Use a `PyMutex` to avoid the race in mutex initialization. Use relaxed
atomics to avoid the data race on reading `_PyOS_ReadlineTState` when
checking for re-entrant calls.
* Remove unused <locale.h> includes.
* Remove unused <fcntl.h> include in traceback.h.
* Remove redundant <assert.h> and <stddef.h> includes. They are already
included by "Python.h".
* Remove <object.h> include in faulthandler.c. Python.h already includes it.
* Add missing <stdbool.h> in pycore_pythread.h if HAVE_PTHREAD_STUBS
is defined.
* Fix also warnings in pthread_stubs.h: don't redefine macros if they
are already defined, like the __NEED_pthread_t macro.
Add `MS_WINDOWS_DESKTOP`, `MS_WINDOWS_APPS`, `MS_WINDOWS_SYSTEM` and `MS_WINDOWS_GAMES` preprocessor definitions to allow switching off functionality missing from particular API partitions ("partitions" are used in Windows to identify overlapping subsets of APIs).
CPython only officially supports `MS_WINDOWS_DESKTOP` and `MS_WINDOWS_SYSTEM` (APPS is included by normal desktop builds, but APPS without DESKTOP is not covered). Other configurations are a convenience for people building their own runtimes.
`MS_WINDOWS_GAMES` is for the Xbox subset of the Windows API, which is also available on client OS, but is restricted compared to `MS_WINDOWS_DESKTOP`. These restrictions may change over time, as they relate to the build headers rather than the OS support, and so we assume that Xbox builds will use the latest available version of the GDK.
On Windows, PyOS_StdioReadline() now gets
PyConfig.legacy_windows_stdio from _PyOS_ReadlineTState, rather than
using the deprecated global Py_LegacyWindowsStdioFlag variable.
Fix also a compiler warning in Py_SetStandardStreamEncoding().
This works by not caching the handle and instead getting the handle from
the file descriptor each time, so that if the actual handle changes by
fd redirection closing/opening the console handle beneath our feet, we
will keep working correctly.
This consolidates the handling of my_fgets return values, so that interrupts are always handled, even if they come after EOF.
I believe PyOS_StdioReadline is still buggy in that I/O errors will not result in a proper Python exception being set. However, that is a separate issue.
my_fgets() now calls _PyOS_InterruptOccurred(tstate) to check for
pending signals, rather calling PyOS_InterruptOccurred().
my_fgets() is called with the GIL released, whereas
PyOS_InterruptOccurred() must be called with the GIL held.
test_repl: use text=True and avoid SuppressCrashReport in
test_multiline_string_parsing().
Fix my_fgets() on Windows: fgets(fp) does crash if fileno(fp) is closed.
Fix GIL usage in PyOS_Readline(): lock the GIL to set an exception.
Pass tstate to my_fgets() and _PyOS_WindowsConsoleReadline(). Cleanup
these functions.
If Py_BUILD_CORE is defined, the PyThreadState_GET() macro access
_PyRuntime which comes from the internal pycore_state.h header.
Public headers must not require internal headers.
Move PyThreadState_GET() and _PyInterpreterState_GET_UNSAFE() from
Include/pystate.h to Include/internal/pycore_state.h, and rename
PyThreadState_GET() to _PyThreadState_GET() there.
The PyThreadState_GET() macro of pystate.h is now redefined when
pycore_state.h is included, to use the fast _PyThreadState_GET().
Changes:
* Add _PyThreadState_GET() macro
* Replace "PyThreadState_GET()->interp" with
_PyInterpreterState_GET_UNSAFE()
* Replace PyThreadState_GET() with _PyThreadState_GET() in internal C
files (compiled with Py_BUILD_CORE defined), but keep
PyThreadState_GET() in the public header files.
* _testcapimodule.c: replace PyThreadState_GET() with
PyThreadState_Get(); the module is not compiled with Py_BUILD_CORE
defined.
* pycore_state.h now requires Py_BUILD_CORE to be defined.
* group the (stateful) runtime globals into various topical structs
* consolidate the topical structs under a single top-level _PyRuntimeState struct
* add a check-c-globals.py script that helps identify runtime globals
Other globals are excluded (see globals.txt and check-c-globals.py).
The GIL must be held to call PyMem_Malloc(), whereas PyOS_Readline() releases
the GIL to read input.
The result of the C callback PyOS_ReadlineFunctionPointer must now be a string
allocated by PyMem_RawMalloc() or PyMem_RawRealloc() (or NULL if an error
occurred), instead of a string allocated by PyMem_Malloc() or PyMem_Realloc().
Fixing this issue was required to setup a hook on PyMem_Malloc(), for example
using the tracemalloc module.
PyOS_Readline() copies the result of PyOS_ReadlineFunctionPointer() into a new
buffer allocated by PyMem_Malloc(). So the public API of PyOS_Readline() does
not change.