We also add PyInterpreterState.ceval.own_gil to record if the interpreter actually has its own GIL.
Note that for now we don't actually respect own_gil; all interpreters still share the one GIL. However, PyInterpreterState.ceval.own_gil does reflect PyInterpreterConfig.own_gil. That lie is a temporary one that we will fix when the GIL really becomes per-interpreter.
Here we are doing no more than adding the value for Py_mod_multiple_interpreters and using it for stdlib modules. We will start checking for it in gh-104206 (once PyInterpreterState.ceval.own_gil is added in gh-104204).
In preparation for a per-interpreter GIL, we add PyInterpreterState.ceval.gil, set it to the shared GIL for each interpreter, and use that rather than using _PyRuntime.ceval.gil directly. Note that _PyRuntime.ceval.gil is still the actual GIL.
This function no longer makes sense, since its runtime parameter is
no longer used. Use directly _PyThreadState_GET() and
_PyInterpreterState_GET() instead.
We also expose PyInterpreterConfig. This is part of the PEP 684 (per-interpreter GIL) implementation. We will add docs as soon as we can.
FYI, I'm adding the new config field for per-interpreter GIL in gh-99114.
his involves moving tp_dict, tp_bases, and tp_mro to PyInterpreterState, in the same way we did for tp_subclasses. Those three fields are effectively const for builtin static types (unlike tp_subclasses). In theory we only need to make their values immortal, along with their contents. However, that isn't such a simple proposition. (See gh-103823.) In the meantime the simplest solution is to move the fields into the interpreter.
One alternative is to statically allocate the values, but that's its own can of worms.
This is strictly about moving the "obmalloc" runtime state from
`_PyRuntimeState` to `PyInterpreterState`. Doing so improves isolation
between interpreters, specifically most of the memory (incl. objects)
allocated for each interpreter's use. This is important for a
per-interpreter GIL, but such isolation is valuable even without it.
FWIW, a per-interpreter obmalloc is the proverbial
canary-in-the-coalmine when it comes to the isolation of objects between
interpreters. Any object that leaks (unintentionally) to another
interpreter is highly likely to cause a crash (on debug builds at
least). That's a useful thing to know, relative to interpreter
isolation.
Core static types will continue to use the global value. All other types
will use the per-interpreter value. They all share the same range, where
the global types use values < 2^16 and each interpreter uses values
higher than that.
This speeds up `super()` (by around 85%, for a simple one-level
`super().meth()` microbenchmark) by avoiding allocation of a new
single-use `super()` object on each use.
We replace _PyRuntime.tstate_current with a thread-local variable. As part of this change, we add a _Py_thread_local macro in pyport.h (only for the core runtime) to smooth out the compiler differences. The main motivation here is in support of a per-interpreter GIL, but this change also provides some performance improvement opportunities.
Note that we do not provide a fallback to the thread-local, either falling back to the old tstate_current or to thread-specific storage (PyThread_tss_*()). If that proves problematic then we can circle back. I consider it unlikely, but will run the buildbots to double-check.
Also note that this does not change any of the code related to the GILState API, where it uses a thread state stored in thread-specific storage. I suspect we can combine that with _Py_tss_tstate (from here). However, that can be addressed separately and is not urgent (nor critical).
(While this change was mostly done independently, I did take some inspiration from earlier (~2020) work by @markshannon (main...markshannon:threadstate_in_tls) and @vstinner (#23976).)
This is the implementation of PEP683
Motivation:
The PR introduces the ability to immortalize instances in CPython which bypasses reference counting. Tagging objects as immortal allows up to skip certain operations when we know that the object will be around for the entire execution of the runtime.
Note that this by itself will bring a performance regression to the runtime due to the extra reference count checks. However, this brings the ability of having truly immutable objects that are useful in other contexts such as immutable data sharing between sub-interpreters.
* The majority of the monitoring code is in instrumentation.c
* The new instrumentation bytecodes are in bytecodes.c
* legacy_tracing.c adapts the new API to the old sys.setrace and sys.setprofile APIs
The function is like Py_AtExit() but for a single interpreter. This is a companion to the atexit module's register() function, taking a C callback instead of a Python one.
We also update the _xxinterpchannels module to use _Py_AtExit(), which is the motivating case. (This is inspired by pain points felt while working on gh-101660.)
Several platforms don't define the static_assert macro despite having
compiler support for the _Static_assert keyword. The macro needs to be
defined since it is used unconditionally in the Python code. So it
should always be safe to define it if undefined and not in C++11 (or
later) mode.
Hence, remove the checks for particular platforms or libc versions,
and just define static_assert anytime it needs to be defined but isn't.
That way, all platforms that need the fix will get it, regardless of
whether someone specifically thought of them.
Also document that certain macOS versions are among the platforms that
need this.
The C2x draft (currently expected to become C23) makes static_assert
a keyword to match C++. So only define the macro for up to C17.
Co-authored-by: Victor Stinner <vstinner@python.org>