mirror of
				https://github.com/python/cpython.git
				synced 2025-11-03 19:34:08 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			638 lines
		
	
	
	
		
			27 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			638 lines
		
	
	
	
		
			27 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import unittest
 | 
						|
from test import support
 | 
						|
 | 
						|
from random import random
 | 
						|
from math import atan2, isnan, copysign
 | 
						|
import operator
 | 
						|
 | 
						|
INF = float("inf")
 | 
						|
NAN = float("nan")
 | 
						|
# These tests ensure that complex math does the right thing
 | 
						|
 | 
						|
class ComplexTest(unittest.TestCase):
 | 
						|
 | 
						|
    def assertAlmostEqual(self, a, b):
 | 
						|
        if isinstance(a, complex):
 | 
						|
            if isinstance(b, complex):
 | 
						|
                unittest.TestCase.assertAlmostEqual(self, a.real, b.real)
 | 
						|
                unittest.TestCase.assertAlmostEqual(self, a.imag, b.imag)
 | 
						|
            else:
 | 
						|
                unittest.TestCase.assertAlmostEqual(self, a.real, b)
 | 
						|
                unittest.TestCase.assertAlmostEqual(self, a.imag, 0.)
 | 
						|
        else:
 | 
						|
            if isinstance(b, complex):
 | 
						|
                unittest.TestCase.assertAlmostEqual(self, a, b.real)
 | 
						|
                unittest.TestCase.assertAlmostEqual(self, 0., b.imag)
 | 
						|
            else:
 | 
						|
                unittest.TestCase.assertAlmostEqual(self, a, b)
 | 
						|
 | 
						|
    def assertCloseAbs(self, x, y, eps=1e-9):
 | 
						|
        """Return true iff floats x and y "are close\""""
 | 
						|
        # put the one with larger magnitude second
 | 
						|
        if abs(x) > abs(y):
 | 
						|
            x, y = y, x
 | 
						|
        if y == 0:
 | 
						|
            return abs(x) < eps
 | 
						|
        if x == 0:
 | 
						|
            return abs(y) < eps
 | 
						|
        # check that relative difference < eps
 | 
						|
        self.assertTrue(abs((x-y)/y) < eps)
 | 
						|
 | 
						|
    def assertFloatsAreIdentical(self, x, y):
 | 
						|
        """assert that floats x and y are identical, in the sense that:
 | 
						|
        (1) both x and y are nans, or
 | 
						|
        (2) both x and y are infinities, with the same sign, or
 | 
						|
        (3) both x and y are zeros, with the same sign, or
 | 
						|
        (4) x and y are both finite and nonzero, and x == y
 | 
						|
 | 
						|
        """
 | 
						|
        msg = 'floats {!r} and {!r} are not identical'
 | 
						|
 | 
						|
        if isnan(x) or isnan(y):
 | 
						|
            if isnan(x) and isnan(y):
 | 
						|
                return
 | 
						|
        elif x == y:
 | 
						|
            if x != 0.0:
 | 
						|
                return
 | 
						|
            # both zero; check that signs match
 | 
						|
            elif copysign(1.0, x) == copysign(1.0, y):
 | 
						|
                return
 | 
						|
            else:
 | 
						|
                msg += ': zeros have different signs'
 | 
						|
        self.fail(msg.format(x, y))
 | 
						|
 | 
						|
    def assertClose(self, x, y, eps=1e-9):
 | 
						|
        """Return true iff complexes x and y "are close\""""
 | 
						|
        self.assertCloseAbs(x.real, y.real, eps)
 | 
						|
        self.assertCloseAbs(x.imag, y.imag, eps)
 | 
						|
 | 
						|
    def check_div(self, x, y):
 | 
						|
        """Compute complex z=x*y, and check that z/x==y and z/y==x."""
