mirror of
https://github.com/python/cpython.git
synced 2025-11-20 10:57:44 +00:00
svn+ssh://pythondev@svn.python.org/python/trunk
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
NOTE: The merge does NOT contain the modified file Python/import.c from
r59288. I can't get it running. Nick, please check in the PEP 366
manually.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
........
r59279 | georg.brandl | 2007-12-02 19:17:50 +0100 (Sun, 02 Dec 2007) | 2 lines
Fix a sentence I missed before. Do not merge to 3k.
........
r59281 | georg.brandl | 2007-12-02 22:58:54 +0100 (Sun, 02 Dec 2007) | 3 lines
Add documentation for PySys_* functions.
Written by Charlie Shepherd for GHOP. Also fixes #1245.
........
r59288 | nick.coghlan | 2007-12-03 13:55:17 +0100 (Mon, 03 Dec 2007) | 1 line
Implement PEP 366
........
r59290 | christian.heimes | 2007-12-03 14:47:29 +0100 (Mon, 03 Dec 2007) | 3 lines
Applied my patch #1455 with some extra fixes for VS 2005
The new msvc9compiler module supports VS 2005 and VS 2008. I've also fixed build_ext to support PCbuild8 and PCbuild9 and backported my fix for xxmodule.c from py3k. The old code msvccompiler is still in place in case somebody likes to build an extension with VS 2003 or earlier.
I've also updated the cygwin compiler module for VS 2005 and VS 2008. It works with VS 2005 but I'm unable to test it with VS 2008. We have to wait for a new version of cygwin.
........
r59291 | christian.heimes | 2007-12-03 14:55:16 +0100 (Mon, 03 Dec 2007) | 1 line
Added comment to Misc/NEWS for r59290
........
r59292 | christian.heimes | 2007-12-03 15:28:04 +0100 (Mon, 03 Dec 2007) | 1 line
I followed MA Lemberg's suggestion and added comments to the late initialization of the type slots.
........
r59293 | facundo.batista | 2007-12-03 17:29:52 +0100 (Mon, 03 Dec 2007) | 3 lines
Speedup and cleaning of __str__. Thanks Mark Dickinson.
........
r59294 | facundo.batista | 2007-12-03 18:55:00 +0100 (Mon, 03 Dec 2007) | 4 lines
Faster _fix function, and some reordering for a more elegant
coding. Thanks Mark Dickinson.
........
r59295 | martin.v.loewis | 2007-12-03 20:20:02 +0100 (Mon, 03 Dec 2007) | 5 lines
Issue #1727780: Support loading pickles of random.Random objects created
on 32-bit systems on 64-bit systems, and vice versa. As a consequence
of the change, Random pickles created by Python 2.6 cannot be loaded
in Python 2.5.
........
r59297 | facundo.batista | 2007-12-03 20:49:54 +0100 (Mon, 03 Dec 2007) | 3 lines
Two small fixes. Issue 1547.
........
r59299 | georg.brandl | 2007-12-03 20:57:02 +0100 (Mon, 03 Dec 2007) | 2 lines
#1548: fix apostroph placement.
........
r59300 | christian.heimes | 2007-12-03 21:01:02 +0100 (Mon, 03 Dec 2007) | 3 lines
Patch #1537 from Chad Austin
Change GeneratorExit's base class from Exception to BaseException
(This time I'm applying the patch to the correct sandbox.)
........
r59302 | georg.brandl | 2007-12-03 21:03:46 +0100 (Mon, 03 Dec 2007) | 3 lines
Add examples to the xmlrpclib docs.
Written for GHOP by Josip Dzolonga.
........
