Recorded merge of revisions 81029 via svnmerge from

svn+ssh://pythondev@svn.python.org/python/trunk

........
  r81029 | antoine.pitrou | 2010-05-09 16:46:46 +0200 (dim., 09 mai 2010) | 3 lines

  Untabify C files. Will watch buildbots.
........
This commit is contained in:
Antoine Pitrou 2010-05-09 15:52:27 +00:00
parent bd25030019
commit f95a1b3c53
248 changed files with 113361 additions and 113361 deletions

View file

@ -14,7 +14,7 @@
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
@ -27,11 +27,11 @@ static const double zero = 0.0;
/* acosh(x)
* Method :
* Based on
* acosh(x) = log [ x + sqrt(x*x-1) ]
* acosh(x) = log [ x + sqrt(x*x-1) ]
* we have
* acosh(x) := log(x)+ln2, if x is large; else
* acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
* acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
* acosh(x) := log(x)+ln2, if x is large; else
* acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
* acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
*
* Special cases:
* acosh(x) is NaN with signal if x<1.
@ -41,82 +41,82 @@ static const double zero = 0.0;
double
_Py_acosh(double x)
{
if (Py_IS_NAN(x)) {
return x+x;
}
if (x < 1.) { /* x < 1; return a signaling NaN */
errno = EDOM;
if (Py_IS_NAN(x)) {
return x+x;
}
if (x < 1.) { /* x < 1; return a signaling NaN */
errno = EDOM;
#ifdef Py_NAN
return Py_NAN;
return Py_NAN;
#else
return (x-x)/(x-x);
return (x-x)/(x-x);
#endif
}
else if (x >= two_pow_p28) { /* x > 2**28 */
if (Py_IS_INFINITY(x)) {
return x+x;
} else {
return log(x)+ln2; /* acosh(huge)=log(2x) */
}
}
else if (x == 1.) {
return 0.0; /* acosh(1) = 0 */
}
else if (x > 2.) { /* 2 < x < 2**28 */
double t = x*x;
return log(2.0*x - 1.0 / (x + sqrt(t - 1.0)));
}
else { /* 1 < x <= 2 */
double t = x - 1.0;
return m_log1p(t + sqrt(2.0*t + t*t));
}
}
else if (x >= two_pow_p28) { /* x > 2**28 */
if (Py_IS_INFINITY(x)) {
return x+x;
} else {
return log(x)+ln2; /* acosh(huge)=log(2x) */
}
}
else if (x == 1.) {
return 0.0; /* acosh(1) = 0 */
}
else if (x > 2.) { /* 2 < x < 2**28 */
double t = x*x;
return log(2.0*x - 1.0 / (x + sqrt(t - 1.0)));
}
else { /* 1 < x <= 2 */
double t = x - 1.0;
return m_log1p(t + sqrt(2.0*t + t*t));
}
}
/* asinh(x)
* Method :
* Based on
* asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ]
* we have
* asinh(x) := x if 1+x*x=1,
* := sign(x)*(log(x)+ln2)) for large |x|, else
* := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else
* := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2)))
* Based on
* asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ]
* we have
* asinh(x) := x if 1+x*x=1,
* := sign(x)*(log(x)+ln2)) for large |x|, else
* := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else
* := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2)))
*/
double
_Py_asinh(double x)
{
double w;
double absx = fabs(x);
{
double w;
double absx = fabs(x);
if (Py_IS_NAN(x) || Py_IS_INFINITY(x)) {
return x+x;
}
if (absx < two_pow_m28) { /* |x| < 2**-28 */
return x; /* return x inexact except 0 */
}
if (absx > two_pow_p28) { /* |x| > 2**28 */
w = log(absx)+ln2;
}
else if (absx > 2.0) { /* 2 < |x| < 2**28 */
w = log(2.0*absx + 1.0 / (sqrt(x*x + 1.0) + absx));
}
else { /* 2**-28 <= |x| < 2= */
double t = x*x;
w = m_log1p(absx + t / (1.0 + sqrt(1.0 + t)));
}
return copysign(w, x);
if (Py_IS_NAN(x) || Py_IS_INFINITY(x)) {
return x+x;
}
if (absx < two_pow_m28) { /* |x| < 2**-28 */
return x; /* return x inexact except 0 */
}
if (absx > two_pow_p28) { /* |x| > 2**28 */
w = log(absx)+ln2;
}
else if (absx > 2.0) { /* 2 < |x| < 2**28 */
w = log(2.0*absx + 1.0 / (sqrt(x*x + 1.0) + absx));
}
else { /* 2**-28 <= |x| < 2= */
double t = x*x;
w = m_log1p(absx + t / (1.0 + sqrt(1.0 + t)));
}
return copysign(w, x);
}
/* atanh(x)
* Method :
* 1.Reduced x to positive by atanh(-x) = -atanh(x)
* 2.For x>=0.5
* 1 2x x
* 1 2x x
* atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------)
* 2 1 - x 1 - x
* 2 1 - x 1 - x
*
* For x<0.5
* atanh(x) = 0.5*log1p(2x+2x*x/(1-x))
@ -130,32 +130,32 @@ _Py_asinh(double x)
double
_Py_atanh(double x)
{
double absx;
double t;
double absx;
double t;
if (Py_IS_NAN(x)) {
return x+x;
}
absx = fabs(x);
if (absx >= 1.) { /* |x| >= 1 */
errno = EDOM;
if (Py_IS_NAN(x)) {
return x+x;
}
absx = fabs(x);
if (absx >= 1.) { /* |x| >= 1 */
errno = EDOM;
#ifdef Py_NAN
return Py_NAN;
return Py_NAN;
#else
return x/zero;
return x/zero;
#endif
}
if (absx < two_pow_m28) { /* |x| < 2**-28 */
return x;
}
if (absx < 0.5) { /* |x| < 0.5 */
t = absx+absx;
t = 0.5 * m_log1p(t + t*absx / (1.0 - absx));
}
else { /* 0.5 <= |x| <= 1.0 */
t = 0.5 * m_log1p((absx + absx) / (1.0 - absx));
}
return copysign(t, x);
}
if (absx < two_pow_m28) { /* |x| < 2**-28 */
return x;
}
if (absx < 0.5) { /* |x| < 0.5 */
t = absx+absx;
t = 0.5 * m_log1p(t + t*absx / (1.0 - absx));
}
else { /* 0.5 <= |x| <= 1.0 */
t = 0.5 * m_log1p((absx + absx) / (1.0 - absx));
}
return copysign(t, x);
}
/* Mathematically, expm1(x) = exp(x) - 1. The expm1 function is designed
@ -173,15 +173,15 @@ _Py_expm1(double x)
*/
if (fabs(x) < 0.7) {
double u;
u = exp(x);
if (u == 1.0)
return x;
else
return (u - 1.0) * x / log(u);
double u;
u = exp(x);
if (u == 1.0)
return x;
else
return (u - 1.0) * x / log(u);
}
else
return exp(x) - 1.0;
return exp(x) - 1.0;
}
/* log1p(x) = log(1+x). The log1p function is designed to avoid the
@ -194,7 +194,7 @@ _Py_log1p(double x)
/* For x small, we use the following approach. Let y be the nearest float
to 1+x, then
1+x = y * (1 - (y-1-x)/y)
1+x = y * (1 - (y-1-x)/y)
so log(1+x) = log(y) + log(1-(y-1-x)/y). Since (y-1-x)/y is tiny, the
second term is well approximated by (y-1-x)/y. If abs(x) >=
@ -213,17 +213,17 @@ _Py_log1p(double x)
double y;
if (fabs(x) < DBL_EPSILON/2.) {
return x;
return x;
} else if (-0.5 <= x && x <= 1.) {
/* WARNING: it's possible than an overeager compiler
will incorrectly optimize the following two lines
to the equivalent of "return log(1.+x)". If this
happens, then results from log1p will be inaccurate
for small x. */
y = 1.+x;
return log(y)-((y-1.)-x)/y;
/* WARNING: it's possible than an overeager compiler
will incorrectly optimize the following two lines
to the equivalent of "return log(1.+x)". If this
happens, then results from log1p will be inaccurate
for small x. */
y = 1.+x;
return log(y)-((y-1.)-x)/y;
} else {
/* NaNs and infinities should end up here */
return log(1.+x);
/* NaNs and infinities should end up here */
return log(1.+x);
}
}