cpython/Doc/library/itertools.rst
Benjamin Peterson d23f8224e9 Merged revisions 70712,70714,70764-70765,70769-70771,70773,70776-70777,70788-70789,70824,70828,70832,70836,70842,70851,70855,70857,70866-70872,70883,70885,70893-70894,70896-70897,70903,70905-70907,70915,70927,70933,70951,70960,70962-70964,70998,71001,71006,71008,71010-71011,71019,71037,71056,71094,71101-71103,71106,71119,71123,71149-71150,71203,71212,71214-71217,71221,71240 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/trunk

........
  r70712 | benjamin.peterson | 2009-03-30 10:15:38 -0500 (Mon, 30 Mar 2009) | 1 line

  don't rely on the order dict repr #5605
........
  r70714 | brett.cannon | 2009-03-30 10:20:53 -0500 (Mon, 30 Mar 2009) | 1 line

  Add an entry to developers.txt.
........
  r70764 | martin.v.loewis | 2009-03-30 17:06:33 -0500 (Mon, 30 Mar 2009) | 2 lines

  Add several VM developers.
........
  r70765 | georg.brandl | 2009-03-30 17:09:34 -0500 (Mon, 30 Mar 2009) | 1 line

  #5199: make warning about vars() assignment more visible.
........
  r70769 | andrew.kuchling | 2009-03-30 17:29:53 -0500 (Mon, 30 Mar 2009) | 1 line

  Remove comment
........
  r70770 | andrew.kuchling | 2009-03-30 17:30:20 -0500 (Mon, 30 Mar 2009) | 1 line

  Add several items and placeholders
........
  r70771 | andrew.kuchling | 2009-03-30 17:31:11 -0500 (Mon, 30 Mar 2009) | 1 line

  Many edits
........
  r70773 | georg.brandl | 2009-03-30 17:43:00 -0500 (Mon, 30 Mar 2009) | 1 line

  #5039: make it clear that the impl. note refers to CPython.
........
  r70776 | andrew.kuchling | 2009-03-30 18:08:24 -0500 (Mon, 30 Mar 2009) | 1 line

  typo fix
........
  r70777 | andrew.kuchling | 2009-03-30 18:09:46 -0500 (Mon, 30 Mar 2009) | 1 line

  Add more items
........
  r70788 | andrew.kuchling | 2009-03-30 20:21:01 -0500 (Mon, 30 Mar 2009) | 1 line

  Add various items
........
  r70789 | georg.brandl | 2009-03-30 20:25:15 -0500 (Mon, 30 Mar 2009) | 1 line

  Fix a wrong struct field assignment (docstring as closure).
........
  r70824 | georg.brandl | 2009-03-31 10:43:20 -0500 (Tue, 31 Mar 2009) | 1 line

  #5519: remove reference to Kodos, which seems dead.
........
  r70828 | georg.brandl | 2009-03-31 10:50:16 -0500 (Tue, 31 Mar 2009) | 1 line

  #5581: fget argument of abstractproperty is optional as well.
........
  r70832 | georg.brandl | 2009-03-31 11:31:11 -0500 (Tue, 31 Mar 2009) | 1 line

  #1386675: specify WindowsError as the exception, because it has a winerror attribute that EnvironmentError doesnt have.
........
  r70836 | georg.brandl | 2009-03-31 11:50:25 -0500 (Tue, 31 Mar 2009) | 1 line

  #5417: replace references to undocumented functions by ones to documented functions.
........
  r70842 | georg.brandl | 2009-03-31 12:13:06 -0500 (Tue, 31 Mar 2009) | 1 line

  #970783: document PyObject_Generic[GS]etAttr.
........
  r70851 | georg.brandl | 2009-03-31 13:26:55 -0500 (Tue, 31 Mar 2009) | 1 line

  #837577: note cryptic return value of spawn*e on invalid env dicts.
........
  r70855 | georg.brandl | 2009-03-31 13:30:37 -0500 (Tue, 31 Mar 2009) | 1 line

  #5245: note that PyRun_SimpleString doesnt return on SystemExit.
........
  r70857 | georg.brandl | 2009-03-31 13:33:10 -0500 (Tue, 31 Mar 2009) | 1 line

  #5227: note that Py_Main doesnt return on SystemExit.
........
  r70866 | georg.brandl | 2009-03-31 14:06:57 -0500 (Tue, 31 Mar 2009) | 1 line

  #4882: document named group behavior a bit better.
........
  r70867 | georg.brandl | 2009-03-31 14:10:35 -0500 (Tue, 31 Mar 2009) | 1 line

