GH-103082: Rename PY_MONITORING_EVENTS to _PY_MONITORING_EVENTS (#107069)
Rename private C API constants:
* Rename PY_MONITORING_UNGROUPED_EVENTS to _PY_MONITORING_UNGROUPED_EVENTS
* Rename PY_MONITORING_EVENTS to _PY_MONITORING_EVENTS
(cherry picked from commit 0927a2b25c)
gh-105340: include hidden fast-locals in locals() (GH-105715)
* gh-105340: include hidden fast-locals in locals()
(cherry picked from commit 104d7b760f)
Co-authored-by: Carl Meyer <carl@oddbird.net>
gh-106140: Reorder some fields to facilitate out-of-process inspection (GH-106143)
(cherry picked from commit 2d5a1c2811)
Signed-off-by: Pablo Galindo <pablogsal@gmail.com>
Co-authored-by: Pablo Galindo Salgado <Pablogsal@gmail.com>
gh-105587: Remove assertion from `_PyStaticObject_CheckRefcnt` (GH-105638)
(cherry picked from commit 6199fe3b32)
Co-authored-by: Eddie Elizondo <eduardo.elizondorueda@gmail.com>
For a while now, pending calls only run in the main thread (in the main interpreter). This PR changes things to allow any thread run a pending call, unless the pending call was explicitly added for the main thread to run.
(cherry picked from commit 757b402)
The risk of a race with this state is relatively low, but we play it safe anyway. We do avoid using the lock in performance-sensitive cases where the risk of a race is very, very low.
(cherry picked from commit 68dfa49627)
Co-authored-by: Eric Snow <ericsnowcurrently@gmail.com>
The risk of a race with this state is relatively low, but we play it safe anyway.
(cherry picked from commit 7799c8e678)
Co-authored-by: Eric Snow <ericsnowcurrently@gmail.com>
This avoids the problematic race in drop_gil() by skipping the FORCE_SWITCHING code there for finalizing threads.
(The idea for this approach came out of discussions with @markshannon.)
(cherry picked from commit 3698fda)
Co-authored-by: Eric Snow ericsnowcurrently@gmail.com
In gh-103912 we added tp_bases and tp_mro to each PyInterpreterState.types.builtins entry. However, doing so ignored the fact that both PyTypeObject fields are public API, and not documented as internal (as opposed to tp_subclasses). We address that here by reverting back to shared objects, making them immortal in the process.
(cherry picked from commit 7be667d)
Co-authored-by: Eric Snow ericsnowcurrently@gmail.com
This commit replaces the Python implementation of the tokenize module with an implementation
that reuses the real C tokenizer via a private extension module. The tokenize module now implements
a compatibility layer that transforms tokens from the C tokenizer into Python tokenize tokens for backward
compatibility.
As the C tokenizer does not emit some tokens that the Python tokenizer provides (such as comments and non-semantic newlines), a new special mode has been added to the C tokenizer mode that currently is only used via
the extension module that exposes it to the Python layer. This new mode forces the C tokenizer to emit these new extra tokens and add the appropriate metadata that is needed to match the old Python implementation.
Co-authored-by: Pablo Galindo <pablogsal@gmail.com>
This PR updates `math.nextafter` to add a new `steps` argument. The behaviour is as though `math.nextafter` had been called `steps` times in succession.
---------
Co-authored-by: Mark Dickinson <mdickinson@enthought.com>
This implements PEP 695, Type Parameter Syntax. It adds support for:
- Generic functions (def func[T](): ...)
- Generic classes (class X[T](): ...)
- Type aliases (type X = ...)
- New scoping when the new syntax is used within a class body
- Compiler and interpreter changes to support the new syntax and scoping rules
Co-authored-by: Marc Mueller <30130371+cdce8p@users.noreply.github.com>
Co-authored-by: Eric Traut <eric@traut.com>
Co-authored-by: Larry Hastings <larry@hastings.org>
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
When monitoring LINE events, instrument all instructions that can have a predecessor on a different line.
Then check that the a new line has been hit in the instrumentation code.
This brings the behavior closer to that of 3.11, simplifying implementation and porting of tools.
This PR removes `_Py_dg_stdnan` and `_Py_dg_infinity` in favour of
using the standard `NAN` and `INFINITY` macros provided by C99.
This change has the side-effect of fixing a bug on MIPS where the
hard-coded value used by `_Py_dg_stdnan` gave a signalling NaN
rather than a quiet NaN.
---------
Co-authored-by: Mark Dickinson <dickinsm@gmail.com>
This is the culmination of PEP 684 (and of my 8-year long multi-core Python project)!
Each subinterpreter may now be created with its own GIL (via Py_NewInterpreterFromConfig()). If not so configured then the interpreter will share with the main interpreter--the status quo since subinterpreters were added decades ago. The main interpreter always has its own GIL and subinterpreters from Py_NewInterpreter() will always share with the main interpreter.
We also add PyInterpreterState.ceval.own_gil to record if the interpreter actually has its own GIL.
Note that for now we don't actually respect own_gil; all interpreters still share the one GIL. However, PyInterpreterState.ceval.own_gil does reflect PyInterpreterConfig.own_gil. That lie is a temporary one that we will fix when the GIL really becomes per-interpreter.
In preparation for a per-interpreter GIL, we add PyInterpreterState.ceval.gil, set it to the shared GIL for each interpreter, and use that rather than using _PyRuntime.ceval.gil directly. Note that _PyRuntime.ceval.gil is still the actual GIL.
This function no longer makes sense, since its runtime parameter is
no longer used. Use directly _PyThreadState_GET() and
_PyInterpreterState_GET() instead.
his involves moving tp_dict, tp_bases, and tp_mro to PyInterpreterState, in the same way we did for tp_subclasses. Those three fields are effectively const for builtin static types (unlike tp_subclasses). In theory we only need to make their values immortal, along with their contents. However, that isn't such a simple proposition. (See gh-103823.) In the meantime the simplest solution is to move the fields into the interpreter.
One alternative is to statically allocate the values, but that's its own can of worms.