|
||||
return [ (angle+symRandom(angledist),
|
||||
sizefactor*1.01**symRandom(sizedist))
|
||||
for angle, sizefactor in branchlist ]
|
||||
|
||||
def randomfd( t, distance, parts, angledist ):
|
||||
for i in range(parts):
|
||||
t.left(symRandom(angledist))
|
||||
t.forward( (1.0 * distance)/parts )
|
||||
|
||||
def tree(tlist, size, level, widthfactor, branchlists, angledist=10, sizedist=5):
|
||||
# benutzt Liste von turtles und Liste von Zweiglisten,
|
||||
# fuer jede turtle eine!
|
||||
if level > 0:
|
||||
lst = []
|
||||
brs = []
|
||||
for t, branchlist in list(zip(tlist,branchlists)):
|
||||
t.pensize( size * widthfactor )
|
||||
t.pencolor( 255 - (180 - 11 * level + symRandom(15)),
|
||||
180 - 11 * level + symRandom(15),
|
||||
0 )
|
||||
t.pendown()
|
||||
randomfd(t, size, level, angledist )
|
||||
yield 1
|
||||
for angle, sizefactor in branchlist:
|
||||
t.left(angle)
|
||||
lst.append(t.clone())
|
||||
brs.append(randomize(branchlist, angledist, sizedist))
|
||||
t.right(angle)
|
||||
for x in tree(lst, size*sizefactor, level-1, widthfactor, brs,
|
||||
angledist, sizedist):
|
||||
yield None
|
||||
|
||||
|
||||
def start(t,x,y):
|
||||
colormode(255)
|
||||
t.reset()
|
||||
t.speed(0)
|
||||
t.hideturtle()
|
||||
t.left(90)
|
||||
t.penup()
|
||||
t.setpos(x,y)
|
||||
t.pendown()
|
||||
|
||||
def doit1(level, pen):
|
||||
pen.hideturtle()
|
||||
start(pen, 20, -208)
|
||||
t = tree( [pen], 80, level, 0.1, [[ (45,0.69), (0,0.65), (-45,0.71) ]] )
|
||||
return t
|
||||
|
||||
def doit2(level, pen):
|
||||
pen.hideturtle()
|
||||
start(pen, -135, -130)
|
||||
t = tree( [pen], 120, level, 0.1, [[ (45,0.69), (-45,0.71) ]] )
|
||||
return t
|
||||
|
||||
def doit3(level, pen):
|
||||
pen.hideturtle()
|
||||
start(pen, 190, -90)
|
||||
t = tree( [pen], 100, level, 0.1, [[ (45,0.7), (0,0.72), (-45,0.65) ]] )
|
||||
return t
|
||||
|
||||
# Hier 3 Baumgeneratoren:
|
||||
def main():
|
||||
p = Turtle()
|
||||
p.ht()
|
||||
tracer(75,0)
|
||||
u = doit1(6, Turtle(undobuffersize=1))
|
||||
s = doit2(7, Turtle(undobuffersize=1))
|
||||
t = doit3(5, Turtle(undobuffersize=1))
|
||||
a = clock()
|
||||
while True:
|
||||
done = 0
|
||||
for b in u,s,t:
|
||||
try:
|
||||
b.__next__()
|
||||
except:
|
||||
done += 1
|
||||
if done == 3:
|
||||
break
|
||||
|
||||
tracer(1,10)
|
||||
b = clock()
|
||||
return "runtime: %.2f sec." % (b-a)
|
||||
|
||||
if __name__ == '__main__':
|
||||
msg = main()
|
||||
print(msg)
|
||||
mainloop()
|
138
Lib/turtledemo/fractalcurves.py
Normal file
138
Lib/turtledemo/fractalcurves.py
Normal file
|
@ -0,0 +1,138 @@
|
|||
#!/usr/bin/env python3
|
||||
""" turtle-example-suite:
|
||||
|
||||
tdemo_fractalCurves.py
|
||||
|
||||
This program draws two fractal-curve-designs:
|
||||
(1) A hilbert curve (in a box)
|
||||
(2) A combination of Koch-curves.
|
||||
|
||||
The CurvesTurtle class and the fractal-curve-
|
||||
methods are taken from the PythonCard example
|
||||
scripts for turtle-graphics.
