Optimize `LOAD_FAST` opcodes into faster versions that load borrowed references onto the operand stack when we can prove that the lifetime of the local outlives the lifetime of the temporary that is loaded onto the stack.
In the free threaded build, the `_PyObject_LookupSpecial()` call can lead to
reference count contention on the returned function object becuase it
doesn't use stackrefs. Refactor some of the callers to use
`_PyObject_MaybeCallSpecialNoArgs`, which uses stackrefs internally.
This fixes the scaling bottleneck in the "lookup_special" microbenchmark
in `ftscalingbench.py`. However, the are still some uses of
`_PyObject_LookupSpecial()` that need to be addressed in future PRs.
This tells TSAN not to sanitize `PyUnstable_InterpreterFrame_GetLine()`.
There's a possible data race on the access to the frame's `instr_ptr`
if the frame is currently executing. We don't really care about the
race. In theory, we could use relaxed atomics for every access to
`instr_ptr`, but that would create more code churn and current compilers
are overly conservative with optimizations around relaxed atomic
accesses.
We also don't sanitize `_PyFrame_IsIncomplete()` because it accesses
`instr_ptr` and is called from assertions within PyFrame_GetCode().
* Move _Py_VISIT_STACKREF() from pycore_gc.h to pycore_stackref.h.
* Remove pycore_interpframe.h include from pycore_genobject.h.
* Remove now useless includes from C files.
* Add pycore_interpframe_structs.h to Makefile.pre.in and
pythoncore.vcxproj.
This makes more operations on frame objects thread-safe in the free
threaded build, which fixes some data races that occurred when passing
exceptions between threads.
However, accessing local variables from another thread while its running
is still not thread-safe and may crash the interpreter.
The implementation of `PyLong_FromLong()`, `PyLong_FromLongLong()` and `PyLong_FromSsize_t()`
are now handled by a common macro `PYLONG_FROM_INT` which contains fast paths depending on the
size of the integer to convert. Consequently, `PyLong_FromSsize_t()` for medium-sized integers is faster
by roughly 25%.
---------
Co-authored-by: Sergey B Kirpichev <skirpichev@gmail.com>
Don't use PyObject_Free() as tp_dealloc to avoid an undefined
behavior. Instead, use the default deallocator which just calls
tp_free which is PyObject_Free().
Add free-threaded versions of existing specialization for FOR_ITER (list, tuples, fast range iterators and generators), without significantly affecting their thread-safety. (Iterating over shared lists/tuples/ranges should be fine like before. Reusing iterators between threads is not fine, like before. Sharing generators between threads is a recipe for significant crashes, like before.)