mirror of
https://github.com/python/cpython.git
synced 2025-08-04 00:48:58 +00:00
bpo-35892: Fix mode() and add multimode() (#12089)
This commit is contained in:
parent
3e936431e2
commit
fc06a192fd
4 changed files with 97 additions and 48 deletions
|
@ -17,6 +17,7 @@ median_low Low median of data.
|
|||
median_high High median of data.
|
||||
median_grouped Median, or 50th percentile, of grouped data.
|
||||
mode Mode (most common value) of data.
|
||||
multimode List of modes (most common values of data)
|
||||
================== =============================================
|
||||
|
||||
Calculate the arithmetic mean ("the average") of data:
|
||||
|
@ -79,10 +80,9 @@ A single exception is defined: StatisticsError is a subclass of ValueError.
|
|||
__all__ = [ 'StatisticsError', 'NormalDist',
|
||||
'pstdev', 'pvariance', 'stdev', 'variance',
|
||||
'median', 'median_low', 'median_high', 'median_grouped',
|
||||
'mean', 'mode', 'harmonic_mean', 'fmean',
|
||||
'mean', 'mode', 'multimode', 'harmonic_mean', 'fmean',
|
||||
]
|
||||
|
||||
import collections
|
||||
import math
|
||||
import numbers
|
||||
import random
|
||||
|
@ -92,8 +92,8 @@ from decimal import Decimal
|
|||
from itertools import groupby
|
||||
from bisect import bisect_left, bisect_right
|
||||
from math import hypot, sqrt, fabs, exp, erf, tau, log, fsum
|
||||
|
||||
|
||||
from operator import itemgetter
|
||||
from collections import Counter
|
||||
|
||||
# === Exceptions ===
|
||||
|
||||
|
@ -249,20 +249,6 @@ def _convert(value, T):
|
|||
raise
|
||||
|
||||
|
||||
def _counts(data):
|
||||
# Generate a table of sorted (value, frequency) pairs.
|
||||
table = collections.Counter(iter(data)).most_common()
|
||||
if not table:
|
||||
return table
|
||||
# Extract the values with the highest frequency.
|
||||
maxfreq = table[0][1]
|
||||
for i in range(1, len(table)):
|
||||
if table[i][1] != maxfreq:
|
||||
table = table[:i]
|
||||
break
|
||||
return table
|
||||
|
||||
|
||||
def _find_lteq(a, x):
|
||||
'Locate the leftmost value exactly equal to x'
|
||||
i = bisect_left(a, x)
|
||||
|
@ -334,9 +320,9 @@ def fmean(data):
|
|||
nonlocal n
|
||||
n += 1
|
||||
return x
|
||||
total = math.fsum(map(count, data))
|
||||
total = fsum(map(count, data))
|
||||
else:
|
||||
total = math.fsum(data)
|
||||
total = fsum(data)
|
||||
try:
|
||||
return total / n
|
||||
except ZeroDivisionError:
|
||||
|
@ -523,19 +509,38 @@ def mode(data):
|
|||
>>> mode(["red", "blue", "blue", "red", "green", "red", "red"])
|
||||
'red'
|
||||
|
||||
If there is not exactly one most common value, ``mode`` will raise
|
||||
StatisticsError.
|
||||
If there are multiple modes, return the first one encountered.
|
||||
|
||||
>>> mode(['red', 'red', 'green', 'blue', 'blue'])
|
||||
'red'
|
||||
|
||||
If *data* is empty, ``mode``, raises StatisticsError.
|
||||
|
||||
"""
|
||||
# Generate a table of sorted (value, frequency) pairs.
|
||||
table = _counts(data)
|
||||
if len(table) == 1:
|
||||
return table[0][0]
|
||||
elif table:
|
||||
raise StatisticsError(
|
||||
'no unique mode; found %d equally common values' % len(table)
|
||||
)
|
||||
else:
|
||||
raise StatisticsError('no mode for empty data')
|
||||
data = iter(data)
|
||||
try:
|
||||
return Counter(data).most_common(1)[0][0]
|
||||
except IndexError:
|
||||
raise StatisticsError('no mode for empty data') from None
|
||||
|
||||
|
||||
def multimode(data):
|
||||
""" Return a list of the most frequently occurring values.
|
||||
|
||||
Will return more than one result if there are multiple modes
|
||||
or an empty list if *data* is empty.
|
||||
|
||||
>>> multimode('aabbbbbbbbcc')
|
||||
['b']
|
||||
>>> multimode('aabbbbccddddeeffffgg')
|
||||
['b', 'd', 'f']
|
||||
>>> multimode('')
|
||||
[]
|
||||
|
||||
"""
|
||||
counts = Counter(iter(data)).most_common()
|
||||
maxcount, mode_items = next(groupby(counts, key=itemgetter(1)), (0, []))
|
||||
return list(map(itemgetter(0), mode_items))
|
||||
|
||||
|
||||
# === Measures of spread ===
|
||||
|
@ -836,6 +841,7 @@ if __name__ == '__main__':
|
|||
from math import isclose
|
||||
from operator import add, sub, mul, truediv
|
||||
from itertools import repeat
|
||||
import doctest
|
||||
|
||||
g1 = NormalDist(10, 20)
|
||||
g2 = NormalDist(-5, 25)
|
||||
|
@ -893,3 +899,5 @@ if __name__ == '__main__':
|
|||
S = NormalDist.from_samples([x - y for x, y in zip(X.samples(n),
|
||||
Y.samples(n))])
|
||||
assert_close(X - Y, S)
|
||||
|
||||
print(doctest.testmod())
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue