* Replace malloc() with PyMem_RawMalloc()
* Replace PyMem_Malloc() with PyMem_RawMalloc() where the GIL is not held.
* _Py_char2wchar() now returns a buffer allocated by PyMem_RawMalloc(), instead
of PyMem_Malloc()
Add new enum:
* PyMemAllocatorDomain
Add new structures:
* PyMemAllocator
* PyObjectArenaAllocator
Add new functions:
* PyMem_RawMalloc(), PyMem_RawRealloc(), PyMem_RawFree()
* PyMem_GetAllocator(), PyMem_SetAllocator()
* PyObject_GetArenaAllocator(), PyObject_SetArenaAllocator()
* PyMem_SetupDebugHooks()
Changes:
* PyMem_Malloc()/PyObject_Realloc() now always call malloc()/realloc(), instead
of calling PyObject_Malloc()/PyObject_Realloc() in debug mode.
* PyObject_Malloc()/PyObject_Realloc() now falls back to
PyMem_Malloc()/PyMem_Realloc() for allocations larger than 512 bytes.
* Redesign debug checks on memory block allocators as hooks, instead of using C
macros
CID 983320: Resource leak (RESOURCE_LEAK)
CID 983321: Resource leak (RESOURCE_LEAK)
leaked_storage: Variable substring going out of scope leaks the storage it points to.
* Add a new PyMemAllocators structure
* New functions:
- PyMem_RawMalloc(), PyMem_RawRealloc(), PyMem_RawFree(): GIL-free memory
allocator functions
- PyMem_GetRawAllocators(), PyMem_SetRawAllocators()
- PyMem_GetAllocators(), PyMem_SetAllocators()
- PyMem_SetupDebugHooks()
- _PyObject_GetArenaAllocators(), _PyObject_SetArenaAllocators()
* Add unit test for PyMem_Malloc(0) and PyObject_Malloc(0)
* Add unit test for new get/set allocators functions
* PyObject_Malloc() now falls back on PyMem_Malloc() instead of malloc() if
size is bigger than SMALL_REQUEST_THRESHOLD, and PyObject_Realloc() falls
back on PyMem_Realloc() instead of realloc()
* PyMem_Malloc() and PyMem_Realloc() now always call malloc() and realloc(),
instead of calling PyObject_Malloc() and PyObject_Realloc() in debug mode
ImportError.
The exception is raised by import when a module could not be found.
Technically this is defined as no viable loader could be found for the
specified module. This includes ``from ... import`` statements so that
the module usage is consistent for all situations where import
couldn't find what was requested.
This should allow for the common idiom of::
try:
import something
except ImportError:
pass
to be updated to using ModuleNotFoundError and not accidentally mask
ImportError messages that should propagate (e.g. issues with a
loader).
This work was driven by the fact that the ``from ... import``
statement needed to be able to tell the difference between an
ImportError that simply couldn't find a module (and thus silence the
exception so that ceval can raise it) and an ImportError that
represented an actual problem.
The result type is int, return -1 to avoid a compiler warning (cast Py_ssize_t
to int). PyObject_Size() can only fail with -1, and anyway a constructor
should return -1 on error, not an arbitrary negative number.