|
||||
"""
|
||||
from turtle import *
|
||||
from time import sleep, clock
|
||||
|
||||
class CurvesTurtle(Pen):
|
||||
# example derived from
|
||||
# Turtle Geometry: The Computer as a Medium for Exploring Mathematics
|
||||
# by Harold Abelson and Andrea diSessa
|
||||
# p. 96-98
|
||||
def hilbert(self, size, level, parity):
|
||||
if level == 0:
|
||||
return
|
||||
# rotate and draw first subcurve with opposite parity to big curve
|
||||
self.left(parity * 90)
|
||||
self.hilbert(size, level - 1, -parity)
|
||||
# interface to and draw second subcurve with same parity as big curve
|
||||
self.forward(size)
|
||||
self.right(parity * 90)
|
||||
self.hilbert(size, level - 1, parity)
|
||||
# third subcurve
|
||||
self.forward(size)
|
||||
self.hilbert(size, level - 1, parity)
|
||||
# fourth subcurve
|
||||
self.right(parity * 90)
|
||||
self.forward(size)
|
||||
self.hilbert(size, level - 1, -parity)
|
||||
# a final turn is needed to make the turtle
|
||||
# end up facing outward from the large square
|
||||
self.left(parity * 90)
|
||||
|
||||
# Visual Modeling with Logo: A Structural Approach to Seeing
|
||||
# by James Clayson
|
||||
# Koch curve, after Helge von Koch who introduced this geometric figure in 1904
|
||||
# p. 146
|
||||
def fractalgon(self, n, rad, lev, dir):
|
||||
import math
|
||||
|
||||
# if dir = 1 turn outward
|
||||
# if dir = -1 turn inward
|
||||
edge = 2 * rad * math.sin(math.pi / n)
|
||||
self.pu()
|
||||
self.fd(rad)
|
||||
self.pd()
|
||||
self.rt(180 - (90 * (n - 2) / n))
|
||||
for i in range(n):
|
||||
self.fractal(edge, lev, dir)
|
||||
self.rt(360 / n)
|
||||
self.lt(180 - (90 * (n - 2) / n))
|
||||
self.pu()
|
||||
self.bk(rad)
|
||||
self.pd()
|
||||
|
||||
# p. 146
|
||||
def fractal(self, dist, depth, dir):
|
||||
if depth < 1:
|
||||
self.fd(dist)
|
||||
return
|
||||
self.fractal(dist / 3, depth - 1, dir)
|
||||
self.lt(60 * dir)
|
||||
self.fractal(dist / 3, depth - 1, dir)
|
||||
self.rt(120 * dir)
|
||||
self.fractal(dist / 3, depth - 1, dir)
|
||||
self.lt(60 * dir)
|
||||
self.fractal(dist / 3, depth - 1, dir)
|
||||
|
||||
def main():
|
||||
ft = CurvesTurtle()
|
||||
|
||||
ft.reset()
|
||||
ft.speed(0)
|
||||
ft.ht()
|
||||
ft.getscreen().tracer(1,0)
|
||||
ft.pu()
|
||||
|
||||
size = 6
|
||||
ft.setpos(-33*size, -32*size)
|
||||
ft.pd()
|
||||
|
||||
ta=clock()
|
||||
ft.fillcolor("red")
|
||||
ft.begin_fill()
|
||||
ft.fd(size)
|
||||
|
||||
ft.hilbert(size, 6, 1)
|
||||
|
||||
# frame
|
||||
ft.fd(size)
|
||||
for i in range(3):
|
||||
ft.lt(90)
|
||||
ft.fd(size*(64+i%2))
|
||||
ft.pu()
|
||||
for i in range(2):
|
||||
ft.fd(size)
|
||||
ft.rt(90)
|
||||
ft.pd()
|
||||
for i in range(4):
|
||||
ft.fd(size*(66+i%2))
|
||||
ft.rt(90)
|
||||
ft.end_fill()
|
||||
tb=clock()
|
||||
res = "Hilbert: %.2fsec. " % (tb-ta)
|
||||
|
||||
sleep(3)
|
||||
|
||||
ft.reset()
|
||||
ft.speed(0)
|
||||
ft.ht()
|
||||
ft.getscreen().tracer(1,0)
|
||||
|
||||
ta=clock()
|
||||
ft.color("black", "blue")
|
||||
ft.begin_fill()
|
||||
ft.fractalgon(3, 250, 4, 1)
|
||||
ft.end_fill()
|
||||
ft.begin_fill()
|
||||
ft.color("red")
|
||||
ft.fractalgon(3, 200, 4, -1)
|
||||
ft.end_fill()
|
||||
tb=clock()
|
||||
res += "Koch: %.2fsec." % (tb-ta)
|
||||
return res
|
||||
|
||||
if __name__ == '__main__':
|
||||
msg = main()
|
||||
print(msg)
|
||||
mainloop()
|
76
Lib/turtledemo/minimal_hanoi.py
Normal file
76
Lib/turtledemo/minimal_hanoi.py
Normal file
|
@ -0,0 +1,76 @@
|
|||
#!/usr/bin/env python3
|
||||
""" turtle-example-suite:
|
||||
|
||||
tdemo_minimal_hanoi.py
|
||||
|
||||
A minimal 'Towers of Hanoi' animation:
|
||||
A tower of 6 discs is transferred from the
|
||||
left to the right peg.
|
||||
|
||||
An imho quite elegant and concise
|
||||
implementation using a tower class, which
|
||||
is derived from the built-in type list.
|
||||
|
||||
Discs are turtles with shape "square", but
|
||||
stretched to rectangles by shapesize()
|
||||
---------------------------------------
|
||||
To exit press STOP button
|
||||
---------------------------------------
|
||||
"""
|
||||
from turtle import *
|
||||
|
||||
class Disc(Turtle):
|
||||
def __init__(self, n):
|
||||
Turtle.__init__(self, shape="square", visible=False)
|
||||
self.pu()
|
||||
self.shapesize(1.5, n*1.5, 2) # square-->rectangle
|
||||
self.fillcolor(n/6., 0, 1-n/6.)
|
||||
self.st()
|
||||
|
||||
class Tower(list):
|
||||
"Hanoi tower, a subclass of built-in type list"
|
||||
def __init__(self, x):
|
||||
"create an empty tower. x is x-position of peg"
|
||||
self.x = x
|
||||
def push(self, d):
|
||||
d.setx(self.x)
|
||||
d.sety(-150+34*len(self))
|
||||
self.append(d)
|
||||
def pop(self):
|
||||
d = list.pop(self)
|
||||
d.sety(150)
|
||||
return d
|
||||
|
||||
def hanoi(n, from_, with_, to_):
|
||||
if n > 0:
|
||||
hanoi(n-1, from_, to_, with_)
|
||||
to_.push(from_.pop())
|
||||
hanoi(n-1, with_, from_, to_)
|
||||
|
||||
def play():
|
||||
onkey(None,"space")
|
||||
clear()
|
||||
hanoi(6, t1, t2, t3)
|
||||
write("press STOP button to exit",
|
||||
align="center", font=("Courier", 16, "bold"))
|
||||
|
||||
def main():
|
||||
global t1, t2, t3
|
||||
ht(); penup(); goto(0, -225) # writer turtle
|
||||
t1 = Tower(-250)
|
||||
t2 = Tower(0)
|
||||
t3 = Tower(250)
|
||||
# make tower of 6 discs
|
||||
for i in range(6,0,-1):
|
||||
t1.push(Disc(i))
|
||||
# prepare spartanic user interface ;-)
|
||||
write("press spacebar to start game",
|
||||
align="center", font=("Courier", 16, "bold"))
|
||||
onkey(play, "space")
|
||||
listen()
|
||||
return "EVENTLOOP"
|
||||
|
||||
if __name__=="__main__":
|
||||
msg = main()
|
||||
print(msg)
|
||||
mainloop()
|
226
Lib/turtledemo/nim.py
Normal file
226
Lib/turtledemo/nim.py
Normal file
|
@ -0,0 +1,226 @@
|
|||
""" turtle-example-suite:
|
||||
|
||||
tdemo_nim.py
|
||||
|
||||
Play nim against the computer. The player
|
||||
who takes the last stick is the winner.
