/* MIT License * * Copyright (c) 2016-2022 INRIA, CMU and Microsoft Corporation * Copyright (c) 2022-2023 HACL* Contributors * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "internal/Hacl_HMAC.h" #include "Hacl_Streaming_Types.h" #include "Hacl_Hash_SHA3.h" #include "Hacl_Hash_SHA2.h" #include "Hacl_Hash_Blake2s.h" #include "Hacl_Hash_Blake2b.h" #include "internal/Hacl_Hash_SHA3.h" #include "internal/Hacl_Hash_SHA2.h" #include "internal/Hacl_Hash_SHA1.h" #include "internal/Hacl_Hash_MD5.h" #include "internal/Hacl_Hash_Blake2s.h" #include "internal/Hacl_Hash_Blake2b.h" /** Write the HMAC-MD5 MAC of a message (`data`) by using a key (`key`) into `dst`. The key can be any length and will be hashed if it is longer and padded if it is shorter than 64 byte. `dst` must point to 16 bytes of memory. */ void Hacl_HMAC_compute_md5( uint8_t *dst, uint8_t *key, uint32_t key_len, uint8_t *data, uint32_t data_len ) { uint8_t key_block[64U]; memset(key_block, 0U, 64U * sizeof (uint8_t)); uint8_t *nkey = key_block; uint32_t ite; if (key_len <= 64U) { ite = key_len; } else { ite = 16U; } uint8_t *zeroes = key_block + ite; KRML_MAYBE_UNUSED_VAR(zeroes); if (key_len <= 64U) { memcpy(nkey, key, key_len * sizeof (uint8_t)); } else { Hacl_Hash_MD5_hash_oneshot(nkey, key, key_len); } uint8_t ipad[64U]; memset(ipad, 0x36U, 64U * sizeof (uint8_t)); for (uint32_t i = 0U; i < 64U; i++) { uint8_t xi = ipad[i]; uint8_t yi = key_block[i]; ipad[i] = (uint32_t)xi ^ (uint32_t)yi; } uint8_t opad[64U]; memset(opad, 0x5cU, 64U * sizeof (uint8_t)); for (uint32_t i = 0U; i < 64U; i++) { uint8_t xi = opad[i]; uint8_t yi = key_block[i]; opad[i] = (uint32_t)xi ^ (uint32_t)yi; } uint32_t s[4U] = { 0x67452301U, 0xefcdab89U, 0x98badcfeU, 0x10325476U }; uint8_t *dst1 = ipad; if (data_len == 0U) { Hacl_Hash_MD5_update_last(s, 0ULL, ipad, 64U); } else { uint32_t block_len = 64U; uint32_t n_blocks0 = data_len / block_len; uint32_t rem0 = data_len % block_len; K___uint32_t_uint32_t scrut; if (n_blocks0 > 0U && rem0 == 0U) { uint32_t n_blocks_ = n_blocks0 - 1U; scrut = ((K___uint32_t_uint32_t){ .fst = n_blocks_, .snd = data_len - n_blocks_ * block_len }); } else { scrut = ((K___uint32_t_uint32_t){ .fst = n_blocks0, .snd = rem0 }); } uint32_t n_blocks = scrut.fst; uint32_t rem_len = scrut.snd; uint32_t full_blocks_len = n_blocks * block_len; uint8_t *full_blocks = data; uint8_t *rem = data + full_blocks_len; Hacl_Hash_MD5_update_multi(s, ipad, 1U); Hacl_Hash_MD5_update_multi(s, full_blocks, n_blocks); Hacl_Hash_MD5_update_last(s, (uint64_t)64U + (uint64_t)full_blocks_len, rem, rem_len); } Hacl_Hash_MD5_finish(s, dst1); uint8_t *hash1 = ipad; Hacl_Hash_MD5_init(s); uint32_t block_len = 64U; uint32_t n_blocks0 = 16U / block_len; uint32_t rem0 = 16U % block_len; K___uint32_t_uint32_t scrut; if (n_blocks0 > 0U && rem0 == 0U) { uint32_t n_blocks_ = n_blocks0 - 1U; scrut = ((K___uint32_t_uint32_t){ .fst = n_blocks_, .snd = 16U - n_blocks_ * block_len }); } else { scrut = ((K___uint32_t_uint32_t){ .fst = n_blocks0, .snd = rem0 }); } uint32_t n_blocks = scrut.fst; uint32_t rem_len = scrut.snd; uint32_t full_blocks_len = n_blocks * block_len; uint8_t *full_blocks = hash1; uint8_t *rem = hash1 + full_blocks_len; Hacl_Hash_MD5_update_multi(s, opad, 1U); Hacl_Hash_MD5_update_multi(s, full_blocks, n_blocks); Hacl_Hash_MD5_update_last(s, (uint64_t)64U + (uint64_t)full_blocks_len, rem, rem_len); Hacl_Hash_MD5_finish(s, dst); } /** Write the HMAC-SHA-1 MAC of a message (`data`) by using a key (`key`) into `dst`. The key can be any length and will be hashed if it is longer and padded if it is shorter than 64 byte. `dst` must point to 20 bytes of memory. */ void Hacl_HMAC_compute_sha1( uint8_t *dst, uint8_t *key, uint32_t key_len, uint8_t *data, uint32_t data_len ) { uint8_t key_block[64U]; memset(key_block, 0U, 64U * sizeof (uint8_t)); uint8_t *nkey = key_block; uint32_t ite; if (key_len <= 64U) { ite = key_len; } else { ite = 20U; } uint8_t *zeroes = key_block + ite; KRML_MAYBE_UNUSED_VAR(zeroes); if (key_len <= 64U) { memcpy(nkey, key, key_len * sizeof (uint8_t)); } else { Hacl_Hash_SHA1_hash_oneshot(nkey, key, key_len); } uint8_t ipad[64U]; memset(ipad, 0x36U, 64U * sizeof (uint8_t)); for (uint32_t i = 0U; i < 64U; i++) { uint8_t xi = ipad[i]; uint8_t yi = key_block[i]; ipad[i] = (uint32_t)xi ^ (uint32_t)yi; } uint8_t opad[64U]; memset(opad, 0x5cU, 64U * sizeof (uint8_t)); for (uint32_t i = 0U; i < 64U; i++) { uint8_t xi = opad[i]; uint8_t yi = key_block[i]; opad[i] = (uint32_t)xi ^ (uint32_t)yi; } uint32_t s[5U] = { 0x67452301U, 0xefcdab89U, 0x98badcfeU, 0x10325476U, 0xc3d2e1f0U }; uint8_t *dst1 = ipad; if (data_len == 0U) { Hacl_Hash_SHA1_update_last(s, 0ULL, ipad, 64U); } else { uint32_t block_len = 64U; uint32_t n_blocks0 = data_len / block_len; uint32_t rem0 = data_len % block_len; K___uint32_t_uint32_t scrut; if (n_blocks0 > 0U && rem0 == 0U) { uint32_t n_blocks_ = n_blocks0 - 1U; scrut = ((K___uint32_t_uint32_t){ .fst = n_blocks_, .snd = data_len - n_blocks_ * block_len }); } else { scrut = ((K___uint32_t_uint32_t){ .fst = n_blocks0, .snd = rem0 }); } uint32_t n_blocks = scrut.fst; uint32_t rem_len = scrut.snd; uint32_t full_blocks_len = n_blocks * block_len; uint8_t *full_blocks = data; uint8_t *rem = data + full_blocks_len; Hacl_Hash_SHA1_update_multi(s, ipad, 1U); Hacl_Hash_SHA1_update_multi(s, full_blocks, n_blocks); Hacl_Hash_SHA1_update_last(s, (uint64_t)64U + (uint64_t)full_blocks_len, rem, rem_len); } Hacl_Hash_SHA1_finish(s, dst1); uint8_t *hash1 = ipad; Hacl_Hash_SHA1_init(s); uint32_t block_len = 64U; uint32_t n_blocks0 = 20U / block_len; uint32_t rem0 = 20U % block_len; K___uint32_t_uint32_t scrut; if (n_blocks0 > 0U && rem0 == 0U) { uint32_t n_blocks_ = n_blocks0 - 1U; scrut = ((K___uint32_t_uint32_t){ .fst = n_blocks_, .snd = 20U - n_blocks_ * block_len }); } else { scrut = ((K___uint32_t_uint32_t){ .fst = n_blocks0, .snd = rem0 }); } uint32_t n_blocks = scrut.fst; uint32_t rem_len = scrut.snd; uint32_t full_blocks_len = n_blocks * block_len; uint8_t *full_blocks = hash1; uint8_t *rem = hash1 + full_blocks_len; Hacl_Hash_SHA1_update_multi(s, opad, 1U); Hacl_Hash_SHA1_update_multi(s, full_blocks, n_blocks); Hacl_Hash_SHA1_update_last(s, (uint64_t)64U + (uint64_t)full_blocks_len, rem, rem_len); Hacl_Hash_SHA1_finish(s, dst); } /** Write the HMAC-SHA-2-224 MAC of a message (`data`) by using a key (`key`) into `dst`. The key can be any length and will be hashed if it is longer and padded if it is shorter than 64 bytes. `dst` must point to 28 bytes of memory. */ void Hacl_HMAC_compute_sha2_224( uint8_t *dst, uint8_t *key, uint32_t key_len, uint8_t *data, uint32_t data_len ) { uint8_t key_block[64U]; memset(key_block, 0U, 64U * sizeof (uint8_t)); uint8_t *nkey = key_block; uint32_t ite; if (key_len <= 64U) { ite = key_len; } else { ite = 28U; } uint8_t *zeroes = key_block + ite; KRML_MAYBE_UNUSED_VAR(zeroes); if (key_len <= 64U) { memcpy(nkey, key, key_len * sizeof (uint8_t)); } else { Hacl_Hash_SHA2_hash_224(nkey, key, key_len); } uint8_t ipad[64U]; memset(ipad, 0x36U, 64U * sizeof (uint8_t)); for (uint32_t i = 0U; i < 64U; i++) { uint8_t xi = ipad[i]; uint8_t yi = key_block[i]; ipad[i] = (uint32_t)xi ^ (uint32_t)yi; } uint8_t opad[64U]; memset(opad, 0x5cU, 64U * sizeof (uint8_t)); for (uint32_t i = 0U; i < 64U; i++) { uint8_t xi = opad[i]; uint8_t yi = key_block[i]; opad[i] = (uint32_t)xi ^ (uint32_t)yi; } uint32_t st[8U] = { 0U }; KRML_MAYBE_FOR8(i, 0U, 8U, 1U, uint32_t *os = st; uint32_t x = Hacl_Hash_SHA2_h224[i]; os[i] = x;); uint32_t *s = st; uint8_t *dst1 = ipad; if (data_len == 0U) { Hacl_Hash_SHA2_sha224_update_last(0ULL + (uint64_t)64U, 64U, ipad, s); } else { uint32_t block_len = 64U; uint32_t n_blocks0 = data_len / block_len; uint32_t rem0 = data_len % block_len; K___uint32_t_uint32_t scrut; if (n_blocks0 > 0U && rem0 == 0U) { uint32_t n_blocks_ = n_blocks0 - 1U; scrut = ((K___uint32_t_uint32_t){ .fst = n_blocks_, .snd = data_len - n_blocks_ * block_len }); } else { scrut = ((K___uint32_t_uint32_t){ .fst = n_blocks0, .snd = rem0 }); } uint32_t n_blocks = scrut.fst; uint32_t rem_len = scrut.snd; uint32_t full_blocks_len = n_blocks * block_len; uint8_t *full_blocks = data; uint8_t *rem = data + full_blocks_len; Hacl_Hash_SHA2_sha224_update_nblocks(64U, ipad, s); Hacl_Hash_SHA2_sha224_update_nblocks(n_blocks * 64U, full_blocks, s); Hacl_Hash_SHA2_sha224_update_last((uint64_t)64U + (uint64_t)full_blocks_len + (uint64_t)rem_len, rem_len, rem, s); } Hacl_Hash_SHA2_sha224_finish(s, dst1); uint8_t *hash1 = ipad; Hacl_Hash_SHA2_sha224_init(s); uint32_t block_len = 64U; uint32_t n_blocks0 = 28U / block_len; uint32_t rem0 = 28U % block_len; K___uint32_t_uint32_t scrut; if (n_blocks0 > 0U && rem0 == 0U) { uint32_t n_blocks_ = n_blocks0 - 1U; scrut = ((K___uint32_t_uint32_t){ .fst = n_blocks_, .snd = 28U - n_blocks_ * block_len }); } else { scrut = ((K___uint32_t_uint32_t){ .fst = n_blocks0, .snd = rem0 }); } uint32_t n_blocks = scrut.fst; uint32_t rem_len = scrut.snd; uint32_t full_blocks_len = n_blocks * block_len; uint8_t *full_blocks = hash1; uint8_t *rem = hash1 + full_blocks_len; Hacl_Hash_SHA2_sha224_update_nblocks(64U, opad, s); Hacl_Hash_SHA2_sha224_update_nblocks(n_blocks * 64U, full_blocks, s); Hacl_Hash_SHA2_sha224_update_last((uint64_t)64U + (uint64_t)full_blocks_len + (uint64_t)rem_len, rem_len, rem, s); Hacl_Hash_SHA2_sha224_finish(s, dst); } /** Write the HMAC-SHA-2-256 MAC of a message (`data`) by using a key (`key`) into `dst`. The key can be any length and will be hashed if it is longer and padded if it is shorter than 64 bytes. `dst` must point to 32 bytes of memory. */ void Hacl_HMAC_compute_sha2_256( uint8_t *dst, uint8_t *key, uint32_t key_len, uint8_t *data, uint32_t data_len ) { uint8_t key_block[64U]; memset(key_block, 0U, 64U * sizeof (uint8_t)); uint8_t *nkey = key_block; uint32_t ite; if (key_len <= 64U) { ite = key_len; } else { ite = 32U; } uint8_t *zeroes = key_block + ite; KRML_MAYBE_UNUSED_VAR(zeroes); if (key_len <= 64U) { memcpy(nkey, key, key_len * sizeof (uint8_t)); } else { Hacl_Hash_SHA2_hash_256(nkey, key, key_len); } uint8_t ipad[64U]; memset(ipad, 0x36U, 64U * sizeof (uint8_t)); for (uint32_t i = 0U; i < 64U; i++) { uint8_t xi = ipad[i]; uint8_t yi = key_block[i]; ipad[i] = (uint32_t)xi ^ (uint32_t)yi; } uint8_t opad[64U]; memset(opad, 0x5cU, 64U * sizeof (uint8_t)); for (uint32_t i = 0U; i < 64U; i++) { uint8_t xi = opad[i]; uint8_t yi = key_block[i]; opad[i] = (uint32_t)xi ^ (uint32_t)yi; } uint32_t st[8U] = { 0U }; KRML_MAYBE_FOR8(i, 0U, 8U, 1U, uint32_t *os = st; uint32_t x = Hacl_Hash_SHA2_h256[i]; os[i] = x;); uint32_t *s = st; uint8_t *dst1 = ipad; if (data_len == 0U) { Hacl_Hash_SHA2_sha256_update_last(0ULL + (uint64_t)64U, 64U, ipad, s); } else { uint32_t block_len = 64U; uint32_t n_blocks0 = data_len / block_len; uint32_t rem0 = data_len % block_len; K___uint32_t_uint32_t scrut; if (n_blocks0 > 0U && rem0 == 0U) { uint32_t n_blocks_ = n_blocks0 - 1U; scrut = ((K___uint32_t_uint32_t){ .fst = n_blocks_, .snd = data_len - n_blocks_ * block_len }); } else { scrut = ((K___uint32_t_uint32_t){ .fst = n_blocks0, .snd = rem0 }); } uint32_t n_blocks = scrut.fst; uint32_t rem_len = scrut.snd; uint32_t full_blocks_len = n_blocks * block_len; uint8_t *full_blocks = data; uint8_t *rem = data + full_blocks_len; Hacl_Hash_SHA2_sha256_update_nblocks(64U, ipad, s); Hacl_Hash_SHA2_sha256_update_nblocks(n_blocks * 64U, full_blocks, s); Hacl_Hash_SHA2_sha256_update_last((uint64_t)64U + (uint64_t)full_blocks_len + (uint64_t)rem_len, rem_len, rem, s); } Hacl_Hash_SHA2_sha256_finish(s, dst1); uint8_t *hash1 = ipad; Hacl_Hash_SHA2_sha256_init(s); uint32_t block_len = 64U; uint32_t n_blocks0 = 32U / block_len; uint32_t rem0 = 32U % block_len; K___uint32_t_uint32_t scrut; if (n_blocks0 > 0U && rem0 == 0U) { uint32_t n_blocks_ = n_blocks0 - 1U; scrut = ((K___uint32_t_uint32_t){ .fst = n_blocks_, .snd = 32U - n_blocks_ * block_len }); } else { scrut = ((K___uint32_t_uint32_t){ .fst = n_blocks0, .snd = rem0 }); } uint32_t n_blocks = scrut.fst; uint32_t rem_len = scrut.snd; uint32_t full_blocks_len = n_blocks * block_len; uint8_t *full_blocks = hash1; uint8_t *rem = hash1 + full_blocks_len; Hacl_Hash_SHA2_sha256_update_nblocks(64U, opad, s); Hacl_Hash_SHA2_sha256_update_nblocks(n_blocks * 64U, full_blocks, s); Hacl_Hash_SHA2_sha256_update_last((uint64_t)64U + (uint64_t)full_blocks_len + (uint64_t)rem_len, rem_len, rem, s); Hacl_Hash_SHA2_sha256_finish(s, dst); } /** Write the HMAC-SHA-2-384 MAC of a message (`data`) by using a key (`key`) into `dst`. The key can be any length and will be hashed if it is longer and padded if it is shorter than 128 bytes. `dst` must point to 48 bytes of memory. */ void Hacl_HMAC_compute_sha2_384( uint8_t *dst, uint8_t *key, uint32_t key_len, uint8_t *data, uint32_t data_len ) { uint8_t key_block[128U]; memset(key_block, 0U, 128U * sizeof (uint8_t)); uint8_t *nkey = key_block; uint32_t ite; if (key_len <= 128U) { ite = key_len; } else { ite = 48U; } uint8_t *zeroes = key_block + ite; KRML_MAYBE_UNUSED_VAR(zeroes); if (key_len <= 128U) { memcpy(nkey, key, key_len * sizeof (uint8_t)); } else { Hacl_Hash_SHA2_hash_384(nkey, key, key_len); } uint8_t ipad[128U]; memset(ipad, 0x36U, 128U * sizeof (uint8_t)); for (uint32_t i = 0U; i < 128U; i++) { uint8_t xi = ipad[i]; uint8_t yi = key_block[i]; ipad[i] = (uint32_t)xi ^ (uint32_t)yi; } uint8_t opad[128U]; memset(opad, 0x5cU, 128U * sizeof (uint8_t)); for (uint32_t i = 0U; i < 128U; i++) { uint8_t xi = opad[i]; uint8_t yi = key_block[i]; opad[i] = (uint32_t)xi ^ (uint32_t)yi; } uint64_t st[8U] = { 0U }; KRML_MAYBE_FOR8(i, 0U, 8U, 1U, uint64_t *os = st; uint64_t x = Hacl_Hash_SHA2_h384[i]; os[i] = x;); uint64_t *s = st; uint8_t *dst1 = ipad; if (data_len == 0U) { Hacl_Hash_SHA2_sha384_update_last(FStar_UInt128_add(FStar_UInt128_uint64_to_uint128(0ULL), FStar_UInt128_uint64_to_uint128((uint64_t)128U)), 128U, ipad, s); } else { uint32_t block_len = 128U; uint32_t n_blocks0 = data_len / block_len; uint32_t rem0 = data_len % block_len; K___uint32_t_uint32_t scrut; if (n_blocks0 > 0U && rem0 == 0U) { uint32_t n_blocks_ = n_blocks0 - 1U; scrut = ((K___uint32_t_uint32_t){ .fst = n_blocks_, .snd = data_len - n_blocks_ * block_len }); } else { scrut = ((K___uint32_t_uint32_t){ .fst = n_blocks0, .snd = rem0 }); } uint32_t n_blocks = scrut.fst; uint32_t rem_len = scrut.snd; uint32_t full_blocks_len = n_blocks * block_len; uint8_t *full_blocks = data; uint8_t *rem = data + full_blocks_len; Hacl_Hash_SHA2_sha384_update_nblocks(128U, ipad, s); Hacl_Hash_SHA2_sha384_update_nblocks(n_blocks * 128U, full_blocks, s); Hacl_Hash_SHA2_sha384_update_last(FStar_UInt128_add(FStar_UInt128_add(FStar_UInt128_uint64_to_uint128((uint64_t)128U), FStar_UInt128_uint64_to_uint128((uint64_t)full_blocks_len)), FStar_UInt128_uint64_to_uint128((uint64_t)rem_len)), rem_len, rem, s); } Hacl_Hash_SHA2_sha384_finish(s, dst1); uint8_t *hash1 = ipad; Hacl_Hash_SHA2_sha384_init(s); uint32_t block_len = 128U; uint32_t n_blocks0 = 48U / block_len; uint32_t rem0 = 48U % block_len; K___uint32_t_uint32_t scrut; if (n_blocks0 > 0U && rem0 == 0U) { uint32_t n_blocks_ = n_blocks0 - 1U; scrut = ((K___uint32_t_uint32_t){ .fst = n_blocks_, .snd = 48U - n_blocks_ * block_len }); } else { scrut = ((K___uint32_t_uint32_t){ .fst = n_blocks0, .snd = rem0 }); } uint32_t n_blocks = scrut.fst; uint32_t rem_len = scrut.snd; uint32_t full_blocks_len = n_blocks * block_len; uint8_t *full_blocks = hash1; uint8_t *rem = hash1 + full_blocks_len; Hacl_Hash_SHA2_sha384_update_nblocks(128U, opad, s); Hacl_Hash_SHA2_sha384_update_nblocks(n_blocks * 128U, full_blocks, s); Hacl_Hash_SHA2_sha384_update_last(FStar_UInt128_add(FStar_UInt128_add(FStar_UInt128_uint64_to_uint128((uint64_t)128U), FStar_UInt128_uint64_to_uint128((uint64_t)full_blocks_len)), FStar_UInt128_uint64_to_uint128((uint64_t)rem_len)), rem_len, rem, s); Hacl_Hash_SHA2_sha384_finish(s, dst); } /** Write the HMAC-SHA-2-512 MAC of a message (`data`) by using a key (`key`) into `dst`. The key can be any length and will be hashed if it is longer and padded if it is shorter than 128 bytes. `dst` must point to 64 bytes of memory. */ void Hacl_HMAC_compute_sha2_512( uint8_t *dst, uint8_t *key, uint32_t key_len, uint8_t *data, uint32_t data_len ) { uint8_t key_block[128U]; memset(key_block, 0U, 128U * sizeof (uint8_t)); uint8_t *nkey = key_block; uint32_t ite; if (key_len <= 128U) { ite = key_len; } else { ite = 64U; } uint8_t *zeroes = key_block + ite; KRML_MAYBE_UNUSED_VAR(zeroes); if (key_len <= 128U) { memcpy(nkey, key, key_len * sizeof (uint8_t)); } else { Hacl_Hash_SHA2_hash_512(nkey, key, key_len); } uint8_t ipad[128U]; memset(ipad, 0x36U, 128U * sizeof (uint8_t)); for (uint32_t i = 0U; i < 128U; i++) { uint8_t xi = ipad[i]; uint8_t yi = key_block[i]; ipad[i] = (uint32_t)xi ^ (uint32_t)yi; } uint8_t opad[128U]; memset(opad, 0x5cU, 128U * sizeof (uint8_t)); for (uint32_t i = 0U; i < 128U; i++) { uint8_t xi = opad[i]; uint8_t yi = key_block[i]; opad[i] = (uint32_t)xi ^ (uint32_t)yi; } uint64_t st[8U] = { 0U }; KRML_MAYBE_FOR8(i, 0U, 8U, 1U, uint64_t *os = st; uint64_t x = Hacl_Hash_SHA2_h512[i]; os[i] = x;); uint64_t *s = st; uint8_t *dst1 = ipad; if (data_len == 0U) { Hacl_Hash_SHA2_sha512_update_last(FStar_UInt128_add(FStar_UInt128_uint64_to_uint128(0ULL), FStar_UInt128_uint64_to_uint128((uint64_t)128U)), 128U, ipad, s); } else { uint32_t block_len = 128U; uint32_t n_blocks0 = data_len / block_len; uint32_t rem0 = data_len % block_len; K___uint32_t_uint32_t scrut; if (n_blocks0 > 0U && rem0 == 0U) { uint32_t n_blocks_ = n_blocks0 - 1U; scrut = ((K___uint32_t_uint32_t){ .fst = n_blocks_, .snd = data_len - n_blocks_ * block_len }); } else { scrut = ((K___uint32_t_uint32_t){ .fst = n_blocks0, .snd = rem0 }); } uint32_t n_blocks = scrut.fst; uint32_t rem_len = scrut.snd; uint32_t full_blocks_len = n_blocks * block_len; uint8_t *full_blocks = data; uint8_t *rem = data + full_blocks_len; Hacl_Hash_SHA2_sha512_update_nblocks(128U, ipad, s); Hacl_Hash_SHA2_sha512_update_nblocks(n_blocks * 128U, full_blocks, s); Hacl_Hash_SHA2_sha512_update_last(FStar_UInt128_add(FStar_UInt128_add(FStar_UInt128_uint64_to_uint128((uint64_t)128U), FStar_UInt128_uint64_to_uint128((uint64_t)full_blocks_len)), FStar_UInt128_uint64_to_uint128((uint64_t)rem_len)), rem_len, rem, s); } Hacl_Hash_SHA2_sha512_finish(s, dst1); uint8_t *hash1 = ipad; Hacl_Hash_SHA2_sha512_init(s); uint32_t block_len = 128U; uint32_t n_blocks0 = 64U / block_len; uint32_t rem0 = 64U % block_len; K___uint32_t_uint32_t scrut; if (n_blocks0 > 0U && rem0 == 0U) { uint32_t n_blocks_ = n_blocks0 - 1U; scrut = ((K___uint32_t_uint32_t){ .fst = n_blocks_, .snd = 64U - n_blocks_ * block_len }); } else { scrut = ((K___uint32_t_uint32_t){ .fst = n_blocks0, .snd = rem0 }); } uint32_t n_blocks = scrut.fst; uint32_t rem_len = scrut.snd; uint32_t full_blocks_len = n_blocks * block_len; uint8_t *full_blocks = hash1; uint8_t *rem = hash1 + full_blocks_len; Hacl_Hash_SHA2_sha512_update_nblocks(128U, opad, s); Hacl_Hash_SHA2_sha512_update_nblocks(n_blocks * 128U, full_blocks, s); Hacl_Hash_SHA2_sha512_update_last(FStar_UInt128_add(FStar_UInt128_add(FStar_UInt128_uint64_to_uint128((uint64_t)128U), FStar_UInt128_uint64_to_uint128((uint64_t)full_blocks_len)), FStar_UInt128_uint64_to_uint128((uint64_t)rem_len)), rem_len, rem, s); Hacl_Hash_SHA2_sha512_finish(s, dst); } /** Write the HMAC-SHA-3-224 MAC of a message (`data`) by using a key (`key`) into `dst`. The key can be any length and will be hashed if it is longer and padded if it is shorter than 144 bytes. `dst` must point to 28 bytes of memory. */ void Hacl_HMAC_compute_sha3_224( uint8_t *dst, uint8_t *key, uint32_t key_len, uint8_t *data, uint32_t data_len ) { uint8_t key_block[144U]; memset(key_block, 0U, 144U * sizeof (uint8_t)); uint8_t *nkey = key_block; uint32_t ite; if (key_len <= 144U) { ite = key_len; } else { ite = 28U; } uint8_t *zeroes = key_block + ite; KRML_MAYBE_UNUSED_VAR(zeroes); if (key_len <= 144U) { memcpy(nkey, key, key_len * sizeof (uint8_t)); } else { Hacl_Hash_SHA3_sha3_224(nkey, key, key_len); } uint8_t ipad[144U]; memset(ipad, 0x36U, 144U * sizeof (uint8_t)); for (uint32_t i = 0U; i < 144U; i++) { uint8_t xi = ipad[i]; uint8_t yi = key_block[i]; ipad[i] = (uint32_t)xi ^ (uint32_t)yi; } uint8_t opad[144U]; memset(opad, 0x5cU, 144U * sizeof (uint8_t)); for (uint32_t i = 0U; i < 144U; i++) { uint8_t xi = opad[i]; uint8_t yi = key_block[i]; opad[i] = (uint32_t)xi ^ (uint32_t)yi; } uint64_t s[25U] = { 0U }; uint8_t *dst1 = ipad; if (data_len == 0U) { Hacl_Hash_SHA3_update_last_sha3(Spec_Hash_Definitions_SHA3_224, s, ipad, 144U); } else { uint32_t block_len = 144U; uint32_t n_blocks0 = data_len / block_len; uint32_t rem0 = data_len % block_len; K___uint32_t_uint32_t scrut; if (n_blocks0 > 0U && rem0 == 0U) { uint32_t n_blocks_ = n_blocks0 - 1U; scrut = ((K___uint32_t_uint32_t){ .fst = n_blocks_, .snd = data_len - n_blocks_ * block_len }); } else { scrut = ((K___uint32_t_uint32_t){ .fst = n_blocks0, .snd = rem0 }); } uint32_t n_blocks = scrut.fst; uint32_t rem_len = scrut.snd; uint32_t full_blocks_len = n_blocks * block_len; uint8_t *full_blocks = data; uint8_t *rem = data + full_blocks_len; Hacl_Hash_SHA3_update_multi_sha3(Spec_Hash_Definitions_SHA3_224, s, ipad, 1U); Hacl_Hash_SHA3_update_multi_sha3(Spec_Hash_Definitions_SHA3_224, s, full_blocks, n_blocks); Hacl_Hash_SHA3_update_last_sha3(Spec_Hash_Definitions_SHA3_224, s, rem, rem_len); } uint32_t remOut = 28U; uint8_t hbuf0[256U] = { 0U }; uint64_t ws0[32U] = { 0U }; memcpy(ws0, s, 25U * sizeof (uint64_t)); for (uint32_t i = 0U; i < 32U; i++) { store64_le(hbuf0 + i * 8U, ws0[i]); } memcpy(dst1 + 28U - remOut, hbuf0, remOut * sizeof (uint8_t)); uint8_t *hash1 = ipad; Hacl_Hash_SHA3_init_(Spec_Hash_Definitions_SHA3_224, s); uint32_t block_len = 144U; uint32_t n_blocks0 = 28U / block_len; uint32_t rem0 = 28U % block_len; K___uint32_t_uint32_t scrut; if (n_blocks0 > 0U && rem0 == 0U) { uint32_t n_blocks_ = n_blocks0 - 1U; scrut = ((K___uint32_t_uint32_t){ .fst = n_blocks_, .snd = 28U - n_blocks_ * block_len }); } else { scrut = ((K___uint32_t_uint32_t){ .fst = n_blocks0, .snd = rem0 }); } uint32_t n_blocks = scrut.fst; uint32_t rem_len = scrut.snd; uint32_t full_blocks_len = n_blocks * block_len; uint8_t *full_blocks = hash1; uint8_t *rem = hash1 + full_blocks_len; Hacl_Hash_SHA3_update_multi_sha3(Spec_Hash_Definitions_SHA3_224, s, opad, 1U); Hacl_Hash_SHA3_update_multi_sha3(Spec_Hash_Definitions_SHA3_224, s, full_blocks, n_blocks); Hacl_Hash_SHA3_update_last_sha3(Spec_Hash_Definitions_SHA3_224, s, rem, rem_len); uint32_t remOut0 = 28U; uint8_t hbuf[256U] = { 0U }; uint64_t ws[32U] = { 0U }; memcpy(ws, s, 25U * sizeof (uint64_t)); for (uint32_t i = 0U; i < 32U; i++) { store64_le(hbuf + i * 8U, ws[i]); } memcpy(dst + 28U - remOut0, hbuf, remOut0 * sizeof (uint8_t)); } /** Write the HMAC-SHA-3-256 MAC of a message (`data`) by using a key (`key`) into `dst`. The key can be any length and will be hashed if it is longer and padded if it is shorter than 136 bytes. `dst` must point to 32 bytes of memory. */ void Hacl_HMAC_compute_sha3_256( uint8_t *dst, uint8_t *key, uint32_t key_len, uint8_t *data, uint32_t data_len ) { uint8_t key_block[136U]; memset(key_block, 0U, 136U * sizeof (uint8_t)); uint8_t *nkey = key_block; uint32_t ite; if (key_len <= 136U) { ite = key_len; } else { ite = 32U; } uint8_t *zeroes = key_block + ite; KRML_MAYBE_UNUSED_VAR(zeroes); if (key_len <= 136U) { memcpy(nkey, key, key_len * sizeof (uint8_t)); } else { Hacl_Hash_SHA3_sha3_256(nkey, key, key_len); } uint8_t ipad[136U]; memset(ipad, 0x36U, 136U * sizeof (uint8_t)); for (uint32_t i = 0U; i < 136U; i++) { uint8_t xi = ipad[i]; uint8_t yi = key_block[i]; ipad[i] = (uint32_t)xi ^ (uint32_t)yi; } uint8_t opad[136U]; memset(opad, 0x5cU, 136U * sizeof (uint8_t)); for (uint32_t i = 0U; i < 136U; i++) { uint8_t xi = opad[i]; uint8_t yi = key_block[i]; opad[i] = (uint32_t)xi ^ (uint32_t)yi; } uint64_t s[25U] = { 0U }; uint8_t *dst1 = ipad; if (data_len == 0U) { Hacl_Hash_SHA3_update_last_sha3(Spec_Hash_Definitions_SHA3_256, s, ipad, 136U); } else { uint32_t block_len = 136U; uint32_t n_blocks0 = data_len / block_len; uint32_t rem0 = data_len % block_len; K___uint32_t_uint32_t scrut; if (n_blocks0 > 0U && rem0 == 0U) { uint32_t n_blocks_ = n_blocks0 - 1U; scrut = ((K___uint32_t_uint32_t){ .fst = n_blocks_, .snd = data_len - n_blocks_ * block_len }); } else { scrut = ((K___uint32_t_uint32_t){ .fst = n_blocks0, .snd = rem0 }); } uint32_t n_blocks = scrut.fst; uint32_t rem_len = scrut.snd; uint32_t full_blocks_len = n_blocks * block_len; uint8_t *full_blocks = data; uint8_t *rem = data + full_blocks_len; Hacl_Hash_SHA3_update_multi_sha3(Spec_Hash_Definitions_SHA3_256, s, ipad, 1U); Hacl_Hash_SHA3_update_multi_sha3(Spec_Hash_Definitions_SHA3_256, s, full_blocks, n_blocks); Hacl_Hash_SHA3_update_last_sha3(Spec_Hash_Definitions_SHA3_256, s, rem, rem_len); } uint32_t remOut = 32U; uint8_t hbuf0[256U] = { 0U }; uint64_t ws0[32U] = { 0U }; memcpy(ws0, s, 25U * sizeof (uint64_t)); for (uint32_t i = 0U; i < 32U; i++) { store64_le(hbuf0 + i * 8U, ws0[i]); } memcpy(dst1 + 32U - remOut, hbuf0, remOut * sizeof (uint8_t)); uint8_t *hash1 = ipad; Hacl_Hash_SHA3_init_(Spec_Hash_Definitions_SHA3_256, s); uint32_t block_len = 136U; uint32_t n_blocks0 = 32U / block_len; uint32_t rem0 = 32U % block_len; K___uint32_t_uint32_t scrut; if (n_blocks0 > 0U && rem0 == 0U) { uint32_t n_blocks_ = n_blocks0 - 1U; scrut = ((K___uint32_t_uint32_t){ .fst = n_blocks_, .snd = 32U - n_blocks_ * block_len }); } else { scrut = ((K___uint32_t_uint32_t){ .fst = n_blocks0, .snd = rem0 }); } uint32_t n_blocks = scrut.fst; uint32_t rem_len = scrut.snd; uint32_t full_blocks_len = n_blocks * block_len; uint8_t *full_blocks = hash1; uint8_t *rem = hash1 + full_blocks_len; Hacl_Hash_SHA3_update_multi_sha3(Spec_Hash_Definitions_SHA3_256, s, opad, 1U); Hacl_Hash_SHA3_update_multi_sha3(Spec_Hash_Definitions_SHA3_256, s, full_blocks, n_blocks); Hacl_Hash_SHA3_update_last_sha3(Spec_Hash_Definitions_SHA3_256, s, rem, rem_len); uint32_t remOut0 = 32U; uint8_t hbuf[256U] = { 0U }; uint64_t ws[32U] = { 0U }; memcpy(ws, s, 25U * sizeof (uint64_t)); for (uint32_t i = 0U; i < 32U; i++) { store64_le(hbuf + i * 8U, ws[i]); } memcpy(dst + 32U - remOut0, hbuf, remOut0 * sizeof (uint8_t)); } /** Write the HMAC-SHA-3-384 MAC of a message (`data`) by using a key (`key`) into `dst`. The key can be any length and will be hashed if it is longer and padded if it is shorter than 104 bytes. `dst` must point to 48 bytes of memory. */ void Hacl_HMAC_compute_sha3_384( uint8_t *dst, uint8_t *key, uint32_t key_len, uint8_t *data, uint32_t data_len ) { uint8_t key_block[104U]; memset(key_block, 0U, 104U * sizeof (uint8_t)); uint8_t *nkey = key_block; uint32_t ite; if (key_len <= 104U) { ite = key_len; } else { ite = 48U; } uint8_t *zeroes = key_block + ite; KRML_MAYBE_UNUSED_VAR(zeroes); if (key_len <= 104U) { memcpy(nkey, key, key_len * sizeof (uint8_t)); } else { Hacl_Hash_SHA3_sha3_384(nkey, key, key_len); } uint8_t ipad[104U]; memset(ipad, 0x36U, 104U * sizeof (uint8_t)); for (uint32_t i = 0U; i < 104U; i++) { uint8_t xi = ipad[i]; uint8_t yi = key_block[i]; ipad[i] = (uint32_t)xi ^ (uint32_t)yi; } uint8_t opad[104U]; memset(opad, 0x5cU, 104U * sizeof (uint8_t)); for (uint32_t i = 0U; i < 104U; i++) { uint8_t xi = opad[i]; uint8_t yi = key_block[i]; opad[i] = (uint32_t)xi ^ (uint32_t)yi; } uint64_t s[25U] = { 0U }; uint8_t *dst1 = ipad; if (data_len == 0U) { Hacl_Hash_SHA3_update_last_sha3(Spec_Hash_Definitions_SHA3_384, s, ipad, 104U); } else { uint32_t block_len = 104U; uint32_t n_blocks0 = data_len / block_len; uint32_t rem0 = data_len % block_len; K___uint32_t_uint32_t scrut; if (n_blocks0 > 0U && rem0 == 0U) { uint32_t n_blocks_ = n_blocks0 - 1U; scrut = ((K___uint32_t_uint32_t){ .fst = n_blocks_, .snd = data_len - n_blocks_ * block_len }); } else { scrut = ((K___uint32_t_uint32_t){ .fst = n_blocks0, .snd = rem0 }); } uint32_t n_blocks = scrut.fst; uint32_t rem_len = scrut.snd; uint32_t full_blocks_len = n_blocks * block_len; uint8_t *full_blocks = data; uint8_t *rem = data + full_blocks_len; Hacl_Hash_SHA3_update_multi_sha3(Spec_Hash_Definitions_SHA3_384, s, ipad, 1U); Hacl_Hash_SHA3_update_multi_sha3(Spec_Hash_Definitions_SHA3_384, s, full_blocks, n_blocks); Hacl_Hash_SHA3_update_last_sha3(Spec_Hash_Definitions_SHA3_384, s, rem, rem_len); } uint32_t remOut = 48U; uint8_t hbuf0[256U] = { 0U }; uint64_t ws0[32U] = { 0U }; memcpy(ws0, s, 25U * sizeof (uint64_t)); for (uint32_t i = 0U; i < 32U; i++) { store64_le(hbuf0 + i * 8U, ws0[i]); } memcpy(dst1 + 48U - remOut, hbuf0, remOut * sizeof (uint8_t)); uint8_t *hash1 = ipad; Hacl_Hash_SHA3_init_(Spec_Hash_Definitions_SHA3_384, s); uint32_t block_len = 104U; uint32_t n_blocks0 = 48U / block_len; uint32_t rem0 = 48U % block_len; K___uint32_t_uint32_t scrut; if (n_blocks0 > 0U && rem0 == 0U) { uint32_t n_blocks_ = n_blocks0 - 1U; scrut = ((K___uint32_t_uint32_t){ .fst = n_blocks_, .snd = 48U - n_blocks_ * block_len }); } else { scrut = ((K___uint32_t_uint32_t){ .fst = n_blocks0, .snd = rem0 }); } uint32_t n_blocks = scrut.fst; uint32_t rem_len = scrut.snd; uint32_t full_blocks_len = n_blocks * block_len; uint8_t *full_blocks = hash1; uint8_t *rem = hash1 + full_blocks_len; Hacl_Hash_SHA3_update_multi_sha3(Spec_Hash_Definitions_SHA3_384, s, opad, 1U); Hacl_Hash_SHA3_update_multi_sha3(Spec_Hash_Definitions_SHA3_384, s, full_blocks, n_blocks); Hacl_Hash_SHA3_update_last_sha3(Spec_Hash_Definitions_SHA3_384, s, rem, rem_len); uint32_t remOut0 = 48U; uint8_t hbuf[256U] = { 0U }; uint64_t ws[32U] = { 0U }; memcpy(ws, s, 25U * sizeof (uint64_t)); for (uint32_t i = 0U; i < 32U; i++) { store64_le(hbuf + i * 8U, ws[i]); } memcpy(dst + 48U - remOut0, hbuf, remOut0 * sizeof (uint8_t)); } /** Write the HMAC-SHA-3-512 MAC of a message (`data`) by using a key (`key`) into `dst`. The key can be any length and will be hashed if it is longer and padded if it is shorter than 72 bytes. `dst` must point to 64 bytes of memory. */ void Hacl_HMAC_compute_sha3_512( uint8_t *dst, uint8_t *key, uint32_t key_len, uint8_t *data, uint32_t data_len ) { uint8_t key_block[72U]; memset(key_block, 