 | 
						|
        z = x * y
 | 
						|
        if x != 0:
 | 
						|
            q = z / x
 | 
						|
            self.assertClose(q, y)
 | 
						|
            q = z.__truediv__(x)
 | 
						|
            self.assertClose(q, y)
 | 
						|
        if y != 0:
 | 
						|
            q = z / y
 | 
						|
            self.assertClose(q, x)
 | 
						|
            q = z.__truediv__(y)
 | 
						|
            self.assertClose(q, x)
 | 
						|
 | 
						|
    def test_truediv(self):
 | 
						|
        simple_real = [float(i) for i in range(-5, 6)]
 | 
						|
        simple_complex = [complex(x, y) for x in simple_real for y in simple_real]
 | 
						|
        for x in simple_complex:
 | 
						|
            for y in simple_complex:
 | 
						|
                self.check_div(x, y)
 | 
						|
 | 
						|
        # A naive complex division algorithm (such as in 2.0) is very prone to
 | 
						|
        # nonsense errors for these (overflows and underflows).
 | 
						|
        self.check_div(complex(1e200, 1e200), 1+0j)
 | 
						|
        self.check_div(complex(1e-200, 1e-200), 1+0j)
 | 
						|
 | 
						|
        # Just for fun.
 | 
						|
        for i in range(100):
 | 
						|
            self.check_div(complex(random(), random()),
 | 
						|
                           complex(random(), random()))
 | 
						|
 | 
						|
        self.assertRaises(ZeroDivisionError, complex.__truediv__, 1+1j, 0+0j)
 | 
						|
        # FIXME: The following currently crashes on Alpha
 | 
						|
        # self.assertRaises(OverflowError, pow, 1e200+1j, 1e200+1j)
 | 
						|
 | 
						|
        self.assertAlmostEqual(complex.__truediv__(2+0j, 1+1j), 1-1j)
 | 
						|
        self.assertRaises(ZeroDivisionError, complex.__truediv__, 1+1j, 0+0j)
 | 
						|
 | 
						|
    def test_floordiv(self):
 | 
						|
        self.assertRaises(TypeError, complex.__floordiv__, 3+0j, 1.5+0j)
 | 
						|
        self.assertRaises(TypeError, complex.__floordiv__, 3+0j, 0+0j)
 | 
						|
 | 
						|
    def test_richcompare(self):
 | 
						|
        self.assertIs(complex.__eq__(1+1j, 1<<10000), False)
 | 
						|
        self.assertIs(complex.__lt__(1+1j, None), NotImplemented)
 | 
						|
        self.assertIs(complex.__eq__(1+1j, 1+1j), True)
 | 
						|
        self.assertIs(complex.__eq__(1+1j, 2+2j), False)
 | 
						|
        self.assertIs(complex.__ne__(1+1j, 1+1j), False)
 | 
						|
        self.assertIs(complex.__ne__(1+1j, 2+2j), True)
 | 
						|
        for i in range(1, 100):
 | 
						|
            f = i / 100.0
 | 
						|
            self.assertIs(complex.__eq__(f+0j, f), True)
 | 
						|
            self.assertIs(complex.__ne__(f+0j, f), False)
 | 
						|
            self.assertIs(complex.__eq__(complex(f, f), f), False)
 | 
						|
            self.assertIs(complex.__ne__(complex(f, f), f), True)
 | 
						|
        self.assertIs(complex.__lt__(1+1j, 2+2j), NotImplemented)
 | 
						|
        self.assertIs(complex.__le__(1+1j, 2+2j), NotImplemented)
 | 
						|
        self.assertIs(complex.__gt__(1+1j, 2+2j), NotImplemented)
 | 
						|
        self.assertIs(complex.__ge__(1+1j, 2+2j), NotImplemented)
 | 
						|
        self.assertRaises(TypeError, operator.lt, 1+1j, 2+2j)
 | 
						|
        self.assertRaises(TypeError, operator.le, 1+1j, 2+2j)
 | 
						|
        self.assertRaises(TypeError, operator.gt, 1+1j, 2+2j)
 | 
						|
        self.assertRaises(TypeError, operator.ge, 1+1j, 2+2j)
 | 
						|
        self.assertIs(operator.eq(1+1j, 1+1j), True)
 | 
						|
        self.assertIs(operator.eq(1+1j, 2+2j), False)
 | 
						|
        self.assertIs(operator.ne(1+1j, 1+1j), False)
 | 
						|
        self.assertIs(operator.ne(1+1j, 2+2j), True)
 | 
						|
 | 
						|
    def test_richcompare_boundaries(self):
 | 
						|
        def check(n, deltas, is_equal, imag = 0.0):
 | 
						|
            for delta in deltas:
 | 
						|
                i = n + delta
 | 
						|
                z = complex(i, imag)
 | 
						|
                self.assertIs(complex.__eq__(z, i), is_equal(delta))
 | 
						|
                self.assertIs(complex.__ne__(z, i), not is_equal(delta))