|
||||
|
||||
Implements the model-view-controller
|
||||
design pattern.
|
||||
"""
|
||||
|
||||
|
||||
import turtle
|
||||
import random
|
||||
import time
|
||||
|
||||
SCREENWIDTH = 640
|
||||
SCREENHEIGHT = 480
|
||||
|
||||
MINSTICKS = 7
|
||||
MAXSTICKS = 31
|
||||
|
||||
HUNIT = SCREENHEIGHT // 12
|
||||
WUNIT = SCREENWIDTH // ((MAXSTICKS // 5) * 11 + (MAXSTICKS % 5) * 2)
|
||||
|
||||
SCOLOR = (63, 63, 31)
|
||||
HCOLOR = (255, 204, 204)
|
||||
COLOR = (204, 204, 255)
|
||||
|
||||
def randomrow():
|
||||
return random.randint(MINSTICKS, MAXSTICKS)
|
||||
|
||||
def computerzug(state):
|
||||
xored = state[0] ^ state[1] ^ state[2]
|
||||
if xored == 0:
|
||||
return randommove(state)
|
||||
for z in range(3):
|
||||
s = state[z] ^ xored
|
||||
if s <= state[z]:
|
||||
move = (z, s)
|
||||
return move
|
||||
|
||||
def randommove(state):
|
||||
m = max(state)
|
||||
while True:
|
||||
z = random.randint(0,2)
|
||||
if state[z] > (m > 1):
|
||||
break
|
||||
rand = random.randint(m > 1, state[z]-1)
|
||||
return z, rand
|
||||
|
||||
|
||||
class NimModel(object):
|
||||
def __init__(self, game):
|
||||
self.game = game
|
||||
|
||||
def setup(self):
|
||||
if self.game.state not in [Nim.CREATED, Nim.OVER]:
|
||||
return
|
||||
self.sticks = [randomrow(), randomrow(), randomrow()]
|
||||
self.player = 0
|
||||
self.winner = None
|
||||
self.game.view.setup()
|
||||
self.game.state = Nim.RUNNING
|
||||
|
||||
def move(self, row, col):
|
||||
maxspalte = self.sticks[row]
|
||||
self.sticks[row] = col
|
||||
self.game.view.notify_move(row, col, maxspalte, self.player)
|
||||
if self.game_over():
|
||||
self.game.state = Nim.OVER
|
||||
self.winner = self.player
|
||||
self.game.view.notify_over()
|
||||
elif self.player == 0:
|
||||
self.player = 1
|
||||
row, col = computerzug(self.sticks)
|
||||
self.move(row, col)
|
||||
self.player = 0
|
||||
|
||||
def game_over(self):
|
||||
return self.sticks == [0, 0, 0]
|
||||
|
||||
def notify_move(self, row, col):
|
||||
if self.sticks[row] <= col:
|
||||
return
|
||||
self.move(row, col)
|
||||
|
||||
|
||||
class Stick(turtle.Turtle):
|
||||
def __init__(self, row, col, game):
|
||||
turtle.Turtle.__init__(self, visible=False)
|
||||
self.row = row
|
||||
self.col = col
|
||||
self.game = game
|
||||
x, y = self.coords(row, col)
|
||||
self.shape("square")
|
||||
self.shapesize(HUNIT/10.0, WUNIT/20.0)
|
||||
self.speed(0)
|
||||
self.pu()
|
||||
self.goto(x,y)
|
||||
self.color("white")
|
||||
self.showturtle()
|
||||
|
||||
def coords(self, row, col):
|
||||
packet, remainder = divmod(col, 5)
|
||||
x = (3 + 11 * packet + 2 * remainder) * WUNIT
|
||||
y = (2 + 3 * row) * HUNIT
|
||||
return x - SCREENWIDTH // 2 + WUNIT // 2, SCREENHEIGHT // 2 - y - HUNIT // 2
|
||||
|
||||
def makemove(self, x, y):
|
||||
if self.game.state != Nim.RUNNING:
|
||||
return
|
||||
self.game.controller.notify_move(self.row, self.col)
|
||||
|
||||
|
||||
class NimView(object):
|
||||
def __init__(self, game):
|
||||
self.game = game
|
||||
self.screen = game.screen
|
||||
self.model = game.model
|
||||
self.screen.colormode(255)
|
||||
self.screen.tracer(False)
|
||||
self.screen.bgcolor((240, 240, 255))
|
||||
self.writer = turtle.Turtle(visible=False)
|
||||
self.writer.pu()
|
||||
self.writer.speed(0)
|
||||
self.sticks = {}
|
||||
for row in range(3):
|
||||
for col in range(MAXSTICKS):
|
||||
self.sticks[(row, col)] = Stick(row, col, game)
|
||||
self.display("... a moment please ...")
