bpo-35892: Fix mode() and add multimode() (#12089)

This commit is contained in:
Raymond Hettinger 2019-03-12 00:43:27 -07:00 committed by GitHub
parent 3e936431e2
commit fc06a192fd
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
4 changed files with 97 additions and 48 deletions

View file

@ -17,6 +17,7 @@ median_low Low median of data.
median_high High median of data.
median_grouped Median, or 50th percentile, of grouped data.
mode Mode (most common value) of data.
multimode List of modes (most common values of data)
================== =============================================
Calculate the arithmetic mean ("the average") of data:
@ -79,10 +80,9 @@ A single exception is defined: StatisticsError is a subclass of ValueError.
__all__ = [ 'StatisticsError', 'NormalDist',
'pstdev', 'pvariance', 'stdev', 'variance',
'median', 'median_low', 'median_high', 'median_grouped',
'mean', 'mode', 'harmonic_mean', 'fmean',
'mean', 'mode', 'multimode', 'harmonic_mean', 'fmean',
]
import collections
import math
import numbers
import random
@ -92,8 +92,8 @@ from decimal import Decimal
from itertools import groupby
from bisect import bisect_left, bisect_right
from math import hypot, sqrt, fabs, exp, erf, tau, log, fsum
from operator import itemgetter
from collections import Counter
# === Exceptions ===
@ -249,20 +249,6 @@ def _convert(value, T):
raise
def _counts(data):
# Generate a table of sorted (value, frequency) pairs.
table = collections.Counter(iter(data)).most_common()
if not table:
return table
# Extract the values with the highest frequency.
maxfreq = table[0][1]
for i in range(1, len(table)):
if table[i][1] != maxfreq:
table = table[:i]
break
return table
def _find_lteq(a, x):
'Locate the leftmost value exactly equal to x'
i = bisect_left(a, x)
@ -334,9 +320,9 @@ def fmean(data):
nonlocal n
n += 1
return x
total = math.fsum(map(count, data))
total = fsum(map(count, data))
else:
total = math.fsum(data)
total = fsum(data)
try:
return total / n
except ZeroDivisionError:
@ -523,19 +509,38 @@ def mode(data):
>>> mode(["red", "blue", "blue", "red", "green", "red", "red"])
'red'
If there is not exactly one most common value, ``mode`` will raise
StatisticsError.
If there are multiple modes, return the first one encountered.
>>> mode(['red', 'red', 'green', 'blue', 'blue'])
'red'
If *data* is empty, ``mode``, raises StatisticsError.
"""
# Generate a table of sorted (value, frequency) pairs.
table = _counts(data)
if len(table) == 1:
return table[0][0]
elif table:
raise StatisticsError(
'no unique mode; found %d equally common values' % len(table)
)
else:
raise StatisticsError('no mode for empty data')
data = iter(data)
try:
return Counter(data).most_common(1)[0][0]
except IndexError:
raise StatisticsError('no mode for empty data') from None
def multimode(data):
""" Return a list of the most frequently occurring values.
Will return more than one result if there are multiple modes
or an empty list if *data* is empty.
>>> multimode('aabbbbbbbbcc')
['b']
>>> multimode('aabbbbccddddeeffffgg')
['b', 'd', 'f']
>>> multimode('')
[]
"""
counts = Counter(iter(data)).most_common()
maxcount, mode_items = next(groupby(counts, key=itemgetter(1)), (0, []))
return list(map(itemgetter(0), mode_items))
# === Measures of spread ===
@ -836,6 +841,7 @@ if __name__ == '__main__':
from math import isclose
from operator import add, sub, mul, truediv
from itertools import repeat
import doctest
g1 = NormalDist(10, 20)
g2 = NormalDist(-5, 25)
@ -893,3 +899,5 @@ if __name__ == '__main__':
S = NormalDist.from_samples([x - y for x, y in zip(X.samples(n),
Y.samples(n))])
assert_close(X - Y, S)
print(doctest.testmod())