 | 
						|
        # For IEEE-754 doubles the following should hold:
 | 
						|
        #    x in [2 ** (52 + i), 2 ** (53 + i + 1)] -> x mod 2 ** i == 0
 | 
						|
        # where the interval is representable, of course.
 | 
						|
        for i in range(1, 10):
 | 
						|
            pow = 52 + i
 | 
						|
            mult = 2 ** i
 | 
						|
            check(2 ** pow, range(1, 101), lambda delta: delta % mult == 0)
 | 
						|
            check(2 ** pow, range(1, 101), lambda delta: False, float(i))
 | 
						|
        check(2 ** 53, range(-100, 0), lambda delta: True)
 | 
						|
 | 
						|
    def test_mod(self):
 | 
						|
        # % is no longer supported on complex numbers
 | 
						|
        self.assertRaises(TypeError, (1+1j).__mod__, 0+0j)
 | 
						|
        self.assertRaises(TypeError, lambda: (3.33+4.43j) % 0)
 | 
						|
        self.assertRaises(TypeError, (1+1j).__mod__, 4.3j)
 | 
						|
 | 
						|
    def test_divmod(self):
 | 
						|
        self.assertRaises(TypeError, divmod, 1+1j, 1+0j)
 | 
						|
        self.assertRaises(TypeError, divmod, 1+1j, 0+0j)
 | 
						|
 | 
						|
    def test_pow(self):
 | 
						|
        self.assertAlmostEqual(pow(1+1j, 0+0j), 1.0)
 | 
						|
        self.assertAlmostEqual(pow(0+0j, 2+0j), 0.0)
 | 
						|
        self.assertRaises(ZeroDivisionError, pow, 0+0j, 1j)
 | 
						|
        self.assertAlmostEqual(pow(1j, -1), 1/1j)
 | 
						|
        self.assertAlmostEqual(pow(1j, 200), 1)
 | 
						|
        self.assertRaises(ValueError, pow, 1+1j, 1+1j, 1+1j)
 | 
						|
 | 
						|
        a = 3.33+4.43j
 | 
						|
        self.assertEqual(a ** 0j, 1)
 | 
						|
        self.assertEqual(a ** 0.+0.j, 1)
 | 
						|
 | 
						|
        self.assertEqual(3j ** 0j, 1)
 | 
						|
        self.assertEqual(3j ** 0, 1)
 | 
						|
 | 
						|
        try:
 | 
						|
            0j ** a
 | 
						|
        except ZeroDivisionError:
 | 
						|
            pass
 | 
						|
        else:
 | 
						|
            self.fail("should fail 0.0 to negative or complex power")
 | 
						|
 | 
						|
        try:
 | 
						|
            0j ** (3-2j)
 | 
						|
        except ZeroDivisionError:
 | 
						|
            pass
 | 
						|
        else:
 | 
						|
            self.fail("should fail 0.0 to negative or complex power")
 | 
						|
 | 
						|
        # The following is used to exercise certain code paths
 | 
						|
        self.assertEqual(a ** 105, a ** 105)
 | 
						|
        self.assertEqual(a ** -105, a ** -105)
 | 
						|
        self.assertEqual(a ** -30, a ** -30)
 | 
						|
 | 
						|
        self.assertEqual(0.0j ** 0, 1)
 | 
						|
 | 
						|
        b = 5.1+2.3j
 | 
						|
        self.assertRaises(ValueError, pow, a, b, 0)
 | 
						|
 | 
						|
    def test_boolcontext(self):
 | 
						|
        for i in range(100):
 | 
						|
            self.assertTrue(complex(random() + 1e-6, random() + 1e-6))
 | 
						|
        self.assertTrue(not complex(0.0, 0.0))
 | 
						|
 | 
						|
    def test_conjugate(self):
 | 
						|
        self.assertClose(complex(5.3, 9.8).conjugate(), 5.3-9.8j)
 | 
						|
 | 
						|
    def test_constructor(self):
 | 
						|
        class OS:
 | 
						|
            def __init__(self, value): self.value = value
