Fix problems with memoryview object. There is still more to do to finish PEP 3118. The memory-view object needs to be fleshed out and the struct module needs to be modified.

This commit is contained in:
Travis E. Oliphant 2007-10-12 23:27:53 +00:00
parent 9b30784ab2
commit fe9bed02e4
4 changed files with 400 additions and 381 deletions

View file

@ -8,9 +8,9 @@ extern "C" {
#endif
typedef struct {
PyObject_HEAD
PyObject *base;
Py_buffer view;
PyObject_HEAD
PyObject *base;
Py_buffer view;
} PyMemoryViewObject;
@ -21,39 +21,40 @@ PyAPI_DATA(PyTypeObject) PyMemoryView_Type;
#define Py_END_OF_MEMORY (-1)
PyAPI_FUNC(PyObject *) PyMemoryView_GetContiguous(PyObject *base, int buffertype,
char fort);
PyAPI_FUNC(PyObject *) PyMemoryView_GetContiguous(PyObject *base,
int buffertype,
char fort);
/* Return a contiguous chunk of memory representing the buffer
from an object in a memory view object. If a copy is made then the
base object for the memory view will be a *new* bytes object.
Otherwise, the base-object will be the object itself and no
data-copying will be done.
The buffertype argument can be PyBUF_READ, PyBUF_WRITE,
PyBUF_UPDATEIFCOPY to determine whether the returned buffer
should be READONLY, WRITABLE, or set to update the
original buffer if a copy must be made. If buffertype is
PyBUF_WRITE and the buffer is not contiguous an error will
be raised. In this circumstance, the user can use
PyBUF_UPDATEIFCOPY to ensure that a a writable temporary
contiguous buffer is returned. The contents of this
contiguous buffer will be copied back into the original
object after the memoryview object is deleted as long as
the original object is writable and allows setting its
memory to "readonly". If this is not allowed by the
original object, then a BufferError is raised.
base object for the memory view will be a *new* bytes object.
If the object is multi-dimensional and if fortran is 'F',
the first dimension of the underlying array will vary the
fastest in the buffer. If fortran is 'C', then the last
dimension will vary the fastest (C-style contiguous). If
fortran is 'A', then it does not matter and you will get
whatever the object decides is more efficient.
Otherwise, the base-object will be the object itself and no
data-copying will be done.
A new reference is returned that must be DECREF'd when finished.
*/
The buffertype argument can be PyBUF_READ, PyBUF_WRITE,
PyBUF_SHADOW to determine whether the returned buffer
should be READONLY, WRITABLE, or set to update the
original buffer if a copy must be made. If buffertype is
PyBUF_WRITE and the buffer is not contiguous an error will
be raised. In this circumstance, the user can use
PyBUF_SHADOW to ensure that a a writable temporary
contiguous buffer is returned. The contents of this
contiguous buffer will be copied back into the original
object after the memoryview object is deleted as long as
the original object is writable and allows setting an
exclusive write lock. If this is not allowed by the
original object, then a BufferError is raised.
If the object is multi-dimensional and if fortran is 'F',
the first dimension of the underlying array will vary the
fastest in the buffer. If fortran is 'C', then the last
dimension will vary the fastest (C-style contiguous). If
fortran is 'A', then it does not matter and you will get
whatever the object decides is more efficient.
A new reference is returned that must be DECREF'd when finished.
*/
PyAPI_FUNC(PyObject *) PyMemoryView_FromObject(PyObject *base);

View file

@ -164,7 +164,7 @@ typedef void (*releasebufferproc)(PyObject *, Py_buffer *);
#define PyBUF_WRITABLE 0x0002
/* we used to include an E, backwards compatible alias */
#define PyBUF_WRITEABLE PyBUF_WRITABLE
#define PyBUF_LOCKDATA 0x0004
#define PyBUF_LOCK 0x0004
#define PyBUF_FORMAT 0x0008
#define PyBUF_ND 0x0010
#define PyBUF_STRIDES (0x0020 | PyBUF_ND)
@ -175,19 +175,25 @@ typedef void (*releasebufferproc)(PyObject *, Py_buffer *);
#define PyBUF_CONTIG (PyBUF_ND | PyBUF_WRITABLE)
#define PyBUF_CONTIG_RO (PyBUF_ND)
#define PyBUF_CONTIG_LCK (PyBUF_ND | PyBUF_LOCKDATA)
#define PyBUF_CONTIG_LCK (PyBUF_ND | PyBUF_LOCK)
#define PyBUF_CONTIG_XLCK (PyBUF_ND | PyBUF_LOCK | PyBUF_WRITABLE)
#define PyBUF_STRIDED (PyBUF_STRIDES | PyBUF_WRITABLE)
#define PyBUF_STRIDED_RO (PyBUF_STRIDES)
#define PyBUF_STRIDED_LCK (PyBUF_STRIDES | PyBUF_LOCKDATA)
#define PyBUF_STRIDED_LCK (PyBUF_STRIDES | PyBUF_LOCK)
#define PyBUF_STRIDED_XLCK (PyBUF_STRIDES | PyBUF_LOCK | PyBUF_WRITABLE)
#define PyBUF_RECORDS (PyBUF_STRIDES | PyBUF_WRITABLE | PyBUF_FORMAT)
#define PyBUF_RECORDS_RO (PyBUF_STRIDES | PyBUF_FORMAT)
#define PyBUF_RECORDS_LCK (PyBUF_STRIDES | PyBUF_LOCKDATA | PyBUF_FORMAT)
#define PyBUF_RECORDS_LCK (PyBUF_STRIDES | PyBUF_LOCK | PyBUF_FORMAT)
#define PyBUF_RECORDS_XLCK (PyBUF_STRIDES | PyBUF_LOCK | PyBUF_WRITABLE \
| PyBUF_FORMAT)
#define PyBUF_FULL (PyBUF_INDIRECT | PyBUF_WRITABLE | PyBUF_FORMAT)
#define PyBUF_FULL_RO (PyBUF_INDIRECT | PyBUF_FORMAT)
#define PyBUF_FULL_LCK (PyBUF_INDIRECT | PyBUF_LOCKDATA | PyBUF_FORMAT)
#define PyBUF_FULL_LCK (PyBUF_INDIRECT | PyBUF_LOCK | PyBUF_FORMAT)
#define PyBUF_FULL_XLCK (PyBUF_INDIRECT | PyBUF_LOCK | PyBUF_WRITABLE \
| PyBUF_FORMAT)
#define PyBUF_READ 0x100