286 lines
11 KiB
ReStructuredText
286 lines
11 KiB
ReStructuredText
|
|
:mod:`random` --- Generate pseudo-random numbers
|
|
================================================
|
|
|
|
.. module:: random
|
|
:synopsis: Generate pseudo-random numbers with various common distributions.
|
|
|
|
|
|
This module implements pseudo-random number generators for various
|
|
distributions.
|
|
|
|
For integers, uniform selection from a range. For sequences, uniform selection
|
|
of a random element, a function to generate a random permutation of a list
|
|
in-place, and a function for random sampling without replacement.
|
|
|
|
On the real line, there are functions to compute uniform, normal (Gaussian),
|
|
lognormal, negative exponential, gamma, and beta distributions. For generating
|
|
distributions of angles, the von Mises distribution is available.
|
|
|
|
Almost all module functions depend on the basic function :func:`random`, which
|
|
generates a random float uniformly in the semi-open range [0.0, 1.0). Python
|
|
uses the Mersenne Twister as the core generator. It produces 53-bit precision
|
|
floats and has a period of 2\*\*19937-1. The underlying implementation in C is
|
|
both fast and threadsafe. The Mersenne Twister is one of the most extensively
|
|
tested random number generators in existence. However, being completely
|
|
deterministic, it is not suitable for all purposes, and is completely unsuitable
|
|
for cryptographic purposes.
|
|
|
|
The functions supplied by this module are actually bound methods of a hidden
|
|
instance of the :class:`random.Random` class. You can instantiate your own
|
|
instances of :class:`Random` to get generators that don't share state. This is
|
|
especially useful for multi-threaded programs, creating a different instance of
|
|
:class:`Random` for each thread, and using the :meth:`jumpahead` method to make
|
|
it likely that the generated sequences seen by each thread don't overlap.
|
|
|
|
Class :class:`Random` can also be subclassed if you want to use a different
|
|
basic generator of your own devising: in that case, override the :meth:`random`,
|
|
:meth:`seed`, :meth:`getstate`, :meth:`setstate` and :meth:`jumpahead` methods.
|
|
Optionally, a new generator can supply a :meth:`getrandombits` method --- this
|
|
allows :meth:`randrange` to produce selections over an arbitrarily large range.
|
|
|
|
As an example of subclassing, the :mod:`random` module provides the
|
|
:class:`WichmannHill` class that implements an alternative generator in pure
|
|
Python. The class provides a backward compatible way to reproduce results from
|
|
earlier versions of Python, which used the Wichmann-Hill algorithm as the core
|
|
generator. Note that this Wichmann-Hill generator can no longer be recommended:
|
|
its period is too short by contemporary standards, and the sequence generated is
|
|
known to fail some stringent randomness tests. See the references below for a
|
|
recent variant that repairs these flaws.
|
|
|
|
Bookkeeping functions:
|
|
|
|
|
|
.. function:: seed([x])
|
|
|
|
Initialize the basic random number generator. Optional argument *x* can be any
|
|
:term:`hashable` object. If *x* is omitted or ``None``, current system time is used;
|
|
current system time is also used to initialize the generator when the module is
|
|
first imported. If randomness sources are provided by the operating system,
|
|
they are used instead of the system time (see the :func:`os.urandom` function
|
|
for details on availability).
|
|
|
|
If *x* is not ``None`` or an int, ``hash(x)`` is used instead. If *x* is an
|
|
int, *x* is used directly.
|
|
|
|
|
|
.. function:: getstate()
|
|
|
|
Return an object capturing the current internal state of the generator. This
|
|
object can be passed to :func:`setstate` to restore the state.
|
|
|
|
State values produced in Python 2.6 cannot be loaded into earlier versions.
|
|
|
|
|
|
.. function:: setstate(state)
|
|
|
|
*state* should have been obtained from a previous call to :func:`getstate`, and
|
|
:func:`setstate` restores the internal state of the generator to what it was at
|
|
the time :func:`setstate` was called.
|
|
|
|
|
|
.. function:: jumpahead(n)
|
|
|
|
Change the internal state to one different from and likely far away from the
|
|
current state. *n* is a non-negative integer which is used to scramble the
|
|
current state vector. This is most useful in multi-threaded programs, in
|
|
conjuction with multiple instances of the :class:`Random` class:
|
|
:meth:`setstate` or :meth:`seed` can be used to force all instances into the
|
|
same internal state, and then :meth:`jumpahead` can be used to force the
|
|
instances' states far apart.