 | 
						|
            def __complex__(self): return self.value
 | 
						|
        class NS(object):
 | 
						|
            def __init__(self, value): self.value = value
 | 
						|
            def __complex__(self): return self.value
 | 
						|
        self.assertEqual(complex(OS(1+10j)), 1+10j)
 | 
						|
        self.assertEqual(complex(NS(1+10j)), 1+10j)
 | 
						|
        self.assertRaises(TypeError, complex, OS(None))
 | 
						|
        self.assertRaises(TypeError, complex, NS(None))
 | 
						|
        self.assertRaises(TypeError, complex, {})
 | 
						|
        self.assertRaises(TypeError, complex, NS(1.5))
 | 
						|
        self.assertRaises(TypeError, complex, NS(1))
 | 
						|
 | 
						|
        self.assertAlmostEqual(complex("1+10j"), 1+10j)
 | 
						|
        self.assertAlmostEqual(complex(10), 10+0j)
 | 
						|
        self.assertAlmostEqual(complex(10.0), 10+0j)
 | 
						|
        self.assertAlmostEqual(complex(10), 10+0j)
 | 
						|
        self.assertAlmostEqual(complex(10+0j), 10+0j)
 | 
						|
        self.assertAlmostEqual(complex(1,10), 1+10j)
 | 
						|
        self.assertAlmostEqual(complex(1,10), 1+10j)
 | 
						|
        self.assertAlmostEqual(complex(1,10.0), 1+10j)
 | 
						|
        self.assertAlmostEqual(complex(1,10), 1+10j)
 | 
						|
        self.assertAlmostEqual(complex(1,10), 1+10j)
 | 
						|
        self.assertAlmostEqual(complex(1,10.0), 1+10j)
 | 
						|
        self.assertAlmostEqual(complex(1.0,10), 1+10j)
 | 
						|
        self.assertAlmostEqual(complex(1.0,10), 1+10j)
 | 
						|
        self.assertAlmostEqual(complex(1.0,10.0), 1+10j)
 | 
						|
        self.assertAlmostEqual(complex(3.14+0j), 3.14+0j)
 | 
						|
        self.assertAlmostEqual(complex(3.14), 3.14+0j)
 | 
						|
        self.assertAlmostEqual(complex(314), 314.0+0j)
 | 
						|
        self.assertAlmostEqual(complex(314), 314.0+0j)
 | 
						|
        self.assertAlmostEqual(complex(3.14+0j, 0j), 3.14+0j)
 | 
						|
        self.assertAlmostEqual(complex(3.14, 0.0), 3.14+0j)
 | 
						|
        self.assertAlmostEqual(complex(314, 0), 314.0+0j)
 | 
						|
        self.assertAlmostEqual(complex(314, 0), 314.0+0j)
 | 
						|
        self.assertAlmostEqual(complex(0j, 3.14j), -3.14+0j)
 | 
						|
        self.assertAlmostEqual(complex(0.0, 3.14j), -3.14+0j)
 | 
						|
        self.assertAlmostEqual(complex(0j, 3.14), 3.14j)
 | 
						|
        self.assertAlmostEqual(complex(0.0, 3.14), 3.14j)
 | 
						|
        self.assertAlmostEqual(complex("1"), 1+0j)
 | 
						|
        self.assertAlmostEqual(complex("1j"), 1j)
 | 
						|
        self.assertAlmostEqual(complex(),  0)
 | 
						|
        self.assertAlmostEqual(complex("-1"), -1)
 | 
						|
        self.assertAlmostEqual(complex("+1"), +1)
 | 
						|
        self.assertAlmostEqual(complex("(1+2j)"), 1+2j)
 | 
						|
        self.assertAlmostEqual(complex("(1.3+2.2j)"), 1.3+2.2j)
 | 
						|
        self.assertAlmostEqual(complex("3.14+1J"), 3.14+1j)
 | 
						|
        self.assertAlmostEqual(complex(" ( +3.14-6J )"), 3.14-6j)
 | 
						|
        self.assertAlmostEqual(complex(" ( +3.14-J )"), 3.14-1j)
 | 
						|
        self.assertAlmostEqual(complex(" ( +3.14+j )"), 3.14+1j)
 | 