|
||||
self.screen.tracer(True)
|
||||
|
||||
def display(self, msg1, msg2=None):
|
||||
self.screen.tracer(False)
|
||||
self.writer.clear()
|
||||
if msg2 is not None:
|
||||
self.writer.goto(0, - SCREENHEIGHT // 2 + 48)
|
||||
self.writer.pencolor("red")
|
||||
self.writer.write(msg2, align="center", font=("Courier",18,"bold"))
|
||||
self.writer.goto(0, - SCREENHEIGHT // 2 + 20)
|
||||
self.writer.pencolor("black")
|
||||
self.writer.write(msg1, align="center", font=("Courier",14,"bold"))
|
||||
self.screen.tracer(True)
|
||||
|
||||
|
||||
def setup(self):
|
||||
self.screen.tracer(False)
|
||||
for row in range(3):
|
||||
for col in range(self.model.sticks[row]):
|
||||
self.sticks[(row, col)].color(SCOLOR)
|
||||
for row in range(3):
|
||||
for col in range(self.model.sticks[row], MAXSTICKS):
|
||||
self.sticks[(row, col)].color("white")
|
||||
self.display("Your turn! Click leftmost stick to remove.")
|
||||
self.screen.tracer(True)
|
||||
|
||||
def notify_move(self, row, col, maxspalte, player):
|
||||
if player == 0:
|
||||
farbe = HCOLOR
|
||||
for s in range(col, maxspalte):
|
||||
self.sticks[(row, s)].color(farbe)
|
||||
else:
|
||||
self.display(" ... thinking ... ")
|
||||
time.sleep(0.5)
|
||||
self.display(" ... thinking ... aaah ...")
|
||||
farbe = COLOR
|
||||
for s in range(maxspalte-1, col-1, -1):
|
||||
time.sleep(0.2)
|
||||
self.sticks[(row, s)].color(farbe)
|
||||
self.display("Your turn! Click leftmost stick to remove.")
|
||||
|
||||
def notify_over(self):
|
||||
if self.game.model.winner == 0:
|
||||
msg2 = "Congrats. You're the winner!!!"
|
||||
else:
|
||||
msg2 = "Sorry, the computer is the winner."
|
||||
self.display("To play again press space bar. To leave press ESC.", msg2)
|
||||
|
||||
def clear(self):
|
||||
if self.game.state == Nim.OVER:
|
||||
self.screen.clear()
|
||||
|
||||
class NimController(object):
|
||||
|
||||
def __init__(self, game):
|
||||
self.game = game
|
||||
self.sticks = game.view.sticks
|
||||
self.BUSY = False
|
||||
for stick in self.sticks.values():
|
||||
stick.onclick(stick.makemove)
|
||||
self.game.screen.onkey(self.game.model.setup, "space")
|
||||
self.game.screen.onkey(self.game.view.clear, "Escape")
|
||||
self.game.view.display("Press space bar to start game")
|
||||
self.game.screen.listen()
|
||||
|
||||
def notify_move(self, row, col):
|
||||
if self.BUSY:
|
||||
return
|
||||
self.BUSY = True
|
||||
self.game.model.notify_move(row, col)
|
||||
self.BUSY = False
|
||||
|
||||
class Nim(object):
|
||||
CREATED = 0
|
||||
RUNNING = 1
|
||||
OVER = 2
|
||||
def __init__(self, screen):
|
||||
self.state = Nim.CREATED
|
||||
self.screen = screen
|
||||
self.model = NimModel(self)
|
||||
self.view = NimView(self)
|
||||
self.controller = NimController(self)
|
||||
|
||||
|
||||
mainscreen = turtle.Screen()
|
||||
mainscreen.mode("standard")
|
||||
mainscreen.setup(SCREENWIDTH, SCREENHEIGHT)
|
||||
|
||||
def main():
|
||||
nim = Nim(mainscreen)
|
||||
return "EVENTLOOP!"
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
turtle.mainloop()
|
50
Lib/turtledemo/paint.py
Normal file
50
Lib/turtledemo/paint.py
Normal file
|
@ -0,0 +1,50 @@
|
|||
#!/usr/bin/env python3
|
||||
""" turtle-example-suite:
|
||||
|
||||
tdemo_paint.py
|
||||
|
||||
A simple eventdriven paint program
|
||||
|
||||
- use left mouse button to move turtle
|
||||
- middle mouse button to change color
|
||||
- right mouse button do turn filling on/off
|
||||
-------------------------------------------
|
||||
Play around by clicking into the canvas
|
||||
using all three mouse buttons.
|
||||
-------------------------------------------
|
||||
To exit press STOP button
|
||||
-------------------------------------------
|
||||
"""
|
||||
from turtle import *
|
||||
|
||||
def switchupdown(x=0, y=0):
|
||||
if pen()["pendown"]:
|
||||
end_fill()
|
||||
up()
|
||||
else:
|
||||
down()
|
||||
begin_fill()
|
||||
|
||||
def changecolor(x=0, y=0):
|
||||
global colors
|
||||
colors = colors[1:]+colors[:1]
|
||||
color(colors[0])
|
||||
|
||||
def main():
|
||||
global colors
|
||||
shape("circle")
|
||||
resizemode("user")
|
||||
shapesize(.5)
|
||||
width(3)
|
||||
colors=["red", "green", "blue", "yellow"]
|
||||
color(colors[0])
|
||||
switchupdown()
|
||||
onscreenclick(goto,1)
|
||||
onscreenclick(changecolor,2)
|
||||
onscreenclick(switchupdown,3)
|
||||
return "EVENTLOOP"
|
||||
|
||||
if __name__ == "__main__":
|
||||
msg = main()
|
||||
print(msg)
|
||||
mainloop()
|
65
Lib/turtledemo/peace.py
Normal file
65
Lib/turtledemo/peace.py
Normal file
|
@ -0,0 +1,65 @@
|
|||
#!/usr/bin/env python3
|
||||
""" turtle-example-suite:
|
||||
|
||||
tdemo_peace.py
|
||||
|
||||
A very simple drawing suitable as a beginner's
|
||||
programming example.
|
||||
|
||||
Uses only commands, which are also available in
|
||||
old turtle.py.
