#ifndef Py_INTERNAL_BACKOFF_H #define Py_INTERNAL_BACKOFF_H #ifdef __cplusplus extern "C" { #endif #ifndef Py_BUILD_CORE # error "this header requires Py_BUILD_CORE define" #endif #include #include #include "pycore_structs.h" // _Py_BackoffCounter /* 16-bit countdown counters using exponential backoff. These are used by the adaptive specializer to count down until it is time to specialize an instruction. If specialization fails the counter is reset using exponential backoff. Another use is for the Tier 2 optimizer to decide when to create a new Tier 2 trace (executor). Again, exponential backoff is used. The 16-bit counter is structured as a 12-bit unsigned 'value' and a 4-bit 'backoff' field. When resetting the counter, the backoff field is incremented (until it reaches a limit) and the value is set to a bit mask representing the value 2**backoff - 1. The maximum backoff is 12 (the number of bits in the value). There is an exceptional value which must not be updated, 0xFFFF. */ #define BACKOFF_BITS 4 #define MAX_BACKOFF 12 #define UNREACHABLE_BACKOFF 15 static inline bool is_unreachable_backoff_counter(_Py_BackoffCounter counter) { return counter.value_and_backoff == UNREACHABLE_BACKOFF; } static inline _Py_BackoffCounter make_backoff_counter(uint16_t value, uint16_t backoff) { assert(backoff <= 15); assert(value <= 0xFFF); _Py_BackoffCounter result; result.value_and_backoff = (value << BACKOFF_BITS) | backoff; return result; } static inline _Py_BackoffCounter forge_backoff_counter(uint16_t counter) { _Py_BackoffCounter result; result.value_and_backoff = counter; return result; } static inline _Py_BackoffCounter restart_backoff_counter(_Py_BackoffCounter counter) { assert(!is_unreachable_backoff_counter(counter)); int backoff = counter.value_and_backoff & 15; if (backoff < MAX_BACKOFF) { return make_backoff_counter((1 << (backoff + 1)) - 1, backoff + 1); } else { return make_backoff_counter((1 << MAX_BACKOFF) - 1, MAX_BACKOFF); } } static inline _Py_BackoffCounter pause_backoff_counter(_Py_BackoffCounter counter) { _Py_BackoffCounter result; result.value_and_backoff = counter.value_and_backoff | (1 << BACKOFF_BITS); return result; } static inline _Py_BackoffCounter advance_backoff_counter(_Py_BackoffCounter counter) { _Py_BackoffCounter result; result.value_and_backoff = counter.value_and_backoff - (1 << BACKOFF_BITS); return result; } static inline bool backoff_counter_triggers(_Py_BackoffCounter counter) { /* Test whether the value is zero and the backoff is not UNREACHABLE_BACKOFF */ return counter.value_and_backoff < UNREACHABLE_BACKOFF; } // Initial JUMP_BACKWARD counter. // Must be larger than ADAPTIVE_COOLDOWN_VALUE, otherwise when JIT code is // invalidated we may construct a new trace before the bytecode has properly // re-specialized: #define JUMP_BACKWARD_INITIAL_VALUE 4095 #define JUMP_BACKWARD_INITIAL_BACKOFF 12 static inline _Py_BackoffCounter initial_jump_backoff_counter(void) { return make_backoff_counter(JUMP_BACKWARD_INITIAL_VALUE, JUMP_BACKWARD_INITIAL_BACKOFF); } /* Initial exit temperature. * Must be larger than ADAPTIVE_COOLDOWN_VALUE, * otherwise when a side exit warms up we may construct * a new trace before the Tier 1 code has properly re-specialized. */ #define SIDE_EXIT_INITIAL_VALUE 4095 #define SIDE_EXIT_INITIAL_BACKOFF 12 static inline _Py_BackoffCounter initial_temperature_backoff_counter(void) { return make_backoff_counter(SIDE_EXIT_INITIAL_VALUE, SIDE_EXIT_INITIAL_BACKOFF); } /* Unreachable backoff counter. */ static inline _Py_BackoffCounter initial_unreachable_backoff_counter(void) { return make_backoff_counter(0, UNREACHABLE_BACKOFF); } #ifdef __cplusplus } #endif #endif /* !Py_INTERNAL_BACKOFF_H */