						|
        self.assertAlmostEqual(complex("J"), 1j)
 | 
						|
        self.assertAlmostEqual(complex("( j )"), 1j)
 | 
						|
        self.assertAlmostEqual(complex("+J"), 1j)
 | 
						|
        self.assertAlmostEqual(complex("( -j)"), -1j)
 | 
						|
        self.assertAlmostEqual(complex('1e-500'), 0.0 + 0.0j)
 | 
						|
        self.assertAlmostEqual(complex('-1e-500j'), 0.0 - 0.0j)
 | 
						|
        self.assertAlmostEqual(complex('-1e-500+1e-500j'), -0.0 + 0.0j)
 | 
						|
 | 
						|
        class complex2(complex): pass
 | 
						|
        self.assertAlmostEqual(complex(complex2(1+1j)), 1+1j)
 | 
						|
        self.assertAlmostEqual(complex(real=17, imag=23), 17+23j)
 | 
						|
        self.assertAlmostEqual(complex(real=17+23j), 17+23j)
 | 
						|
        self.assertAlmostEqual(complex(real=17+23j, imag=23), 17+46j)
 | 
						|
        self.assertAlmostEqual(complex(real=1+2j, imag=3+4j), -3+5j)
 | 
						|
 | 
						|
        # check that the sign of a zero in the real or imaginary part
 | 
						|
        # is preserved when constructing from two floats.  (These checks
 | 
						|
        # are harmless on systems without support for signed zeros.)
 | 
						|
        def split_zeros(x):
 | 
						|
            """Function that produces different results for 0. and -0."""
 | 
						|
            return atan2(x, -1.)
 | 
						|
 | 
						|
        self.assertEqual(split_zeros(complex(1., 0.).imag), split_zeros(0.))
 | 
						|
        self.assertEqual(split_zeros(complex(1., -0.).imag), split_zeros(-0.))
 | 
						|
        self.assertEqual(split_zeros(complex(0., 1.).real), split_zeros(0.))
 | 
						|
        self.assertEqual(split_zeros(complex(-0., 1.).real), split_zeros(-0.))
 | 
						|
 | 
						|
        c = 3.14 + 1j
 | 
						|
        self.assertTrue(complex(c) is c)
 | 
						|
        del c
 | 
						|
 | 
						|
        self.assertRaises(TypeError, complex, "1", "1")
 | 
						|
        self.assertRaises(TypeError, complex, 1, "1")
 | 
						|
 | 
						|
        # SF bug 543840:  complex(string) accepts strings with \0
 | 
						|
        # Fixed in 2.3.
 | 
						|
        self.assertRaises(ValueError, complex, '1+1j\0j')
 | 
						|
 | 
						|
        self.assertRaises(TypeError, int, 5+3j)
 | 
						|
        self.assertRaises(TypeError, int, 5+3j)
 | 
						|
        self.assertRaises(TypeError, float, 5+3j)
 | 
						|
        self.assertRaises(ValueError, complex, "")
 | 
						|
        self.assertRaises(TypeError, complex, None)
 | 
						|
        self.assertRaisesRegex(TypeError, "not 'NoneType'", complex, None)
 | 
						|
        self.assertRaises(ValueError, complex, "\0")
 | 
						|
        self.assertRaises(ValueError, complex, "3\09")
 | 
						|
        self.assertRaises(TypeError, complex, "1", "2")
 | 
						|
        self.assertRaises(TypeError, complex, "1", 42)
 | 
						|
        self.assertRaises(TypeError, complex, 1, "2")
 | 
						|
        self.assertRaises(ValueError, complex, "1+")
 | 
						|
        self.assertRaises(ValueError, complex, "1+1j+1j")
 | 
						|
        self.assertRaises(ValueError, complex, "--")
 | 
						|
        self.assertRaises(ValueError, complex, "(1+2j")
 | 
						|
        self.assertRaises(ValueError, complex, "1+2j)")
 | 
						|
        self.assertRaises(ValueError, complex, "1+(2j)")
 | 
						|
        self.assertRaises(ValueError, complex, "(1+2j)123")
 | 
						|
        self.assertRaises(ValueError, complex, "x")
 | 
						|
        self.assertRaises(ValueError, complex, "1j+2")
 | 
						|
        self.assertRaises(ValueError, complex, "1e1ej")
 | 
						|
        self.assertRaises(ValueError, complex, "1e++1ej")
 | 
						|
        self.assertRaises(ValueError, complex, ")1+2j(")
 | 
						|
        # the following three are accepted by Python 2.6
 | 
						|
        self.assertRaises(ValueError, complex, "1..1j")
 | 
						|
        self.assertRaises(ValueError, complex, "1.11.1j")
 | 
						|
        self.assertRaises(ValueError, complex, "1e1.1j")
 | 
						|
 | 
						|
        # check that complex accepts long unicode strings
 | 
						|
        self.assertEqual(type(complex("1"*500)), complex)
 | 
						|
        # check whitespace processing
 | 
						|
        self.assertEqual(complex('\N{EM SPACE}(\N{EN SPACE}1+1j ) '), 1+1j)
 | 
						|
 | 
						|
        class EvilExc(Exception):
 | 
						|
            pass
 | 
						|
 | 
						|
        class evilcomplex:
 | 
						|
            def __complex__(self):
 | 
						|
                raise EvilExc
 | 
						|
 | 
						|
        self.assertRaises(EvilExc, complex, evilcomplex())
 | 
						|
 | 
						|
        class float2:
 | 
						|
            def __init__(self, value):
 | 
						|
                self.value = value
 | 
						|
            def __float__(self):
 | 
						|
                return self.value
 | 
						|
 | 
						|
        self.assertAlmostEqual(complex(float2(42.)), 42)
 | 
						|
        self.assertAlmostEqual(complex(real=float2(17.), imag=float2(23.)), 17+23j)
 | 
						|
        self.assertRaises(TypeError, complex, float2(None))
 | 
						|
 | 
						|
        class complex0(complex):
 | 
						|
            """Test usage of __complex__() when inheriting from 'complex'"""
 | 
						|
            def __complex__(self):
 | 
						|
                return 42j
 | 
						|
 | 
						|
        class complex1(complex):
 | 
						|
            """Test usage of __complex__() with a __new__() method"""
 | 
						|
            def __new__(self, value=0j):
 | 
						|
                return complex.__new__(self, 2*value)
 | 
						|
            def __complex__(self):
 | 
						|
                return self
 | 
						|
 | 
						|
        class complex2(complex):
 | 
						|
            """Make sure that __complex__() calls fail if anything other than a
 | 
						|
            complex is returned"""
 | 
						|
            def __complex__(self):
 | 
						|
                return None
 | 
						|
 | 
						|
        self.assertAlmostEqual(complex(complex0(1j)), 42j)
 | 
						|
        self.assertAlmostEqual(complex(complex1(1j)), 2j)
 | 
						|
        self.assertRaises(TypeError, complex, complex2(1j))
 | 
						|
 | 
						|
    def test_hash(self):
 | 
						|
        for x in range(-30, 30):
 | 
						|
            self.assertEqual(hash(x), hash(complex(x, 0)))
 | 
						|
            x /= 3.0    # now check against floating point
 | 
						|
            self.assertEqual(hash(x), hash(complex(x, 0.)))
 | 
						|
 | 
						|
    def test_abs(self):
 | 
						|
        nums = [complex(x/3., y/7.) for x in range(-9,9) for y in range(-9,9)]
 | 
						|
        for num in nums:
 | 
						|
            self.assertAlmostEqual((num.real**2 + num.imag**2)  ** 0.5, abs(num))
 | 
						|
 | 
						|
    def test_repr_str(self):
 | 
						|
        def test(v, expected, test_fn=self.assertEqual):
 | 
						|
            test_fn(repr(v), expected)
 | 
						|
            test_fn(str(v), expected)
 | 
						|
 | 
						|
        test(1+6j, '(1+6j)')
 | 
						|
        test(1-6j, '(1-6j)')
 | 
						|
 | 
						|
        test(-(1+0j), '(-1+-0j)', test_fn=self.assertNotEqual)
 | 
						|
 | 
						|
        test(complex(1., INF), "(1+infj)")
 | 
						|
        test(complex(1., -INF), "(1-infj)")
 | 
						|
        test(complex(INF, 1), "(inf+1j)")
 | 
						|
        test(complex(-INF, INF), "(-inf+infj)")
 | 
						|
        test(complex(NAN, 1), "(nan+1j)")
 | 
						|
        test(complex(1, NAN), "(1+nanj)")
 | 
						|
        test(complex(NAN, NAN), "(nan+nanj)")
 | 
						|
 | 
						|
        test(complex(0, INF), "infj")
 | 
						|
        test(complex(0, -INF), "-infj")
 | 
						|
        test(complex(0, NAN), "nanj")
 | 
						|
 | 
						|
        self.assertEqual(1-6j,complex(repr(1-6j)))
 | 
						|
        self.assertEqual(1+6j,complex(repr(1+6j)))
 | 
						|
        self.assertEqual(-6j,complex(repr(-6j)))
 | 
						|
        self.assertEqual(6j,complex(repr(6j)))
 | 
						|
 | 
						|
    @support.requires_IEEE_754
 | 
						|
    def test_negative_zero_repr_str(self):
 | 
						|
        def test(v, expected, test_fn=self.assertEqual):
 | 
						|
            test_fn(repr(v), expected)
 | 
						|
            test_fn(str(v), expected)
 | 
						|
 | 
						|
        test(complex(0., 1.),   "1j")
 | 
						|
        test(complex(-0., 1.),  "(-0+1j)")
 | 
						|
        test(complex(0., -1.),  "-1j")
 | 
						|
        test(complex(-0., -1.), "(-0-1j)")
 | 
						|
 | 
						|
        test(complex(0., 0.),   "0j")
 | 
						|
        test(complex(0., -0.),  "-0j")
 | 
						|
        test(complex(-0., 0.),  "(-0+0j)")
 | 
						|
        test(complex(-0., -0.), "(-0-0j)")
 | 
						|
 | 
						|
    def test_neg(self):
 | 
						|
        self.assertEqual(-(1+6j), -1-6j)
 | 
						|
 | 
						|
    def test_file(self):
 | 
						|
        a = 3.33+4.43j
 | 
						|
        b = 5.1+2.3j
 | 
						|
 | 
						|
        fo = None
 | 
						|
        try:
 | 
						|
            fo = open(support.TESTFN, "w")
 | 
						|
            print(a, b, file=fo)
 | 
						|
            fo.close()
 | 
						|
            fo = open(support.TESTFN, "r")
 | 
						|
            self.assertEqual(fo.read(), ("%s %s\n" % (a, b)))
 | 
						|
        finally:
 | 
						|
            if (fo is not None) and (not fo.closed):
 | 
						|
                fo.close()
 | 
						|
            support.unlink(support.TESTFN)
 | 
						|
 | 
						|
    def test_getnewargs(self):
 | 
						|
        self.assertEqual((1+2j).__getnewargs__(), (1.0, 2.0))
 | 
						|
        self.assertEqual((1-2j).__getnewargs__(), (1.0, -2.0))
 | 
						|
        self.assertEqual((2j).__getnewargs__(), (0.0, 2.0))
 | 
						|
        self.assertEqual((-0j).__getnewargs__(), (0.0, -0.0))
 | 
						|
        self.assertEqual(complex(0, INF).__getnewargs__(), (0.0, INF))
 | 
						|
        self.assertEqual(complex(INF, 0).__getnewargs__(), (INF, 0.0))
 | 
						|
 | 
						|
    @support.requires_IEEE_754
 | 
						|
    def test_plus_minus_0j(self):
 | 
						|
        # test that -0j and 0j literals are not identified
 | 
						|
        z1, z2 = 0j, -0j
 | 
						|
        self.assertEqual(atan2(z1.imag, -1.), atan2(0., -1.))
 | 
						|
        self.assertEqual(atan2(z2.imag, -1.), atan2(-0., -1.))