|
||||
|
||||
Intentionally no variables are used except for the
|
||||
colorloop:
|
||||
"""
|
||||
|
||||
from turtle import *
|
||||
|
||||
def main():
|
||||
peacecolors = ("red3", "orange", "yellow",
|
||||
"seagreen4", "orchid4",
|
||||
"royalblue1", "dodgerblue4")
|
||||
|
||||
reset()
|
||||
s = Screen()
|
||||
up()
|
||||
goto(-320,-195)
|
||||
width(70)
|
||||
|
||||
for pcolor in peacecolors:
|
||||
color(pcolor)
|
||||
down()
|
||||
forward(640)
|
||||
up()
|
||||
backward(640)
|
||||
left(90)
|
||||
forward(66)
|
||||
right(90)
|
||||
|
||||
width(25)
|
||||
color("white")
|
||||
goto(0,-170)
|
||||
down()
|
||||
|
||||
circle(170)
|
||||
left(90)
|
||||
forward(340)
|
||||
up()
|
||||
left(180)
|
||||
forward(170)
|
||||
right(45)
|
||||
down()
|
||||
forward(170)
|
||||
up()
|
||||
backward(170)
|
||||
left(90)
|
||||
down()
|
||||
forward(170)
|
||||
up()
|
||||
|
||||
goto(0,300) # vanish if hideturtle() is not available ;-)
|
||||
return "Done!!"
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
mainloop()
|
181
Lib/turtledemo/penrose.py
Normal file
181
Lib/turtledemo/penrose.py
Normal file
|
@ -0,0 +1,181 @@
|
|||
#!/usr/bin/env python3
|
||||
""" xturtle-example-suite:
|
||||
|
||||
xtx_kites_and_darts.py
|
||||
|
||||
Constructs two aperiodic penrose-tilings,
|
||||
consisting of kites and darts, by the method
|
||||
of inflation in six steps.
|
||||
|
||||
Starting points are the patterns "sun"
|
||||
consisting of five kites and "star"
|
||||
consisting of five darts.
|
||||
|
||||
For more information see:
|
||||
http://en.wikipedia.org/wiki/Penrose_tiling
|
||||
-------------------------------------------
|
||||
"""
|
||||
from turtle import *
|
||||
from math import cos, pi
|
||||
from time import clock, sleep
|
||||
|
||||
f = (5**0.5-1)/2.0 # (sqrt(5)-1)/2 -- golden ratio
|
||||
d = 2 * cos(3*pi/10)
|
||||
|
||||
def kite(l):
|
||||
fl = f * l
|
||||
lt(36)
|
||||
fd(l)
|
||||
rt(108)
|
||||
fd(fl)
|
||||
rt(36)
|
||||
fd(fl)
|
||||
rt(108)
|
||||
fd(l)
|
||||
rt(144)
|
||||
|
||||
def dart(l):
|
||||
fl = f * l
|
||||
lt(36)
|
||||
fd(l)
|
||||
rt(144)
|
||||
fd(fl)
|
||||
lt(36)
|
||||
fd(fl)
|
||||
rt(144)
|
||||
fd(l)
|
||||
rt(144)
|
||||
|
||||
def inflatekite(l, n):
|
||||
if n == 0:
|
||||
px, py = pos()
|
||||
h, x, y = int(heading()), round(px,3), round(py,3)
|
||||
tiledict[(h,x,y)] = True
|
||||
return
|
||||
fl = f * l
|
||||
lt(36)
|
||||
inflatedart(fl, n-1)
|
||||
fd(l)
|
||||
rt(144)
|
||||
inflatekite(fl, n-1)
|
||||
lt(18)
|
||||
fd(l*d)
|
||||
rt(162)
|
||||
inflatekite(fl, n-1)
|
||||
lt(36)
|
||||
fd(l)
|
||||
rt(180)
|
||||
inflatedart(fl, n-1)
|
||||
lt(36)
|
||||
|
||||
def inflatedart(l, n):
|
||||
if n == 0:
|
||||
px, py = pos()
|
||||
h, x, y = int(heading()), round(px,3), round(py,3)
|
||||
tiledict[(h,x,y)] = False
|
||||
return
|
||||
fl = f * l
|
||||
inflatekite(fl, n-1)
|
||||
lt(36)
|
||||
fd(l)
|
||||
rt(180)
|
||||
inflatedart(fl, n-1)
|
||||
lt(54)
|
||||
fd(l*d)
|
||||
rt(126)
|
||||
inflatedart(fl, n-1)
|
||||
fd(l)
|
||||
rt(144)
|
||||
|
||||
def draw(l, n, th=2):
|
||||
clear()
|
||||
l = l * f**n
|
||||
shapesize(l/100.0, l/100.0, th)
|
||||
for k in tiledict:
|
||||
h, x, y = k
|
||||
setpos(x, y)
|
||||
setheading(h)
|
||||
if tiledict[k]:
|
||||
shape("kite")
|
||||
color("black", (0, 0.75, 0))
|
||||
else:
|
||||
shape("dart")
|
||||
color("black", (0.75, 0, 0))
|
||||
stamp()
|
||||
|
||||
def sun(l, n):
|
||||
for i in range(5):
|
||||
inflatekite(l, n)
|
||||
lt(72)
|
||||
|
||||
def star(l,n):
|
||||
for i in range(5):
|
||||
inflatedart(l, n)
|
||||
lt(72)
|
||||
|
||||
def makeshapes():
|
||||
tracer(0)
|
||||
begin_poly()
|
||||
kite(100)
|
||||
end_poly()
|
||||
register_shape("kite", get_poly())
|
||||
begin_poly()
|
||||
dart(100)
|
||||
end_poly()
|
||||
register_shape("dart", get_poly())
|
||||
tracer(1)
|
||||
|
||||
def start():
|
||||
reset()
|
||||
ht()
|
||||
pu()
|
||||
makeshapes()
|
||||
resizemode("user")
|
||||
|
||||
def test(l=200, n=4, fun=sun, startpos=(0,0), th=2):
|
||||
global tiledict
|
||||
goto(startpos)
|
||||
setheading(0)
|
||||
tiledict = {}
|
||||
a = clock()
|
||||
tracer(0)
|
||||
fun(l, n)
|
||||
b = clock()
|
||||
draw(l, n, th)
|
||||
tracer(1)
|
||||
c = clock()
|
||||
print("Calculation: %7.4f s" % (b - a))
|
||||
print("Drawing: %7.4f s" % (c - b))
|
||||
print("Together: %7.4f s" % (c - a))
|
||||
nk = len([x for x in tiledict if tiledict[x]])
|
||||
nd = len([x for x in tiledict if not tiledict[x]])
|
||||
print("%d kites and %d darts = %d pieces." % (nk, nd, nk+nd))
|
||||
|
||||
def demo(fun=sun):
|
||||
start()
|
||||
for i in range(8):
|
||||
a = clock()
|
||||
test(300, i, fun)
|
||||
b = clock()
|
||||
t = b - a
|
||||
if t < 2:
|
||||
sleep(2 - t)
|
||||
|
||||
def main():
|
||||
#title("Penrose-tiling with kites and darts.")