  #1096310: document usage of sys.__std*__ a bit better.
........
  r70868 | georg.brandl | 2009-03-31 14:12:17 -0500 (Tue, 31 Mar 2009) | 1 line

  #5190: export make_option in __all__.
........
  r70869 | georg.brandl | 2009-03-31 14:14:42 -0500 (Tue, 31 Mar 2009) | 1 line

  Fix-up unwanted change.
........
  r70870 | georg.brandl | 2009-03-31 14:26:24 -0500 (Tue, 31 Mar 2009) | 1 line

  #4411: document mro() and __mro__. (I hope I got it right.)
........
  r70871 | georg.brandl | 2009-03-31 14:30:56 -0500 (Tue, 31 Mar 2009) | 1 line

  #5618: fix typo.
........
  r70872 | r.david.murray | 2009-03-31 14:31:17 -0500 (Tue, 31 Mar 2009) | 3 lines

  Delete out-of-date and little-known README from the test
  directory by consensus of devs at pycon sprint.
........
  r70883 | georg.brandl | 2009-03-31 15:41:08 -0500 (Tue, 31 Mar 2009) | 1 line

  #1674032: return value of flag from Event.wait(). OKed by Guido.
........
  r70885 | tarek.ziade | 2009-03-31 15:48:31 -0500 (Tue, 31 Mar 2009) | 1 line

  using log.warn for sys.stderr
........
  r70893 | georg.brandl | 2009-03-31 15:56:32 -0500 (Tue, 31 Mar 2009) | 1 line

  #1530012: move TQS section before raw strings.
........
  r70894 | benjamin.peterson | 2009-03-31 16:06:30 -0500 (Tue, 31 Mar 2009) | 1 line

  take the usual lock precautions around _active_limbo_lock
........
  r70896 | georg.brandl | 2009-03-31 16:15:33 -0500 (Tue, 31 Mar 2009) | 1 line

  #5598: document DocFileSuite *args argument.
........
  r70897 | benjamin.peterson | 2009-03-31 16:34:42 -0500 (Tue, 31 Mar 2009) | 1 line

  fix Thread.ident when it is the main thread or a dummy thread #5632
........
  r70903 | georg.brandl | 2009-03-31 16:45:18 -0500 (Tue, 31 Mar 2009) | 1 line

  #1676135: remove trailing slashes from --prefix argument.
........
  r70905 | georg.brandl | 2009-03-31 17:03:40 -0500 (Tue, 31 Mar 2009) | 1 line

  #5563: more documentation for bdist_msi.
........
  r70906 | georg.brandl | 2009-03-31 17:11:53 -0500 (Tue, 31 Mar 2009) | 1 line

  #1651995: fix _convert_ref for non-ASCII characters.
........
  r70907 | georg.brandl | 2009-03-31 17:18:19 -0500 (Tue, 31 Mar 2009) | 1 line

  #3427: document correct return type for urlopen().info().
........
  r70915 | georg.brandl | 2009-03-31 17:40:16 -0500 (Tue, 31 Mar 2009) | 1 line

  #5018: remove confusing paragraph.
........
  r70927 | georg.brandl | 2009-03-31 18:01:27 -0500 (Tue, 31 Mar 2009) | 1 line

  Dont shout to users.
........
  r70933 | georg.brandl | 2009-03-31 19:04:33 -0500 (Tue, 31 Mar 2009) | 2 lines

  Issue #5635: Fix running test_sys with tracing enabled.
........
  r70951 | georg.brandl | 2009-04-01 09:02:27 -0500 (Wed, 01 Apr 2009) | 1 line

  Add Maksim, who worked on several issues at the sprint.
........
  r70960 | jesse.noller | 2009-04-01 11:42:19 -0500 (Wed, 01 Apr 2009) | 1 line

  Issue 3270: document Listener address restrictions on windows
........
  r70962 | brett.cannon | 2009-04-01 12:07:16 -0500 (Wed, 01 Apr 2009) | 2 lines

  Ron DuPlain was given commit privileges at PyCon 2009 to work on 3to2.
........
  r70963 | georg.brandl | 2009-04-01 12:46:01 -0500 (Wed, 01 Apr 2009) | 1 line

  #5655: fix docstring oversight.
........
  r70964 | brett.cannon | 2009-04-01 12:52:13 -0500 (Wed, 01 Apr 2009) | 2 lines

  Paul Kippes was given commit privileges to work on 3to2.
........
  r70998 | georg.brandl | 2009-04-01 16:54:21 -0500 (Wed, 01 Apr 2009) | 1 line