0U, 72U * sizeof (uint8_t)); uint8_t *nkey = key_block; uint32_t ite; if (key_len <= 72U) { ite = key_len; } else { ite = 64U; } uint8_t *zeroes = key_block + ite; KRML_MAYBE_UNUSED_VAR(zeroes); if (key_len <= 72U) { memcpy(nkey, key, key_len * sizeof (uint8_t)); } else { Hacl_Hash_SHA3_sha3_512(nkey, key, key_len); } uint8_t ipad[72U]; memset(ipad, 0x36U, 72U * sizeof (uint8_t)); for (uint32_t i = 0U; i < 72U; i++) { uint8_t xi = ipad[i]; uint8_t yi = key_block[i]; ipad[i] = (uint32_t)xi ^ (uint32_t)yi; } uint8_t opad[72U]; memset(opad, 0x5cU, 72U * sizeof (uint8_t)); for (uint32_t i = 0U; i < 72U; i++) { uint8_t xi = opad[i]; uint8_t yi = key_block[i]; opad[i] = (uint32_t)xi ^ (uint32_t)yi; } uint64_t s[25U] = { 0U }; uint8_t *dst1 = ipad; if (data_len == 0U) { Hacl_Hash_SHA3_update_last_sha3(Spec_Hash_Definitions_SHA3_512, s, ipad, 72U); } else { uint32_t block_len = 72U; uint32_t n_blocks0 = data_len / block_len; uint32_t rem0 = data_len % block_len; K___uint32_t_uint32_t scrut; if (n_blocks0 > 0U && rem0 == 0U) { uint32_t n_blocks_ = n_blocks0 - 1U; scrut = ((K___uint32_t_uint32_t){ .fst = n_blocks_, .snd = data_len - n_blocks_ * block_len }); } else { scrut = ((K___uint32_t_uint32_t){ .fst = n_blocks0, .snd = rem0 }); } uint32_t n_blocks = scrut.fst; uint32_t rem_len = scrut.snd; uint32_t full_blocks_len = n_blocks * block_len; uint8_t *full_blocks = data; uint8_t *rem = data + full_blocks_len; Hacl_Hash_SHA3_update_multi_sha3(Spec_Hash_Definitions_SHA3_512, s, ipad, 1U); Hacl_Hash_SHA3_update_multi_sha3(Spec_Hash_Definitions_SHA3_512, s, full_blocks, n_blocks); Hacl_Hash_SHA3_update_last_sha3(Spec_Hash_Definitions_SHA3_512, s, rem, rem_len); } uint32_t remOut = 64U; uint8_t hbuf0[256U] = { 0U }; uint64_t ws0[32U] = { 0U }; memcpy(ws0, s, 25U * sizeof (uint64_t)); for (uint32_t i = 0U; i < 32U; i++) { store64_le(hbuf0 + i * 8U, ws0[i]); } memcpy(dst1 + 64U - remOut, hbuf0, remOut * sizeof (uint8_t)); uint8_t *hash1 = ipad; Hacl_Hash_SHA3_init_(Spec_Hash_Definitions_SHA3_512, s); uint32_t block_len = 72U; uint32_t n_blocks0 = 64U / block_len; uint32_t rem0 = 64U % block_len; K___uint32_t_uint32_t scrut; if (n_blocks0 > 0U && rem0 == 0U) { uint32_t n_blocks_ = n_blocks0 - 1U; scrut = ((K___uint32_t_uint32_t){ .fst = n_blocks_, .snd = 64U - n_blocks_ * block_len }); } else { scrut = ((K___uint32_t_uint32_t){ .fst = n_blocks0, .snd = rem0 }); } uint32_t n_blocks = scrut.fst; uint32_t rem_len = scrut.snd; uint32_t full_blocks_len = n_blocks * block_len; uint8_t *full_blocks = hash1; uint8_t *rem = hash1 + full_blocks_len; Hacl_Hash_SHA3_update_multi_sha3(Spec_Hash_Definitions_SHA3_512, s, opad, 1U); Hacl_Hash_SHA3_update_multi_sha3(Spec_Hash_Definitions_SHA3_512, s, full_blocks, n_blocks); Hacl_Hash_SHA3_update_last_sha3(Spec_Hash_Definitions_SHA3_512, s, rem, rem_len); uint32_t remOut0 = 64U; uint8_t hbuf[256U] = { 0U }; uint64_t ws[32U] = { 0U }; memcpy(ws, s, 25U * sizeof (uint64_t)); for (uint32_t i = 0U; i < 32U; i++) { store64_le(hbuf + i * 8U, ws[i]); } memcpy(dst + 64U - remOut0, hbuf, remOut0 * sizeof (uint8_t)); } /** Write the HMAC-BLAKE2s MAC of a message (`data`) by using a key (`key`) into `dst`. The key can be any length and will be hashed if it is longer and padded if it is shorter than 64 bytes. `dst` must point to 32 bytes of memory. */ void Hacl_HMAC_compute_blake2s_32( uint8_t *dst, uint8_t *key, uint32_t key_len, uint8_t *data, uint32_t data_len ) { uint8_t key_block[64U]; memset(key_block, 0U, 64U * sizeof (uint8_t)); uint8_t *nkey = key_block; uint32_t ite; if (key_len <= 64U) { ite = key_len; } else { ite = 32U; } uint8_t *zeroes = key_block + ite; KRML_MAYBE_UNUSED_VAR(zeroes); if (key_len <= 64U) { memcpy(nkey, key, key_len * sizeof (uint8_t)); } else { Hacl_Hash_Blake2s_hash_with_key(nkey, 32U, key, key_len, NULL, 0U); } uint8_t ipad[64U]; memset(ipad, 0x36U, 64U * sizeof (uint8_t)); for (uint32_t i = 0U; i < 64U; i++) { uint8_t xi = ipad[i]; uint8_t yi = key_block[i]; ipad[i] = (uint32_t)xi ^ (uint32_t)yi; } uint8_t opad[64U]; memset(opad, 0x5cU, 64U * sizeof (uint8_t)); for (uint32_t i = 0U; i < 64U; i++) { uint8_t xi = opad[i]; uint8_t yi = key_block[i]; opad[i] = (uint32_t)xi ^ (uint32_t)yi; } uint32_t s[16U] = { 0U }; Hacl_Hash_Blake2s_init(s, 0U, 32U); uint32_t *s0 = s; uint8_t *dst1 = ipad; if (data_len == 0U) { uint32_t wv[16U] = { 0U }; Hacl_Hash_Blake2s_update_last(64U, wv, s0, false, 0ULL, 64U, ipad); } else { uint32_t block_len = 64U; uint32_t n_blocks0 = data_len / block_len; uint32_t rem0 = data_len % block_len; K___uint32_t_uint32_t scrut; if (n_blocks0 > 0U && rem0 == 0U) { uint32_t n_blocks_ = n_blocks0 - 1U; scrut = ((K___uint32_t_uint32_t){ .fst = n_blocks_, .snd = data_len - n_blocks_ * block_len }); } else { scrut = ((K___uint32_t_uint32_t){ .fst = n_blocks0, .snd = rem0 }); } uint32_t n_blocks = scrut.fst; uint32_t rem_len = scrut.snd; uint32_t full_blocks_len = n_blocks * block_len; uint8_t *full_blocks = data; uint8_t *rem = data + full_blocks_len; uint32_t wv[16U] = { 0U }; Hacl_Hash_Blake2s_update_multi(64U, wv, s0, 0ULL, ipad, 1U); uint32_t wv0[16U] = { 0U }; Hacl_Hash_Blake2s_update_multi(n_blocks * 64U, wv0, s0, (uint64_t)block_len, full_blocks, n_blocks); uint32_t wv1[16U] = { 0U }; Hacl_Hash_Blake2s_update_last(rem_len, wv1, s0, false, (uint64_t)64U + (uint64_t)full_blocks_len, rem_len, rem); } Hacl_Hash_Blake2s_finish(32U, dst1, s0); uint8_t *hash1 = ipad; Hacl_Hash_Blake2s_init(s0, 0U, 32U); uint32_t block_len = 64U; uint32_t n_blocks0 = 32U / block_len; uint32_t rem0 = 32U % block_len; K___uint32_t_uint32_t scrut; if (n_blocks0 > 0U && rem0 == 0U) { uint32_t n_blocks_ = n_blocks0 - 1U; scrut = ((K___uint32_t_uint32_t){ .fst = n_blocks_, .snd = 32U - n_blocks_ * block_len }); } else { scrut = ((K___uint32_t_uint32_t){ .fst = n_blocks0, .snd = rem0 }); } uint32_t n_blocks = scrut.fst; uint32_t rem_len = scrut.snd; uint32_t full_blocks_len = n_blocks * block_len; uint8_t *full_blocks = hash1; uint8_t *rem = hash1 + full_blocks_len; uint32_t wv[16U] = { 0U }; Hacl_Hash_Blake2s_update_multi(64U, wv, s0, 0ULL, opad, 1U); uint32_t wv0[16U] = { 0U }; Hacl_Hash_Blake2s_update_multi(n_blocks * 64U, wv0, s0, (uint64_t)block_len, full_blocks, n_blocks); uint32_t wv1[16U] = { 0U }; Hacl_Hash_Blake2s_update_last(rem_len, wv1, s0, false, (uint64_t)64U + (uint64_t)full_blocks_len, rem_len, rem); Hacl_Hash_Blake2s_finish(32U, dst, s0); } /** Write the HMAC-BLAKE2b MAC of a message (`data`) by using a key (`key`) into `dst`. The key can be any length and will be hashed if it is longer and padded if it is shorter than 128 bytes. `dst` must point to 64 bytes of memory. */ void Hacl_HMAC_compute_blake2b_32( uint8_t *dst, uint8_t *key, uint32_t key_len, uint8_t *data, uint32_t data_len ) { uint8_t key_block[128U]; memset(key_block, 0U, 128U * sizeof (uint8_t)); uint8_t *nkey = key_block; uint32_t ite; if (key_len <= 128U) { ite = key_len; } else { ite = 64U; } uint8_t *zeroes = key_block + ite; KRML_MAYBE_UNUSED_VAR(zeroes); if (key_len <= 128U) { memcpy(nkey, key, key_len * sizeof (uint8_t)); } else { Hacl_Hash_Blake2b_hash_with_key(nkey, 64U, key, key_len, NULL, 0U); } uint8_t ipad[128U]; memset(ipad, 0x36U, 128U * sizeof (uint8_t)); for (uint32_t i = 0U; i < 128U; i++) { uint8_t xi = ipad[i]; uint8_t yi = key_block[i]; ipad[i] = (uint32_t)xi ^ (uint32_t)yi; } uint8_t opad[128U]; memset(opad, 0x5cU, 128U * sizeof (uint8_t)); for (uint32_t i = 0U; i < 128U; i++) { uint8_t xi = opad[i]; uint8_t yi = key_block[i]; opad[i] = (uint32_t)xi ^ (uint32_t)yi; } uint64_t s[16U] = { 0U }; Hacl_Hash_Blake2b_init(s, 0U, 64U); uint64_t *s0 = s; uint8_t *dst1 = ipad; if (data_len == 0U) { uint64_t wv[16U] = { 0U }; Hacl_Hash_Blake2b_update_last(128U, wv, s0, false, FStar_UInt128_uint64_to_uint128(0ULL), 128U, ipad); } else { uint32_t block_len = 128U; uint32_t n_blocks0 = data_len / block_len; uint32_t rem0 = data_len % block_len; K___uint32_t_uint32_t scrut; if (n_blocks0 > 0U && rem0 == 0U) { uint32_t n_blocks_ = n_blocks0 - 1U; scrut = ((K___uint32_t_uint32_t){ .fst = n_blocks_, .snd = data_len - n_blocks_ * block_len }); } else { scrut = ((K___uint32_t_uint32_t){ .fst = n_blocks0, .snd = rem0 }); } uint32_t n_blocks = scrut.fst; uint32_t rem_len = scrut.snd; uint32_t full_blocks_len = n_blocks * block_len; uint8_t *full_blocks = data; uint8_t *rem = data + full_blocks_len; uint64_t wv[16U] = { 0U }; Hacl_Hash_Blake2b_update_multi(128U, wv, s0, FStar_UInt128_uint64_to_uint128(0ULL), ipad, 1U); uint64_t wv0[16U] = { 0U }; Hacl_Hash_Blake2b_update_multi(n_blocks * 128U, wv0, s0, FStar_UInt128_uint64_to_uint128((uint64_t)block_len), full_blocks, n_blocks); uint64_t wv1[16U] = { 0U }; Hacl_Hash_Blake2b_update_last(rem_len, wv1, s0, false, FStar_UInt128_add(FStar_UInt128_uint64_to_uint128((uint64_t)128U), FStar_UInt128_uint64_to_uint128((uint64_t)full_blocks_len)), rem_len, rem); } Hacl_Hash_Blake2b_finish(64U, dst1, s0); uint8_t *hash1 = ipad; Hacl_Hash_Blake2b_init(s0, 0U, 64U); uint32_t block_len = 128U; uint32_t n_blocks0 = 64U / block_len; uint32_t rem0 = 64U % block_len; K___uint32_t_uint32_t scrut; if (n_blocks0 > 0U && rem0 == 0U) { uint32_t n_blocks_ = n_blocks0 - 1U; scrut = ((K___uint32_t_uint32_t){ .fst = n_blocks_, .snd = 64U - n_blocks_ * block_len }); } else { scrut = ((K___uint32_t_uint32_t){ .fst = n_blocks0, .snd = rem0 }); } uint32_t n_blocks = scrut.fst; uint32_t rem_len = scrut.snd; uint32_t full_blocks_len = n_blocks * block_len; uint8_t *full_blocks = hash1; uint8_t *rem = hash1 + full_blocks_len; uint64_t wv[16U] = { 0U }; Hacl_Hash_Blake2b_update_multi(128U, wv, s0, FStar_UInt128_uint64_to_uint128(0ULL), opad, 1U); uint64_t wv0[16U] = { 0U }; Hacl_Hash_Blake2b_update_multi(n_blocks * 128U, wv0, s0, FStar_UInt128_uint64_to_uint128((uint64_t)block_len), full_blocks, n_blocks); uint64_t wv1[16U] = { 0U }; Hacl_Hash_Blake2b_update_last(rem_len, wv1, s0, false, FStar_UInt128_add(FStar_UInt128_uint64_to_uint128((uint64_t)128U), FStar_UInt128_uint64_to_uint128((uint64_t)full_blocks_len)), rem_len, rem); Hacl_Hash_Blake2b_finish(64U, dst, s0); }