|
||||
mode("logo")
|
||||
bgcolor(0.3, 0.3, 0)
|
||||
demo(sun)
|
||||
sleep(2)
|
||||
demo(star)
|
||||
pencolor("black")
|
||||
goto(0,-200)
|
||||
pencolor(0.7,0.7,1)
|
||||
write("Please wait...",
|
||||
align="center", font=('Arial Black', 36, 'bold'))
|
||||
test(600, 8, startpos=(70, 117))
|
||||
return "Done"
|
||||
|
||||
if __name__ == "__main__":
|
||||
msg = main()
|
||||
mainloop()
|
113
Lib/turtledemo/planet_and_moon.py
Normal file
113
Lib/turtledemo/planet_and_moon.py
Normal file
|
@ -0,0 +1,113 @@
|
|||
#!/usr/bin/env python3
|
||||
""" turtle-example-suite:
|
||||
|
||||
tdemo_planets_and_moon.py
|
||||
|
||||
Gravitational system simulation using the
|
||||
approximation method from Feynman-lectures,
|
||||
p.9-8, using turtlegraphics.
|
||||
|
||||
Example: heavy central body, light planet,
|
||||
very light moon!
|
||||
Planet has a circular orbit, moon a stable
|
||||
orbit around the planet.
|
||||
|
||||
You can hold the movement temporarily by pressing
|
||||
the left mouse button with mouse over the
|
||||
scrollbar of the canvas.
|
||||
|
||||
"""
|
||||
from turtle import Shape, Turtle, mainloop, Vec2D as Vec
|
||||
from time import sleep
|
||||
|
||||
G = 8
|
||||
|
||||
class GravSys(object):
|
||||
def __init__(self):
|
||||
self.planets = []
|
||||
self.t = 0
|
||||
self.dt = 0.01
|
||||
def init(self):
|
||||
for p in self.planets:
|
||||
p.init()
|
||||
def start(self):
|
||||
for i in range(10000):
|
||||
self.t += self.dt
|
||||
for p in self.planets:
|
||||
p.step()
|
||||
|
||||
class Star(Turtle):
|
||||
def __init__(self, m, x, v, gravSys, shape):
|
||||
Turtle.__init__(self, shape=shape)
|
||||
self.penup()
|
||||
self.m = m
|
||||
self.setpos(x)
|
||||
self.v = v
|
||||
gravSys.planets.append(self)
|
||||
self.gravSys = gravSys
|
||||
self.resizemode("user")
|
||||
self.pendown()
|
||||
def init(self):
|
||||
dt = self.gravSys.dt
|
||||
self.a = self.acc()
|
||||
self.v = self.v + 0.5*dt*self.a
|
||||
def acc(self):
|
||||
a = Vec(0,0)
|
||||
for planet in self.gravSys.planets:
|
||||
if planet != self:
|
||||
v = planet.pos()-self.pos()
|
||||
a += (G*planet.m/abs(v)**3)*v
|
||||
return a
|
||||
def step(self):
|
||||
dt = self.gravSys.dt
|
||||
self.setpos(self.pos() + dt*self.v)
|
||||
if self.gravSys.planets.index(self) != 0:
|
||||
self.setheading(self.towards(self.gravSys.planets[0]))
|
||||
self.a = self.acc()
|
||||
self.v = self.v + dt*self.a
|
||||
|
||||
## create compound yellow/blue turtleshape for planets
|
||||
|
||||
def main():
|
||||
s = Turtle()
|
||||
s.reset()
|
||||
s.getscreen().tracer(0,0)
|
||||
s.ht()
|
||||
s.pu()
|
||||
s.fd(6)
|
||||
s.lt(90)
|
||||
s.begin_poly()
|
||||
s.circle(6, 180)
|
||||
s.end_poly()
|
||||
m1 = s.get_poly()
|
||||
s.begin_poly()
|
||||
s.circle(6,180)
|
||||
s.end_poly()
|
||||
m2 = s.get_poly()
|
||||
|
||||
planetshape = Shape("compound")
|
||||
planetshape.addcomponent(m1,"orange")
|
||||
planetshape.addcomponent(m2,"blue")
|
||||
s.getscreen().register_shape("planet", planetshape)
|
||||
s.getscreen().tracer(1,0)
|
||||
|
||||
## setup gravitational system
|
||||
gs = GravSys()
|
||||
sun = Star(1000000, Vec(0,0), Vec(0,-2.5), gs, "circle")
|
||||
sun.color("yellow")
|
||||
sun.shapesize(1.8)
|
||||
sun.pu()
|
||||
earth = Star(12500, Vec(210,0), Vec(0,195), gs, "planet")
|
||||
earth.pencolor("green")
|
||||
earth.shapesize(0.8)
|
||||
moon = Star(1, Vec(220,0), Vec(0,295), gs, "planet")
|
||||
moon.pencolor("blue")
|
||||
moon.shapesize(0.5)
|
||||
gs.init()
|
||||
gs.start()
|
||||
return "Done!"
|
||||
|
||||
if __name__ == '__main__':
|
||||
msg = main()
|
||||
print(msg)
|
||||
#mainloop()
|
86
Lib/turtledemo/round_dance.py
Normal file
86
Lib/turtledemo/round_dance.py
Normal file
|
@ -0,0 +1,86 @@
|
|||
""" turtle-example-suite:
|
||||
|
||||
tdemo_round_dance.py
|
||||
|
||||
(Needs version 1.1 of the turtle module that
|
||||
comes with Python 3.1)
|
||||
|
||||
Dancing turtles have a compound shape
|
||||
consisting of a series of triangles of
|
||||
decreasing size.
|
||||
|
||||
Turtles march along a circle while rotating
|
||||
pairwise in opposite direction, with one
|
||||
exception. Does that breaking of symmetry
|
||||
enhance the attractiveness of the example?
|
||||
|
||||
Press any key to stop the animation.
|
||||
|
||||
Technically: demonstrates use of compound
|
||||
shapes, transformation of shapes as well as
|
||||
cloning turtles. The animation is
|
||||
controlled through update().
|
||||
"""
|
||||
|
||||
from turtle import *
|
||||
|
||||
def stop():
|
||||
global running
|
||||
running = False
|
||||
|
||||
def main():
|
||||
global running
|
||||
clearscreen()
|
||||
bgcolor("gray10")
|
||||
tracer(False)
|
||||
shape("triangle")
|
||||
f = 0.793402
|
||||
phi = 9.064678
|
||||
s = 5
|
||||
c = 1
|
||||
# create compound shape
|
||||
sh = Shape("compound")
|
||||
for i in range(10):
|
||||
shapesize(s)
|
||||
p =get_shapepoly()
|
||||
s *= f
|
||||
c *= f
|
||||
tilt(-phi)
|
||||
sh.addcomponent(p, (c, 0.25, 1-c), "black")
|
||||
register_shape("multitri", sh)
|
||||
# create dancers
|
||||
shapesize(1)
|
||||
shape("multitri")
|
||||
pu()
|
||||
setpos(0, -200)
|
||||
dancers = []
|
||||
for i in range(180):
|
||||
fd(7)
|
||||
tilt(-4)
|
||||
lt(2)
|
||||
update()
|
||||
if i % 12 == 0:
|
||||
dancers.append(clone())
|
||||
home()
|
||||
# dance
|
||||
running = True
|
||||
onkeypress(stop)
|
||||
listen()
|
||||
cs = 1
|
||||
while running:
|
||||
ta = -4
|
||||
for dancer in dancers:
|
||||
dancer.fd(7)
|
||||
dancer.lt(2)
|
||||
dancer.tilt(ta)
|
||||
ta = -4 if ta > 0 else 2
|
||||
if cs < 180:
|
||||
right(4)
|
||||
shapesize(cs)
|
||||
cs *= 1.005
|
||||
update()
|
||||
return "DONE!"
|
||||
|
||||
if __name__=='__main__':
|
||||
print(main())
|
||||
mainloop()
|
63
Lib/turtledemo/tree.py
Normal file
63
Lib/turtledemo/tree.py
Normal file
|
@ -0,0 +1,63 @@
|
|||
#!/usr/bin/env python3
|
||||
""" turtle-example-suite:
|
||||
|
||||
tdemo_tree.py
|
||||
|
||||
Displays a 'breadth-first-tree' - in contrast
|
||||
to the classical Logo tree drawing programs,
|
||||
which use a depth-first-algorithm.
|
||||
|
||||
Uses:
|
||||
(1) a tree-generator, where the drawing is
|
||||
quasi the side-effect, whereas the generator
|
||||
always yields None.
|
||||
(2) Turtle-cloning: At each branching point the
|
||||
current pen is cloned. So in the end there
|
||||
are 1024 turtles.
|
||||
"""
|
||||
from turtle import Turtle, mainloop
|
||||
from time import clock
|
||||
|
||||
def tree(plist, l, a, f):
|
||||
""" plist is list of pens
|
||||
l is length of branch
|
||||
a is half of the angle between 2 branches
|
||||
f is factor by which branch is shortened
|
||||
from level to level."""
|
||||
if l > 3:
|
||||
lst = []
|
||||
for p in plist:
|
||||
p.forward(l)
|
||||
q = p.clone()
|
||||
p.left(a)
|
||||
q.right(a)
|
||||
lst.append(p)
|
||||
lst.append(q)
|
||||
for x in tree(lst, l*f, a, f):
|
||||
yield None
|
||||
|
||||
def maketree():
|
||||
p = Turtle()
|
||||
p.setundobuffer(None)
|
||||
p.hideturtle()
|
||||
p.speed(0)
|
||||
p.getscreen().tracer(30,0)
|
||||
p.left(90)
|
||||
p.penup()
|
||||
p.forward(-210)
|
||||
p.pendown()
|
||||
t = tree([p], 200, 65, 0.6375)
|
||||
for x in t:
|
||||
pass
|
||||
print(len(p.getscreen().turtles()))
|
||||
|
||||
def main():
|
||||
a=clock()
|
||||
maketree()
|
||||
b=clock()
|
||||
return "done: %.2f sec." % (b-a)
|
||||
|
||||
if __name__ == "__main__":
|
||||
msg = main()
|
||||
print(msg)
|
||||
mainloop()
|
10
Lib/turtledemo/turtle.cfg
Normal file
10
Lib/turtledemo/turtle.cfg
Normal file
|
@ -0,0 +1,10 @@
|
|||
width = 800
|
||||
height = 600
|
||||
canvwidth = 1200
|
||||
canvheight = 900
|
||||
shape = arrow
|
||||
mode = standard
|
||||
resizemode = auto
|
||||
fillcolor = ""
|
||||
title = Python turtle graphics demo.