  In Pdb, stop assigning values to __builtin__._ which interferes with the one commonly installed by gettext.
........
  r71001 | brett.cannon | 2009-04-01 18:01:12 -0500 (Wed, 01 Apr 2009) | 3 lines

  Add my initials to Misc/developers.txt. Names are now sorted by number of
  characters in the person's name.
........
  r71006 | georg.brandl | 2009-04-01 18:32:17 -0500 (Wed, 01 Apr 2009) | 1 line

  Cache the f_locals dict of the current frame, since every access to frame.f_locals overrides its contents with the real locals which undoes modifications made by the debugging user.
........
  r71008 | andrew.kuchling | 2009-04-01 19:02:14 -0500 (Wed, 01 Apr 2009) | 1 line

  Typo fix
........
  r71010 | benjamin.peterson | 2009-04-01 19:11:52 -0500 (Wed, 01 Apr 2009) | 1 line

  fix markup
........
  r71011 | benjamin.peterson | 2009-04-01 19:12:47 -0500 (Wed, 01 Apr 2009) | 1 line

  this should be :noindex:
........
  r71019 | georg.brandl | 2009-04-01 21:00:01 -0500 (Wed, 01 Apr 2009) | 1 line

  Fix test_doctest, missed two assignments to curframe.
........
  r71037 | r.david.murray | 2009-04-01 23:34:04 -0500 (Wed, 01 Apr 2009) | 6 lines

  Clarify that datetime strftime does not produce leap seconds and datetime
  strptime does not accept it in the strftime behavior section of the
  datetime docs.

  Closes issue 2568.
........
  r71056 | georg.brandl | 2009-04-02 12:43:07 -0500 (Thu, 02 Apr 2009) | 2 lines

  Actually the displayhook should print the repr.
........
  r71094 | vinay.sajip | 2009-04-03 05:23:18 -0500 (Fri, 03 Apr 2009) | 1 line

  Added warning about logging use from asynchronous signal handlers.
........
  r71101 | andrew.kuchling | 2009-04-03 16:43:00 -0500 (Fri, 03 Apr 2009) | 1 line

  Add some items
........
  r71102 | andrew.kuchling | 2009-04-03 16:44:49 -0500 (Fri, 03 Apr 2009) | 1 line

  Fix 'the the'; grammar fix
........
  r71103 | andrew.kuchling | 2009-04-03 16:45:29 -0500 (Fri, 03 Apr 2009) | 1 line

  Fix 'the the' duplication
........
  r71106 | vinay.sajip | 2009-04-03 16:58:16 -0500 (Fri, 03 Apr 2009) | 1 line

  Clarified warning about logging use from asynchronous signal handlers.
........
  r71119 | raymond.hettinger | 2009-04-04 00:37:47 -0500 (Sat, 04 Apr 2009) | 1 line

  Add helpful link.
........
  r71123 | r.david.murray | 2009-04-04 01:39:56 -0500 (Sat, 04 Apr 2009) | 2 lines

  Fix error in description of 'oct' (issue 5678).
........
  r71149 | georg.brandl | 2009-04-04 08:42:39 -0500 (Sat, 04 Apr 2009) | 1 line

  #5642: clarify map() compatibility to the builtin.
........
  r71150 | georg.brandl | 2009-04-04 08:45:49 -0500 (Sat, 04 Apr 2009) | 1 line

  #5601: clarify that webbrowser is not meant for file names.
........
  r71203 | benjamin.peterson | 2009-04-04 18:46:34 -0500 (Sat, 04 Apr 2009) | 1 line

  note how using iter* are unsafe while mutating and document iter(dict)
........
  r71212 | georg.brandl | 2009-04-05 05:24:20 -0500 (Sun, 05 Apr 2009) | 1 line

  #1742837: expand HTTP server docs, and fix SocketServer ones to document methods as methods, not functions.
........
  r71214 | georg.brandl | 2009-04-05 05:29:57 -0500 (Sun, 05 Apr 2009) | 1 line

  Normalize spelling of Mac OS X.
........
  r71215 | georg.brandl | 2009-04-05 05:32:26 -0500 (Sun, 05 Apr 2009) | 1 line

  Avoid sure signs of a diseased mind.
........
  r71216 | georg.brandl | 2009-04-05 05:41:02 -0500 (Sun, 05 Apr 2009) | 1 line

  #1718017: document the relation of os.path and the posixpath, ntpath etc. modules better.
........
  r71217 | georg.brandl | 2009-04-05 05:48:47 -0500 (Sun, 05 Apr 2009) | 1 line

  #1726172: dont raise an unexpected IndexError if a voidresp() call has an empty response.
........
  r71221 | vinay.sajip | 2009-04-05 06:06:24 -0500 (Sun, 05 Apr 2009) | 1 line

  Issue #5695: Moved logging.captureWarnings() call inside with statement in WarningsTest.test_warnings.
........
  r71240 | georg.brandl | 2009-04-05 09:40:06 -0500 (Sun, 05 Apr 2009) | 1 line

  #5370: doc update about unpickling objects with custom __getattr__ etc. methods.
........
2009-04-05 19:13:16 +00:00

708 lines
27 KiB
ReStructuredText

:mod:`itertools` --- Functions creating iterators for efficient looping
=======================================================================
.. module:: itertools
:synopsis: Functions creating iterators for efficient looping.
.. moduleauthor:: Raymond Hettinger <python@rcn.com>
.. sectionauthor:: Raymond Hettinger <python@rcn.com>
.. testsetup::
from itertools import *
This module implements a number of :term:`iterator` building blocks inspired
by constructs from APL, Haskell, and SML. Each has been recast in a form
suitable for Python.
The module standardizes a core set of fast, memory efficient tools that are
useful by themselves or in combination. Together, they form an "iterator
algebra" making it possible to construct specialized tools succinctly and
efficiently in pure Python.
For instance, SML provides a tabulation tool: ``tabulate(f)`` which produces a
sequence ``f(0), f(1), ...``. But, this effect can be achieved in Python
by combining :func:`map` and :func:`count` to form ``map(f, count())``.
These tools and their built-in counterparts also work well with the high-speed
functions in the :mod:`operator` module. For example, the multiplication
operator can be mapped across two vectors to form an efficient dot-product:
``sum(map(operator.mul, vector1, vector2))``.
**Infinite Iterators:**
================== ================= =================================================
Iterator Arguments Results
================== ================= =================================================
:func:`count` start, [step] start, start+step, start+2*step, ...
:func:`cycle` p p0, p1, ... plast, p0, p1, ...
:func:`repeat` elem [,n] elem, elem, elem, ... endlessly or up to n times
================== ================= =================================================
**Iterators terminating on the shortest input sequence:**
==================== ============================ =================================================
Iterator Arguments Results
==================== ============================ =================================================
:func:`chain` p, q, ... p0, p1, ... plast, q0, q1, ...
:func:`compress` data, selectors (d[0] if s[0]), (d[1] if s[1]), ...
:func:`dropwhile` pred, seq seq[n], seq[n+1], starting when pred fails
:func:`filterfalse` pred, seq elements of seq where pred(elem) is False
:func:`groupby` iterable[, keyfunc] sub-iterators grouped by value of keyfunc(v)
:func:`islice` seq, [start,] stop [, step] elements from seq[start:stop:step]
:func:`starmap` func, seq func(\*seq[0]), func(\*seq[1]), ...
:func:`tee` it, n it1, it2 , ... itn splits one iterator into n
:func:`takewhile` pred, seq seq[0], seq[1], until pred fails
:func:`zip_longest` p, q, ... (p[0], q[0]), (p[1], q[1]), ...
==================== ============================ =================================================
**Combinatoric generators:**
===================================== ==================== =================================================
Iterator Arguments Results
===================================== ==================== =================================================
:func:`product` p, q, ... [repeat=1] cartesian product
:func:`permutations` p[, r] r-length permutations (without repeated elements)
:func:`combinations` p[, r] r-length combinations (sorted and no repeats)
:func:`combinations_with_replacement` p[, r] r-length combinations (sorted but with repeats)
===================================== ==================== =================================================
.. _itertools-functions:
Itertool functions
------------------
The following module functions all construct and return iterators. Some provide
streams of infinite length, so they should only be accessed by functions or
loops that truncate the stream.
.. function:: chain(*iterables)
Make an iterator that returns elements from the first iterable until it is
exhausted, then proceeds to the next iterable, until all of the iterables are
exhausted. Used for treating consecutive sequences as a single sequence.
Equivalent to::
def chain(*iterables):
# chain('ABC', 'DEF') --> A B C D E F
for it in iterables:
for element in it:
yield element
.. function:: itertools.chain.from_iterable(iterable)
Alternate constructor for :func:`chain`. Gets chained inputs from a
single iterable argument that is evaluated lazily. Equivalent to::
@classmethod
def from_iterable(iterables):
# chain.from_iterable(['ABC', 'DEF']) --> A B C D E F
for it in iterables:
for element in it:
yield element
.. function:: combinations(iterable, r)
Return *r* length subsequences of elements from the input *iterable*.
Combinations are emitted in lexicographic sort order. So, if the
input *iterable* is sorted, the combination tuples will be produced
in sorted order.
Elements are treated as unique based on their position, not on their
value. So if the input elements are unique, there will be no repeat
values in each combination.
Equivalent to::
def combinations(iterable, r):
# combinations('ABCD', 2) --> AB AC AD BC BD CD
# combinations(range(4), 3) --> 012 013 023 123
pool = tuple(iterable)
n = len(pool)
if r > n:
return
indices = list(range(r))
yield tuple(pool[i] for i in indices)
while True:
for i in reversed(range(r)):
if indices[i] != i + n - r:
break
else:
return
indices[i] += 1
for j in range(i+1, r):
indices[j] = indices[j-1] + 1
yield tuple(pool[i] for i in indices)
The code for :func:`combinations` can be also expressed as a subsequence
of :func:`permutations` after filtering entries where the elements are not
in sorted order (according to their position in the input pool)::
def combinations(iterable, r):
pool = tuple(iterable)
n = len(pool)
for indices in permutations(range(n), r):
if sorted(indices) == list(indices):
yield tuple(pool[i] for i in indices)
The number of items returned is ``n! / r! / (n-r)!`` when ``0 <= r <= n``
or zero when ``r > n``.
.. function:: combinations_with_replacement(iterable, r)
Return *r* length subsequences of elements from the input *iterable*
allowing individual elements to be repeated more than once.
Combinations are emitted in lexicographic sort order. So, if the
input *iterable* is sorted, the combination tuples will be produced
in sorted order.
Elements are treated as unique based on their position, not on their
value. So if the input elements are unique, the generated combinations
will also be unique.
Equivalent to::
def combinations_with_replacement(iterable, r):
# combinations_with_replacement('ABC', 2) --> AA AB AC BB BC CC
pool = tuple(iterable)
n = len(pool)
if not n and r:
return
indices = [0] * r
yield tuple(pool[i] for i in indices)
while True:
for i in reversed(range(r)):
if indices[i] != n - 1:
break
else:
return
indices[i:] = [indices[i] + 1] * (r - i)
yield tuple(pool[i] for i in indices)
The code for :func:`combinations_with_replacement` can be also expressed as
a subsequence of :func:`product` after filtering entries where the elements
are not in sorted order (according to their position in the input pool)::
def combinations_with_replacement(iterable, r):
pool = tuple(iterable)
n = len(pool)
for indices in product(range(n), repeat=r):
if sorted(indices) == list(indices):
yield tuple(pool[i] for i in indices)
The number of items returned is ``(n+r-1)! / r! / (n-1)!`` when ``n > 0``.
.. versionadded:: 3.1
.. function:: compress(data, selectors)
Make an iterator that filters elements from *data* returning only those that
have a corresponding element in *selectors* that evaluates to ``True``.
Stops when either the *data* or *selectors* iterables has been exhausted.
Equivalent to::
def compress(data, selectors):
# compress('ABCDEF', [1,0,1,0,1,1]) --> A C E F
return (d for d, s in zip(data, selectors) if s)
.. versionadded:: 3.1
.. function:: count(start=0, step=1)
Make an iterator that returns evenly spaced values starting with *n*. Often
used as an argument to :func:`map` to generate consecutive data points.
Also, used with :func:`zip` to add sequence numbers. Equivalent to::
def count(start=0, step=1):
# count(10) --> 10 11 12 13 14 ...
# count(2.5, 0.5) -> 3.5 3.0 4.5 ...
n = start
while True:
yield n
n += step
.. versionchanged:: 3.1
added *step* argument and allowed non-integer arguments.
.. function:: cycle(iterable)
Make an iterator returning elements from the iterable and saving a copy of each.
When the iterable is exhausted, return elements from the saved copy. Repeats
indefinitely. Equivalent to::
def cycle(iterable):
# cycle('ABCD') --> A B C D A B C D A B C D ...
saved = []
for element in iterable:
yield element
saved.append(element)
while saved:
for element in saved:
yield element
Note, this member of the toolkit may require significant auxiliary storage
(depending on the length of the iterable).
.. function:: dropwhile(predicate, iterable)
Make an iterator that drops elements from the iterable as long as the predicate
is true; afterwards, returns every element. Note, the iterator does not produce
*any* output until the predicate first becomes false, so it may have a lengthy
start-up time. Equivalent to::
def dropwhile(predicate, iterable):
# dropwhile(lambda x: x<5, [1,4,6,4,1]) --> 6 4 1
iterable = iter(iterable)
for x in iterable:
if not predicate(x):
yield x
break
for x in iterable:
yield x
.. function:: filterfalse(predicate, iterable)
Make an iterator that filters elements from iterable returning only those for
which the predicate is ``False``. If *predicate* is ``None``, return the items
that are false. Equivalent to::
def filterfalse(predicate, iterable):
# filterfalse(lambda x: x%2, range(10)) --> 0 2 4 6 8
if predicate is None:
predicate = bool
for x in iterable:
if not predicate(x):
yield x
.. function:: groupby(iterable[, key])
Make an iterator that returns consecutive keys and groups from the *iterable*.
The *key* is a function computing a key value for each element. If not
specified or is ``None``, *key* defaults to an identity function and returns
the element unchanged. Generally, the iterable needs to already be sorted on
the same key function.
The operation of :func:`groupby` is similar to the ``uniq`` filter in Unix. It
generates a break or new group every time the value of the key function changes
(which is why it is usually necessary to have sorted the data using the same key
function). That behavior differs from SQL's GROUP BY which aggregates common
elements regardless of their input order.
The returned group is itself an iterator that shares the underlying iterable
with :func:`groupby`. Because the source is shared, when the :func:`groupby`
object is advanced, the previous group is no longer visible. So, if that data
is needed later, it should be stored as a list::
groups = []
uniquekeys = []
data = sorted(data, key=keyfunc)
for k, g in groupby(data, keyfunc):
groups.append(list(g)) # Store group iterator as a list
uniquekeys.append(k)
:func:`groupby` is equivalent to::
class groupby(object):
# [k for k, g in groupby('AAAABBBCCDAABBB')] --> A B C D A B
# [list(g) for k, g in groupby('AAAABBBCCD')] --> AAAA BBB CC D
def __init__(self, iterable, key=None):
if key is None:
key = lambda x: x
self.keyfunc = key
self.it = iter(iterable)
self.tgtkey = self.currkey = self.currvalue = object()
def __iter__(self):
return self
def __next__(self):
while self.currkey == self.tgtkey:
self.currvalue = next(self.it) # Exit on StopIteration
self.currkey = self.keyfunc(self.currvalue)
self.tgtkey = self.currkey
return (self.currkey, self._grouper(self.tgtkey))
def _grouper(self, tgtkey):
while self.currkey == tgtkey:
yield self.currvalue
self.currvalue = next(self.it) # Exit on StopIteration
self.currkey = self.keyfunc(self.currvalue)
.. function:: islice(iterable, [start,] stop [, step])
Make an iterator that returns selected elements from the iterable. If *start* is
non-zero, then elements from the iterable are skipped until start is reached.
Afterward, elements are returned consecutively unless *step* is set higher than
one which results in items being skipped. If *stop* is ``None``, then iteration
continues until the iterator is exhausted, if at all; otherwise, it stops at the
specified position. Unlike regular slicing, :func:`islice` does not support
negative values for *start*, *stop*, or *step*. Can be used to extract related
fields from data where the internal structure has been flattened (for example, a
multi-line report may list a name field on every third line). Equivalent to::
def islice(iterable, *args):
# islice('ABCDEFG', 2) --> A B
# islice('ABCDEFG', 2, 4) --> C D
# islice('ABCDEFG', 2, None) --> C D E F G
# islice('ABCDEFG', 0, None, 2) --> A C E G
s = slice(*args)
it = range(s.start or 0, s.stop or sys.maxsize, s.step or 1)
nexti = next(it)
for i, element in enumerate(iterable):
if i == nexti:
yield element
nexti = next(it)
If *start* is ``None``, then iteration starts at zero. If *step* is ``None``,
then the step defaults to one.
.. function:: permutations(iterable[, r])
Return successive *r* length permutations of elements in the *iterable*.
If *r* is not specified or is ``None``, then *r* defaults to the length
of the *iterable* and all possible full-length permutations
are generated.
Permutations are emitted in lexicographic sort order. So, if the
input *iterable* is sorted, the permutation tuples will be produced
in sorted order.
Elements are treated as unique based on their position, not on their
value. So if the input elements are unique, there will be no repeat
values in each permutation.
Equivalent to::
def permutations(iterable, r=None):
# permutations('ABCD', 2) --> AB AC AD BA BC BD CA CB CD DA DB DC
# permutations(range(3)) --> 012 021 102 120 201 210
pool = tuple(iterable)
n = len(pool)
r = n if r is None else r
if r > n:
return
indices = list(range(n))
cycles = range(n, n-r, -1)
yield tuple(pool[i] for i in indices[:r])
while n:
for i in reversed(range(r)):
cycles[i] -= 1
if cycles[i] == 0:
indices[i:] = indices[i+1:] + indices[i:i+1]
cycles[i] = n - i
else:
j = cycles[i]
indices[i], indices[-j] = indices[-j], indices[i]
yield tuple(pool[i] for i in indices[:r])
break
else:
return
The code for :func:`permutations` can be also expressed as a subsequence of
:func:`product`, filtered to exclude entries with repeated elements (those
from the same position in the input pool)::
def permutations(iterable, r=None):
pool = tuple(iterable)
n = len(pool)
r = n if r is None else r
for indices in product(range(n), repeat=r):
if len(set(indices)) == r:
yield tuple(pool[i] for i in indices)
The number of items returned is ``n! / (n-r)!`` when ``0 <= r <= n``
or zero when ``r > n``.
.. function:: product(*iterables[, repeat])
Cartesian product of input iterables.
Equivalent to nested for-loops in a generator expression. For example,
``product(A, B)`` returns the same as ``((x,y) for x in A for y in B)``.
The nested loops cycle like an odometer with the rightmost element advancing
on every iteration. This pattern creates a lexicographic ordering so that if
the input's iterables are sorted, the product tuples are emitted in sorted
order.
To compute the product of an iterable with itself, specify the number of
repetitions with the optional *repeat* keyword argument. For example,
``product(A, repeat=4)`` means the same as ``product(A, A, A, A)``.
This function is equivalent to the following code, except that the
actual implementation does not build up intermediate results in memory::
def product(*args, repeat=1):
# product('ABCD', 'xy') --> Ax Ay Bx By Cx Cy Dx Dy
# product(range(2), repeat=3) --> 000 001 010 011 100 101 110 111
pools = map(tuple, args) * repeat
result = [[]]
for pool in pools:
result = [x+[y] for x in result for y in pool]
for prod in result:
yield tuple(prod)
.. function:: repeat(object[, times])
Make an iterator that returns *object* over and over again. Runs indefinitely
unless the *times* argument is specified. Used as argument to :func:`map` for
invariant parameters to the called function. Also used with :func:`zip` to
create an invariant part of a tuple record. Equivalent to::
def repeat(object, times=None):
# repeat(10, 3) --> 10 10 10
if times is None:
while True:
yield object
else:
for i in range(times):
yield object
.. function:: starmap(function, iterable)
Make an iterator that computes the function using arguments obtained from
the iterable. Used instead of :func:`map` when argument parameters are already
grouped in tuples from a single iterable (the data has been "pre-zipped"). The
difference between :func:`map` and :func:`starmap` parallels the distinction
between ``function(a,b)`` and ``function(*c)``. Equivalent to::
def starmap(function, iterable):
# starmap(pow, [(2,5), (3,2), (10,3)]) --> 32 9 1000
for args in iterable:
yield function(*args)
.. function:: takewhile(predicate, iterable)
Make an iterator that returns elements from the iterable as long as the
predicate is true. Equivalent to::
def takewhile(predicate, iterable):
# takewhile(lambda x: x<5, [1,4,6,4,1]) --> 1 4
for x in iterable:
if predicate(x):
yield x
else:
break
.. function:: tee(iterable[, n=2])
Return *n* independent iterators from a single iterable. Equivalent to::
def tee(iterable, n=2):
it = iter(iterable)
deques = [collections.deque() for i in range(n)]
def gen(mydeque):
while True:
if not mydeque: # when the local deque is empty
newval = next(it) # fetch a new value and
for d in deques: # load it to all the deques
d.append(newval)
yield mydeque.popleft()
return tuple(gen(d) for d in deques)
Once :func:`tee` has made a split, the original *iterable* should not be
used anywhere else; otherwise, the *iterable* could get advanced without
the tee objects being informed.
This itertool may require significant auxiliary storage (depending on how
much temporary data needs to be stored). In general, if one iterator uses
most or all of the data before another iterator starts, it is faster to use
:func:`list` instead of :func:`tee`.
.. function:: zip_longest(*iterables[, fillvalue])
Make an iterator that aggregates elements from each of the iterables. If the
iterables are of uneven length, missing values are filled-in with *fillvalue*.
Iteration continues until the longest iterable is exhausted. Equivalent to::
def zip_longest(*args, fillvalue=None):
# zip_longest('ABCD', 'xy', fillvalue='-') --> Ax By C- D-
def sentinel(counter = ([fillvalue]*(len(args)-1)).pop):
yield counter() # yields the fillvalue, or raises IndexError
fillers = repeat(fillvalue)
iters = [chain(it, sentinel(), fillers) for it in args]
try:
for tup in zip(*iters):
yield tup
except IndexError:
pass
If one of the iterables is potentially infinite, then the :func:`zip_longest`
function should be wrapped with something that limits the number of calls
(for example :func:`islice` or :func:`takewhile`). If not specified,
*fillvalue* defaults to ``None``.
.. _itertools-example:
Examples
--------
The following examples show common uses for each tool and demonstrate ways they
can be combined.
.. doctest::
>>> # Show a dictionary sorted and grouped by value
>>> from operator import itemgetter
>>> d = dict(a=1, b=2, c=1, d=2, e=1, f=2, g=3)
>>> di = sorted(d.items(), key=itemgetter(1))
>>> for k, g in groupby(di, key=itemgetter(1)):
... print(k, map(itemgetter(0), g))
...
1 ['a', 'c', 'e']
2 ['b', 'd', 'f']
3 ['g']
>>> # Find runs of consecutive numbers using groupby. The key to the solution
>>> # is differencing with a range so that consecutive numbers all appear in
>>> # same group.
>>> data = [ 1, 4,5,6, 10, 15,16,17,18, 22, 25,26,27,28]
>>> for k, g in groupby(enumerate(data), lambda t:t[0]-t[1]):
... print(map(operator.itemgetter(1), g))
...
[1]
[4, 5, 6]
[10]
[15, 16, 17, 18]
[22]
[25, 26, 27, 28]
.. _itertools-recipes:
Recipes
-------
This section shows recipes for creating an extended toolset using the existing
itertools as building blocks.
The extended tools offer the same high performance as the underlying toolset.
The superior memory performance is kept by processing elements one at a time
rather than bringing the whole iterable into memory all at once. Code volume is
kept small by linking the tools together in a functional style which helps
eliminate temporary variables. High speed is retained by preferring
"vectorized" building blocks over the use of for-loops and :term:`generator`\s
which incur interpreter overhead.
.. testcode::
def take(n, iterable):
"Return first n items of the iterable as a list"
return list(islice(iterable, n))
def enumerate(iterable, start=0):
return zip(count(start), iterable)
def tabulate(function, start=0):
"Return function(0), function(1), ..."
return map(function, count(start))
def consume(iterator, n):
"Advance the iterator n-steps ahead. If n is none, consume entirely."
collections.deque(islice(iterator, n), maxlen=0)
def nth(iterable, n, default=None):
"Returns the nth item or a default value"
return next(islice(iterable, n, None), default)
def quantify(iterable, pred=bool):
"Count how many times the predicate is true"
return sum(map(pred, iterable))
def padnone(iterable):
"""Returns the sequence elements and then returns None indefinitely.
Useful for emulating the behavior of the built-in map() function.
"""
return chain(iterable, repeat(None))
def ncycles(iterable, n):
"Returns the sequence elements n times"
return chain.from_iterable(repeat(iterable, n))
def dotproduct(vec1, vec2):
return sum(map(operator.mul, vec1, vec2))
def flatten(listOfLists):
return list(chain.from_iterable(listOfLists))
def repeatfunc(func, times=None, *args):
"""Repeat calls to func with specified arguments.
Example: repeatfunc(random.random)
"""
if times is None:
return starmap(func, repeat(args))
return starmap(func, repeat(args, times))
def pairwise(iterable):
"s -> (s0,s1), (s1,s2), (s2, s3), ..."
a, b = tee(iterable)
next(b, None)
return zip(a, b)
def grouper(n, iterable, fillvalue=None):
"grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx"
args = [iter(iterable)] * n
return zip_longest(*args, fillvalue=fillvalue)
def roundrobin(*iterables):
"roundrobin('ABC', 'D', 'EF') --> A D E B F C"
# Recipe credited to George Sakkis
pending = len(iterables)
nexts = cycle(iter(it).__next__ for it in iterables)
while pending:
try:
for next in nexts:
yield next()
except StopIteration:
pending -= 1
nexts = cycle(islice(nexts, pending))
def powerset(iterable):
"powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
s = list(iterable)
return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))
def unique_everseen(iterable, key=None):
"List unique elements, preserving order. Remember all elements ever seen."
# unique_everseen('AAAABBBCCDAABBB') --> A B C D
# unique_everseen('ABBCcAD', str.lower) --> A B C D
seen = set()
seen_add = seen.add
if key is None:
for element in iterable:
if element not in seen:
seen_add(element)
yield element
else:
for element in iterable:
k = key(element)
if k not in seen:
seen_add(k)
yield element
def unique_justseen(iterable, key=None):
"List unique elements, preserving order. Remember only the element just seen."
# unique_justseen('AAAABBBCCDAABBB') --> A B C D A B
# unique_justseen('ABBCcAD', str.lower) --> A B C A D
return map(next, map(itemgetter(1), groupby(iterable, key)))