\section{\module{itertools} --- Functions creating iterators for efficient looping} \declaremodule{standard}{itertools} \modulesynopsis{Functions creating iterators for efficient looping.} \moduleauthor{Raymond Hettinger}{python@rcn.com} \sectionauthor{Raymond Hettinger}{python@rcn.com} \versionadded{2.3} This module implements a number of iterator building blocks inspired by constructs from the Haskell and SML programming languages. Each has been recast in a form suitable for Python. The module standardizes a core set of fast, memory efficient tools that are useful by themselves or in combination. Standardization helps avoid the readability and reliability problems which arise when many different individuals create their own slightly varying implementations, each with their own quirks and naming conventions. The tools are designed to combine readily with one another. This makes it easy to construct more specialized tools succinctly and efficiently in pure Python. For instance, SML provides a tabulation tool: \code{tabulate(f)} which produces a sequence \code{f(0), f(1), ...}. This toolbox provides \function{imap()} and \function{count()} which can be combined to form \code{imap(f, count())} and produce an equivalent result. Whether cast in pure python form or C code, tools that use iterators are more memory efficient (and faster) than their list based counterparts. Adopting the principles of just-in-time manufacturing, they create data when and where needed instead of consuming memory with the computer equivalent of ``inventory''. Some tools were omitted from the module because they offered no advantage over their pure python counterparts or because their behavior was too surprising. For instance, SML provides a tool: \code{cycle(\var{seq})} which loops over the sequence elements and then starts again when the sequence is exhausted. The surprising behavior is the need for significant auxiliary storage (which is unusual for an iterator). If needed, the tool is readily constructible using pure Python. Other tools are being considered for inclusion in future versions of the module. For instance, the function \function{chain(\var{it0}, \var{it1}, ...)} would return elements from the first iterator until it was exhausted and then move on to each successive iterator. The module author welcomes suggestions for other basic building blocks. \begin{seealso} \seetext{The Standard ML Basis Library, \citetitle[http://www.standardml.org/Basis/] {The Standard ML Basis Library}.} \seetext{Haskell, A Purely Functional Language, \citetitle[http://www.haskell.org/definition/] {Definition of Haskell and the Standard Libraries}.} \end{seealso} \subsection{Itertool functions \label{itertools-functions}} The following module functions all construct and return iterators. Some provide streams of infinite length, so they should only be accessed by functions or loops that truncate the stream. \begin{funcdesc}{count}{\optional{n}} Make an iterator that returns consecutive integers starting with \var{n}. Does not currently support python long integers. Often used as an argument to \function{imap()} to generate consecutive data points. Also, used in \function{izip()} to add sequence numbers. Equivalent to: \begin{verbatim} def count(n=0): while True: yield n n += 1 \end{verbatim} Note, \function{count()} does not check for overflow and will return negative numbers after exceeding \code{sys.maxint}. This behavior may change in the future. \end{funcdesc} \begin{funcdesc}{dropwhile}{predicate, iterable} Make an iterator that drops elements from the iterable as long as the predicate is true; afterwards, returns every element. Note, the iterator does not produce \emph{any} output until the predicate is true, so it may have a lengthy start-up time. Equivalent to: \begin{verbatim} def dropwhile(predicate, iterable): iterable = iter(iterable) while True: x = iterable.next() if predicate(x): continue # drop when predicate is true yield x break while True: yield iterable.next() \end{verbatim} \end{funcdesc} \begin{funcdesc}{ifilter}{predicate, iterable} Make an iterator that filters elements from iterable returning only those for which the predicate is \code{True}. If \var{predicate} is \code{None}, return the items that are true. Equivalent to: \begin{verbatim} def ifilter(predicate, iterable): if predicate is None: def predicate(x): return x for x in iterable: if predicate(x): yield x \end{verbatim} \end{funcdesc} \begin{funcdesc}{ifilterfalse}{predicate, iterable} Make an iterator that filters elements from iterable returning only those for which the predicate is \code{False}. If \var{predicate} is \code{None}, return the items that are false. Equivalent to: \begin{verbatim} def ifilterfalse(predicate, iterable): if predicate is None: def predicate(x): return x for x in iterable: if not predicate(x): yield x \end{verbatim} \end{funcdesc} \begin{funcdesc}{imap}{function, *iterables} Make an iterator that computes the function using arguments from each of the iterables. If \var{function} is set to \code{None}, then \function{imap()} returns the arguments as a tuple. Like \function{map()} but stops when the shortest iterable is exhausted instead of filling in \code{None} for shorter iterables. The reason for the difference is that infinite iterator arguments are typically an error for \function{map()} (because the output is fully evaluated) but represent a