|
|
|
|
|
|
.. function:: getrandbits(k)
|
|
|
|
Returns a python integer with *k* random bits. This method is supplied with
|
|
the MersenneTwister generator and some other generators may also provide it
|
|
as an optional part of the API. When available, :meth:`getrandbits` enables
|
|
:meth:`randrange` to handle arbitrarily large ranges.
|
|
|
|
|
|
Functions for integers:
|
|
|
|
.. function:: randrange([start,] stop[, step])
|
|
|
|
Return a randomly selected element from ``range(start, stop, step)``. This is
|
|
equivalent to ``choice(range(start, stop, step))``, but doesn't actually build a
|
|
range object.
|
|
|
|
|
|
.. function:: randint(a, b)
|
|
|
|
Return a random integer *N* such that ``a <= N <= b``.
|
|
|
|
|
|
Functions for sequences:
|
|
|
|
.. function:: choice(seq)
|
|
|
|
Return a random element from the non-empty sequence *seq*. If *seq* is empty,
|
|
raises :exc:`IndexError`.
|
|
|
|
|
|
.. function:: shuffle(x[, random])
|
|
|
|
Shuffle the sequence *x* in place. The optional argument *random* is a
|
|
0-argument function returning a random float in [0.0, 1.0); by default, this is
|
|
the function :func:`random`.
|
|
|
|
Note that for even rather small ``len(x)``, the total number of permutations of
|
|
*x* is larger than the period of most random number generators; this implies
|
|
that most permutations of a long sequence can never be generated.
|
|
|
|
|
|
.. function:: sample(population, k)
|
|
|
|
Return a *k* length list of unique elements chosen from the population sequence.
|
|
Used for random sampling without replacement.
|
|
|
|
Returns a new list containing elements from the population while leaving the
|
|
original population unchanged. The resulting list is in selection order so that
|
|
all sub-slices will also be valid random samples. This allows raffle winners
|
|
(the sample) to be partitioned into grand prize and second place winners (the
|
|
subslices).
|
|
|
|
Members of the population need not be :term:`hashable` or unique. If the population
|
|
contains repeats, then each occurrence is a possible selection in the sample.
|
|
|
|
To choose a sample from a range of integers, use an :func:`range` object as an
|
|
argument. This is especially fast and space efficient for sampling from a large
|
|
population: ``sample(range(10000000), 60)``.
|
|
|
|
The following functions generate specific real-valued distributions. Function
|
|
parameters are named after the corresponding variables in the distribution's
|
|
equation, as used in common mathematical practice; most of these equations can
|
|
be found in any statistics text.
|
|
|
|
|
|
.. function:: random()
|
|
|
|
Return the next random floating point number in the range [0.0, 1.0).
|
|
|
|
|
|
.. function:: uniform(a, b)
|
|
|
|
Return a random floating point number *N* such that ``a <= N < b``.
|
|
|
|
|
|
.. function:: betavariate(alpha, beta)
|
|
|
|
Beta distribution. Conditions on the parameters are ``alpha > 0`` and ``beta >
|
|
0``. Returned values range between 0 and 1.
|
|
|
|
|
|
.. function:: expovariate(lambd)
|
|
|
|
Exponential distribution. *lambd* is 1.0 divided by the desired mean. (The
|
|
parameter would be called "lambda", but that is a reserved word in Python.)
|
|
Returned values range from 0 to positive infinity.
|
|
|
|
|
|
.. function:: gammavariate(alpha, beta)
|
|
|
|
Gamma distribution. (*Not* the gamma function!) Conditions on the parameters
|
|
are ``alpha > 0`` and ``beta > 0``.
|
|
|
|
|
|
.. function:: gauss(mu, sigma)
|
|
|
|
Gaussian distribution. *mu* is the mean, and *sigma* is the standard deviation.
|
|
This is slightly faster than the :func:`normalvariate` function defined below.
|
|
|
|
|
|
.. function:: lognormvariate(mu, sigma)
|
|
|
|
Log normal distribution. If you take the natural logarithm of this
|
|
distribution, you'll get a normal distribution with mean *mu* and standard
|
|
deviation *sigma*. *mu* can have any value, and *sigma* must be greater than
|
|
zero.
|
|
|
|
|
|
.. function:: normalvariate(mu, sigma)
|
|
|
|
Normal distribution. *mu* is the mean, and *sigma* is the standard deviation.
|
|
|
|
|
|
.. function:: vonmisesvariate(mu, kappa)
|
|
|
|
*mu* is the mean angle, expressed in radians between 0 and 2\*\ *pi*, and *kappa*
|
|
is the concentration parameter, which must be greater than or equal to zero. If
|
|
*kappa* is equal to zero, this distribution reduces to a uniform random angle
|
|
over the range 0 to 2\*\ *pi*.
|
|
|
|
|
|
.. function:: paretovariate(alpha)
|
|
|
|
Pareto distribution. *alpha* is the shape parameter.
|
|
|
|
|
|
.. function:: weibullvariate(alpha, beta)
|
|
|
|
Weibull distribution. *alpha* is the scale parameter and *beta* is the shape
|
|
parameter.
|
|
|
|
|
|
Alternative Generators:
|
|
|
|
.. class:: WichmannHill([seed])
|
|
|
|
Class that implements the Wichmann-Hill algorithm as the core generator. Has all
|
|
of the same methods as :class:`Random` plus the :meth:`whseed` method described
|
|
below. Because this class is implemented in pure Python, it is not threadsafe
|
|
and may require locks between calls. The period of the generator is
|
|
6,953,607,871,644 which is small enough to require care that two independent
|
|
random sequences do not overlap.
|
|
|
|
|
|
.. function:: whseed([x])
|
|
|
|
This is obsolete, supplied for bit-level compatibility with versions of Python
|
|
prior to 2.1. See :func:`seed` for details. :func:`whseed` does not guarantee
|
|
that distinct integer arguments yield distinct internal states, and can yield no
|
|
more than about 2\*\*24 distinct internal states in all.
|
|
|
|
|
|
.. class:: SystemRandom([seed])
|
|
|
|
Class that uses the :func:`os.urandom` function for generating random numbers
|
|
from sources provided by the operating system. Not available on all systems.
|
|
Does not rely on software state and sequences are not reproducible. Accordingly,
|
|
the :meth:`seed` and :meth:`jumpahead` methods have no effect and are ignored.
|
|
The :meth:`getstate` and :meth:`setstate` methods raise
|
|
:exc:`NotImplementedError` if called.
|
|
|
|
|
|
Examples of basic usage::
|
|
|
|
>>> random.random() # Random float x, 0.0 <= x < 1.0
|
|
0.37444887175646646
|
|
>>> random.uniform(1, 10) # Random float x, 1.0 <= x < 10.0
|
|
1.1800146073117523
|
|
>>> random.randint(1, 10) # Integer from 1 to 10, endpoints included
|
|
7
|
|
>>> random.randrange(0, 101, 2) # Even integer from 0 to 100
|
|
26
|
|
>>> random.choice('abcdefghij') # Choose a random element
|
|
'c'
|
|
|
|
>>> items = [1, 2, 3, 4, 5, 6, 7]
|
|
>>> random.shuffle(items)
|
|
>>> items
|
|
[7, 3, 2, 5, 6, 4, 1]
|
|
|
|
>>> random.sample([1, 2, 3, 4, 5], 3) # Choose 3 elements
|
|
[4, 1, 5]
|
|
|
|
|
|
|
|
.. seealso::
|
|
|
|
M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-dimensionally
|
|
equidistributed uniform pseudorandom number generator", ACM Transactions on
|
|
Modeling and Computer Simulation Vol. 8, No. 1, January pp.3-30 1998.
|
|
|
|
Wichmann, B. A. & Hill, I. D., "Algorithm AS 183: An efficient and portable
|
|
pseudo-random number generator", Applied Statistics 31 (1982) 188-190.
|
|
|