mirror of
				https://github.com/python/cpython.git
				synced 2025-10-31 18:28:49 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			276 lines
		
	
	
	
		
			7.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			276 lines
		
	
	
	
		
			7.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2008-2020 Stefan Krah. All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  *
 | |
|  * 1. Redistributions of source code must retain the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  *
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in the
 | |
|  *    documentation and/or other materials provided with the distribution.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
 | |
|  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
|  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 | |
|  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
|  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 | |
|  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 | |
|  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | |
|  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 | |
|  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 | |
|  * SUCH DAMAGE.
 | |
|  */
 | |
| 
 | |
| 
 | |
| #include "mpdecimal.h"
 | |
| 
 | |
| #include <assert.h>
 | |
| #include <limits.h>
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| 
 | |
| #include "bits.h"
 | |
| #include "constants.h"
 | |
| #include "transpose.h"
 | |
| #include "typearith.h"
 | |
| 
 | |
| 
 | |
| #define BUFSIZE 4096
 | |
| #define SIDE 128
 | |
| 
 | |
| 
 | |
| /* Bignum: The transpose functions are used for very large transforms
 | |
|    in sixstep.c and fourstep.c. */
 | |
| 
 | |
| 
 | |
| /* Definition of the matrix transpose */
 | |
| void
 | |
| std_trans(mpd_uint_t dest[], mpd_uint_t src[], mpd_size_t rows, mpd_size_t cols)
 | |
| {
 | |
|     mpd_size_t idest, isrc;
 | |
|     mpd_size_t r, c;
 | |
| 
 | |
|     for (r = 0; r < rows; r++) {
 | |
|         isrc = r * cols;
 | |
|         idest = r;
 | |
|         for (c = 0; c < cols; c++) {
 | |
|             dest[idest] = src[isrc];
 | |
|             isrc += 1;
 | |
|             idest += rows;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Swap half-rows of 2^n * (2*2^n) matrix.
 | |
|  * FORWARD_CYCLE: even/odd permutation of the halfrows.
 | |
|  * BACKWARD_CYCLE: reverse the even/odd permutation.
 | |
|  */
 | |
| static int
 | |
| swap_halfrows_pow2(mpd_uint_t *matrix, mpd_size_t rows, mpd_size_t cols, int dir)
 | |
| {
 | |
|     mpd_uint_t buf1[BUFSIZE];
 | |
|     mpd_uint_t buf2[BUFSIZE];
 | |
|     mpd_uint_t *readbuf, *writebuf, *hp;
 | |
|     mpd_size_t *done, dbits;
 | |
|     mpd_size_t b = BUFSIZE, stride;
 | |
|     mpd_size_t hn, hmax; /* halfrow number */
 | |
|     mpd_size_t m, r=0;
 | |
|     mpd_size_t offset;
 | |
|     mpd_size_t next;
 | |
| 
 | |
| 
 | |
|     assert(cols == mul_size_t(2, rows));
 | |
| 
 | |
|     if (dir == FORWARD_CYCLE) {
 | |
|         r = rows;
 | |
|     }
 | |
|     else if (dir == BACKWARD_CYCLE) {
 | |
|         r = 2;
 | |
|     }
 | |
|     else {
 | |
|         abort(); /* GCOV_NOT_REACHED */
 | |
|     }
 | |
| 
 | |
|     m = cols - 1;
 | |
|     hmax = rows; /* cycles start at odd halfrows */
 | |
|     dbits = 8 * sizeof *done;
 | |
|     if ((done = mpd_calloc(hmax/(sizeof *done) + 1, sizeof *done)) == NULL) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     for (hn = 1; hn <= hmax; hn += 2) {
 | |
| 
 | |
|         if (done[hn/dbits] & mpd_bits[hn%dbits]) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         readbuf = buf1; writebuf = buf2;
 | |
| 
 | |
|         for (offset = 0; offset < cols/2; offset += b) {
 | |
| 
 | |
|             stride = (offset + b < cols/2) ? b : cols/2-offset;
 | |
| 
 | |
|             hp = matrix + hn*cols/2;
 | |
|             memcpy(readbuf, hp+offset, stride*(sizeof *readbuf));
 | |
|             pointerswap(&readbuf, &writebuf);
 | |
| 
 | |
|             next = mulmod_size_t(hn, r, m);
 | |
|             hp = matrix + next*cols/2;
 | |
| 
 | |
|             while (next != hn) {
 | |
| 
 | |
|                 memcpy(readbuf, hp+offset, stride*(sizeof *readbuf));
 | |
|                 memcpy(hp+offset, writebuf, stride*(sizeof *writebuf));
 | |
|                 pointerswap(&readbuf, &writebuf);
 | |
| 
 | |
|                 done[next/dbits] |= mpd_bits[next%dbits];
 | |
| 
 | |
|                 next = mulmod_size_t(next, r, m);
 | |