common and useful way of supplying arguments to \function{imap()}. Equivalent to: \begin{verbatim} def imap(function, *iterables): iterables = map(iter, iterables) while True: args = [i.next() for i in iterables] if function is None: yield tuple(args) else: yield function(*args) \end{verbatim} \end{funcdesc} \begin{funcdesc}{islice}{iterable, \optional{start,} stop \optional{, step}} Make an iterator that returns selected elements from the iterable. If \var{start} is non-zero, then elements from the iterable are skipped until start is reached. Afterward, elements are returned consecutively unless \var{step} is set higher than one which results in items being skipped. If \var{stop} is specified, then iteration stops at the specified element position; otherwise, it continues indefinitely or until the iterable is exhausted. Unlike regular slicing, \function{islice()} does not support negative values for \var{start}, \var{stop}, or \var{step}. Can be used to extract related fields from data where the internal structure has been flattened (for example, a multi-line report may list a name field on every third line). Equivalent to: \begin{verbatim} def islice(iterable, *args): s = slice(*args) next = s.start or 0 stop = s.stop step = s.step or 1 for cnt, element in enumerate(iterable): if cnt < next: continue if cnt >= stop: break yield element next += step \end{verbatim} \end{funcdesc} \begin{funcdesc}{izip}{*iterables} Make an iterator that aggregates elements from each of the iterables. Like \function{zip()} except that it returns an iterator instead of a list. Used for lock-step iteration over several iterables at a time. Equivalent to: \begin{verbatim} def izip(*iterables): iterables = map(iter, iterables) while True: result = [i.next() for i in iterables] yield tuple(result) \end{verbatim} \end{funcdesc} \begin{funcdesc}{repeat}{object} Make an iterator that returns \var{object} over and over again. Used as argument to \function{imap()} for invariant parameters to the called function. Also used with \function{izip()} to create an invariant part of a tuple record. Equivalent to: \begin{verbatim} def repeat(object): while True: yield object \end{verbatim} \end{funcdesc} \begin{funcdesc}{starmap}{function, iterable} Make an iterator that computes the function using arguments tuples obtained from the iterable. Used instead of \function{imap()} when argument parameters are already grouped in tuples from a single iterable (the data has been ``pre-zipped''). The difference between \function{imap()} and \function{starmap()} parallels the distinction between \code{function(a,b)} and \code{function(*c)}. Equivalent to: \begin{verbatim} def starmap(function, iterable): iterable = iter(iterable) while True: yield function(*iterable.next()) \end{verbatim} \end{funcdesc} \begin{funcdesc}{takewhile}{predicate, iterable} Make an iterator that returns elements from the iterable as long as the predicate is true. Equivalent to: \begin{verbatim} def takewhile(predicate, iterable): iterable = iter(iterable) while True: x = iterable.next() if predicate(x): yield x else: break \end{verbatim} \end{funcdesc} \begin{funcdesc}{times}{n, \optional{object}} Make an iterator that returns \var{object} \var{n} times. \var{object} defaults to \code{None}. Used for looping a specific number of times without creating a number object on each pass. Equivalent to: \begin{verbatim} def times(n, object=None): if n<0 : raise ValueError for i in xrange(n): yield object \end{verbatim} \end{funcdesc} \subsection{Examples \label{itertools-example}} The following examples show common uses for each tool and demonstrate ways they can be combined. \begin{verbatim} >>> for i in times(3): ... print "Hello" ... Hello Hello Hello >>> amounts = [120.15, 764.05, 823.14] >>> for checknum, amount in izip(count(1200), amounts): ... print 'Check %d is for $%.2f' % (checknum, amount) ... Check 1200 is for $120.15 Check 1201 is for $764.05 Check 1202 is for $823.14 >>> import operator >>> for cube in imap(operator.pow, xrange(1,4), repeat(3)): ... print cube ... 1 8 27 >>> reportlines = ['EuroPython', 'Roster', '', 'alex', '', 'laura', '', 'martin', '', 'walter', '', 'samuele'] >>> for name in islice(reportlines, 3, len(reportlines), 2): ... print name.title() ... Alex Laura Martin Walter Samuele \end{verbatim} This section has further examples of how itertools can be combined. Note that \function{enumerate()} and \method{iteritems()} already have highly efficient implementations in Python. They are only included here to illustrate how higher level tools can be created from building blocks. \begin{verbatim} >>> def enumerate(iterable): ... return izip(count(), iterable) >>> def tabulate(function): ... "Return function(0), function(1), ..." ... return imap(function, count()) >>> def iteritems(mapping): ... return izip(mapping.iterkeys(), mapping.itervalues()) >>> def nth(iterable, n): ... "Returns the nth item" ... return list(islice(iterable, n, n+1)) >>> def all(pred, seq): ... "Returns True if pred(x) is True for every element in the iterable" ... return not nth(ifilterfalse(pred, seq), 0) >>> def some(pred, seq): ... "Returns True if pred(x) is True at least one element in the iterable" ... return bool(nth(ifilter(pred, seq), 0)) >>> def no(pred, seq): ... "Returns True if pred(x) is False for every element in the iterable" ... return not nth(ifilter(pred, seq), 0) \end{verbatim}