|
||||
|
52
Lib/turtledemo/two_canvases.py
Normal file
52
Lib/turtledemo/two_canvases.py
Normal file
|
@ -0,0 +1,52 @@
|
|||
#!/usr/bin/env python3
|
||||
## DEMONSTRATES USE OF 2 CANVASES, SO CANNOT BE RUN IN DEMOVIEWER!
|
||||
"""turtle example: Using TurtleScreen and RawTurtle
|
||||
for drawing on two distinct canvases.
|
||||
"""
|
||||
from turtle import TurtleScreen, RawTurtle, TK
|
||||
|
||||
root = TK.Tk()
|
||||
cv1 = TK.Canvas(root, width=300, height=200, bg="#ddffff")
|
||||
cv2 = TK.Canvas(root, width=300, height=200, bg="#ffeeee")
|
||||
cv1.pack()
|
||||
cv2.pack()
|
||||
|
||||
s1 = TurtleScreen(cv1)
|
||||
s1.bgcolor(0.85, 0.85, 1)
|
||||
s2 = TurtleScreen(cv2)
|
||||
s2.bgcolor(1, 0.85, 0.85)
|
||||
|
||||
p = RawTurtle(s1)
|
||||
q = RawTurtle(s2)
|
||||
|
||||
p.color("red", (1, 0.85, 0.85))
|
||||
p.width(3)
|
||||
q.color("blue", (0.85, 0.85, 1))
|
||||
q.width(3)
|
||||
|
||||
for t in p,q:
|
||||
t.shape("turtle")
|
||||
t.lt(36)
|
||||
|
||||
q.lt(180)
|
||||
|
||||
for t in p, q:
|
||||
t.begin_fill()
|
||||
for i in range(5):
|
||||
for t in p, q:
|
||||
t.fd(50)
|
||||
t.lt(72)
|
||||
for t in p,q:
|
||||
t.end_fill()
|
||||
t.lt(54)
|
||||
t.pu()
|
||||
t.bk(50)
|
||||
|
||||
## Want to get some info?
|
||||
|
||||
#print(s1, s2)
|
||||
#print(p, q)
|
||||
#print(s1.turtles())
|
||||
#print(s2.turtles())
|
||||
|
||||
TK.mainloop()
|
65
Lib/turtledemo/wikipedia.py
Normal file
65
Lib/turtledemo/wikipedia.py
Normal file
|
@ -0,0 +1,65 @@
|
|||
""" turtle-example-suite:
|
||||
|
||||
tdemo_wikipedia3.py
|
||||
|
||||
This example is
|
||||
inspired by the Wikipedia article on turtle
|
||||
graphics. (See example wikipedia1 for URLs)
|
||||
|
||||
First we create (ne-1) (i.e. 35 in this
|
||||
example) copies of our first turtle p.
|
||||
Then we let them perform their steps in
|
||||
parallel.
|
||||
|
||||
Followed by a complete undo().
|
||||
"""
|
||||
from turtle import Screen, Turtle, mainloop
|
||||
from time import clock, sleep
|
||||
|
||||
def mn_eck(p, ne,sz):
|
||||
turtlelist = [p]
|
||||
#create ne-1 additional turtles
|
||||
for i in range(1,ne):
|
||||
q = p.clone()
|
||||
q.rt(360.0/ne)
|
||||
turtlelist.append(q)
|
||||
p = q
|
||||
for i in range(ne):
|
||||
c = abs(ne/2.0-i)/(ne*.7)
|
||||
# let those ne turtles make a step
|
||||
# in parallel:
|
||||
for t in turtlelist:
|
||||
t.rt(360./ne)
|
||||
t.pencolor(1-c,0,c)
|
||||
t.fd(sz)
|
||||
|
||||
def main():
|
||||
s = Screen()
|
||||
s.bgcolor("black")
|
||||
p=Turtle()
|
||||
p.speed(0)
|
||||
p.hideturtle()
|
||||
p.pencolor("red")
|
||||
p.pensize(3)
|
||||
|
||||
s.tracer(36,0)
|
||||
|
||||
at = clock()
|
||||
mn_eck(p, 36, 19)
|
||||
et = clock()
|
||||
z1 = et-at
|
||||
|
||||
sleep(1)
|
||||
|
||||
at = clock()
|
||||
while any([t.undobufferentries() for t in s.turtles()]):
|
||||
for t in s.turtles():
|
||||
t.undo()
|
||||
et = clock()
|
||||
return "Laufzeit: %.3f sec" % (z1+et-at)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
msg = main()
|
||||
print(msg)
|
||||
mainloop()
|
49
Lib/turtledemo/yinyang.py
Normal file
49
Lib/turtledemo/yinyang.py
Normal file
|
@ -0,0 +1,49 @@
|
|||
#!/usr/bin/env python3
|
||||
""" turtle-example-suite:
|
||||
|
||||
tdemo_yinyang.py
|
||||
|
||||
Another drawing suitable as a beginner's
|
||||
programming example.
|
||||
|
||||
The small circles are drawn by the circle
|
||||
command.
|
||||
|
||||
"""
|
||||
|
||||
from turtle import *
|
||||
|
||||
def yin(radius, color1, color2):
|
||||
width(3)
|
||||
color("black", color1)
|
||||
begin_fill()
|
||||
circle(radius/2., 180)
|
||||
circle(radius, 180)
|
||||
left(180)
|
||||
circle(-radius/2., 180)
|
||||
end_fill()
|
||||
left(90)
|
||||
up()
|
||||
forward(radius*0.35)
|
||||
right(90)
|
||||
down()
|
||||
color(color1, color2)
|
||||
begin_fill()
|
||||
circle(radius*0.15)
|
||||
end_fill()
|
||||
left(90)
|
||||
up()
|
||||
backward(radius*0.35)
|
||||
down()
|
||||
left(90)
|
||||
|
||||
def main():
|
||||
reset()
|
||||
yin(200, "black", "white")
|
||||
yin(200, "white", "black")
|
||||
ht()
|
||||
return "Done!"
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
mainloop()
|
Loading…
Add table
Add a link
Reference in a new issue