|                     hp = matrix + next*cols/2;
 | |
| 
 | |
|             }
 | |
| 
 | |
|             memcpy(hp+offset, writebuf, stride*(sizeof *writebuf));
 | |
| 
 | |
|             done[hn/dbits] |= mpd_bits[hn%dbits];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     mpd_free(done);
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /* In-place transpose of a square matrix */
 | |
| static inline void
 | |
| squaretrans(mpd_uint_t *buf, mpd_size_t cols)
 | |
| {
 | |
|     mpd_uint_t tmp;
 | |
|     mpd_size_t idest, isrc;
 | |
|     mpd_size_t r, c;
 | |
| 
 | |
|     for (r = 0; r < cols; r++) {
 | |
|         c = r+1;
 | |
|         isrc = r*cols + c;
 | |
|         idest = c*cols + r;
 | |
|         for (c = r+1; c < cols; c++) {
 | |
|             tmp = buf[isrc];
 | |
|             buf[isrc] = buf[idest];
 | |
|             buf[idest] = tmp;
 | |
|             isrc += 1;
 | |
|             idest += cols;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Transpose 2^n * 2^n matrix. For cache efficiency, the matrix is split into
 | |
|  * square blocks with side length 'SIDE'. First, the blocks are transposed,
 | |
|  * then a square transposition is done on each individual block.
 | |
|  */
 | |
| static void
 | |
| squaretrans_pow2(mpd_uint_t *matrix, mpd_size_t size)
 | |
| {
 | |
|     mpd_uint_t buf1[SIDE*SIDE];
 | |
|     mpd_uint_t buf2[SIDE*SIDE];
 | |
|     mpd_uint_t *to, *from;
 | |
|     mpd_size_t b = size;
 | |
|     mpd_size_t r, c;
 | |
|     mpd_size_t i;
 | |
| 
 | |
|     while (b > SIDE) b >>= 1;
 | |
| 
 | |
|     for (r = 0; r < size; r += b) {
 | |
| 
 | |
|         for (c = r; c < size; c += b) {
 | |
| 
 | |
|             from = matrix + r*size + c;
 | |
|             to = buf1;
 | |
|             for (i = 0; i < b; i++) {
 | |
|                 memcpy(to, from, b*(sizeof *to));
 | |
|                 from += size;
 | |
|                 to += b;
 | |
|             }
 | |
|             squaretrans(buf1, b);
 | |
| 
 | |
|             if (r == c) {
 | |
|                 to = matrix + r*size + c;
 | |
|                 from = buf1;
 | |
|                 for (i = 0; i < b; i++) {
 | |
|                     memcpy(to, from, b*(sizeof *to));
 | |
|                     from += b;
 | |
|                     to += size;
 | |
|                 }
 | |
|                 continue;
 | |
|             }
 | |
|             else {
 | |
|                 from = matrix + c*size + r;
 | |
|                 to = buf2;
 | |
|                 for (i = 0; i < b; i++) {
 | |
|                     memcpy(to, from, b*(sizeof *to));
 | |
|                     from += size;
 | |
|                     to += b;
 | |
|                 }
 | |
|                 squaretrans(buf2, b);
 | |
| 
 | |
|                 to = matrix + c*size + r;
 | |
|                 from = buf1;
 | |
|                 for (i = 0; i < b; i++) {
 | |
|                     memcpy(to, from, b*(sizeof *to));
 | |
|                     from += b;
 | |
|                     to += size;
 | |
|                 }
 | |
| 
 | |
|                 to = matrix + r*size + c;
 | |
|                 from = buf2;
 | |
|                 for (i = 0; i < b; i++) {
 | |
|                     memcpy(to, from, b*(sizeof *to));
 | |
|                     from += b;
 | |
|                     to += size;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * In-place transposition of a 2^n x 2^n or a 2^n x (2*2^n)
 | |
|  * or a (2*2^n) x 2^n matrix.
 | |
|  */
 | |
| int
 | |
| transpose_pow2(mpd_uint_t *matrix, mpd_size_t rows, mpd_size_t cols)
 | |
| {
 | |
|     mpd_size_t size = mul_size_t(rows, cols);
 | |
| 
 | |
|     assert(ispower2(rows));
 | |
|     assert(ispower2(cols));
 | |
| 
 | |
|     if (cols == rows) {
 | |
|         squaretrans_pow2(matrix, rows);
 | |
|     }
 | |
|     else if (cols == mul_size_t(2, rows)) {
 | |
|         if (!swap_halfrows_pow2(matrix, rows, cols, FORWARD_CYCLE)) {
 | |
|             return 0;
 | |
|         }
 | |
|         squaretrans_pow2(matrix, rows);
 | |
|         squaretrans_pow2(matrix+(size/2), rows);
 | |
|     }
 | |
|     else if (rows == mul_size_t(2, cols)) {
 | |
|         squaretrans_pow2(matrix, cols);
 | |
|         squaretrans_pow2(matrix+(size/2), cols);
 | |
|         if (!swap_halfrows_pow2(matrix, cols, rows, BACKWARD_CYCLE)) {
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         abort(); /* GCOV_NOT_REACHED */
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
| }
 | 