 | 
						|
 | 
						|
    @support.requires_IEEE_754
 | 
						|
    def test_negated_imaginary_literal(self):
 | 
						|
        z0 = -0j
 | 
						|
        z1 = -7j
 | 
						|
        z2 = -1e1000j
 | 
						|
        # Note: In versions of Python < 3.2, a negated imaginary literal
 | 
						|
        # accidentally ended up with real part 0.0 instead of -0.0, thanks to a
 | 
						|
        # modification during CST -> AST translation (see issue #9011).  That's
 | 
						|
        # fixed in Python 3.2.
 | 
						|
        self.assertFloatsAreIdentical(z0.real, -0.0)
 | 
						|
        self.assertFloatsAreIdentical(z0.imag, -0.0)
 | 
						|
        self.assertFloatsAreIdentical(z1.real, -0.0)
 | 
						|
        self.assertFloatsAreIdentical(z1.imag, -7.0)
 | 
						|
        self.assertFloatsAreIdentical(z2.real, -0.0)
 | 
						|
        self.assertFloatsAreIdentical(z2.imag, -INF)
 | 
						|
 | 
						|
    @support.requires_IEEE_754
 | 
						|
    def test_overflow(self):
 | 
						|
        self.assertEqual(complex("1e500"), complex(INF, 0.0))
 | 
						|
        self.assertEqual(complex("-1e500j"), complex(0.0, -INF))
 | 
						|
        self.assertEqual(complex("-1e500+1.8e308j"), complex(-INF, INF))
 | 
						|
 | 
						|
    @support.requires_IEEE_754
 | 
						|
    def test_repr_roundtrip(self):
 | 
						|
        vals = [0.0, 1e-500, 1e-315, 1e-200, 0.0123, 3.1415, 1e50, INF, NAN]
 | 
						|
        vals += [-v for v in vals]
 | 
						|
 | 
						|
        # complex(repr(z)) should recover z exactly, even for complex
 | 
						|
        # numbers involving an infinity, nan, or negative zero
 | 
						|
        for x in vals:
 | 
						|
            for y in vals:
 | 
						|
                z = complex(x, y)
 | 
						|
                roundtrip = complex(repr(z))
 | 
						|
                self.assertFloatsAreIdentical(z.real, roundtrip.real)
 | 
						|
                self.assertFloatsAreIdentical(z.imag, roundtrip.imag)
 | 
						|
 | 
						|
        # if we predefine some constants, then eval(repr(z)) should
 | 
						|
        # also work, except that it might change the sign of zeros
 | 
						|
        inf, nan = float('inf'), float('nan')
 | 
						|
        infj, nanj = complex(0.0, inf), complex(0.0, nan)
 | 
						|
        for x in vals:
 | 
						|
            for y in vals:
 | 
						|
                z = complex(x, y)
 | 
						|
                roundtrip = eval(repr(z))
 | 
						|
                # adding 0.0 has no effect beside changing -0.0 to 0.0
 | 
						|
                self.assertFloatsAreIdentical(0.0 + z.real,
 | 
						|
                                              0.0 + roundtrip.real)
 | 
						|
                self.assertFloatsAreIdentical(0.0 + z.imag,
 | 
						|
                                              0.0 + roundtrip.imag)
 | 
						|
 | 
						|
    def test_format(self):
 | 
						|
        # empty format string is same as str()
 | 
						|
        self.assertEqual(format(1+3j, ''), str(1+3j))
 | 
						|
        self.assertEqual(format(1.5+3.5j, ''), str(1.5+3.5j))
 | 
						|
        self.assertEqual(format(3j, ''), str(3j))
 | 
						|
        self.assertEqual(format(3.2j, ''), str(3.2j))
 | 
						|
        self.assertEqual(format(3+0j, ''), str(3+0j))
 | 
						|
        self.assertEqual(format(3.2+0j, ''), str(3.2+0j))
 | 
						|
 | 
						|
        # empty presentation type should still be analogous to str,
 | 
						|
        # even when format string is nonempty (issue #5920).
 | 
						|
        self.assertEqual(format(3.2+0j, '-'), str(3.2+0j))
 | 
						|
        self.assertEqual(format(3.2+0j, '<'), str(3.2+0j))
 | 
						|
        z = 4/7. - 100j/7.
 | 
						|
        self.assertEqual(format(z, ''), str(z))
 | 
						|
        self.assertEqual(format(z, '-'), str(z))
 | 
						|
        self.assertEqual(format(z, '<'), str(z))
 | 
						|
        self.assertEqual(format(z, '10'), str(z))
 | 
						|
        z = complex(0.0, 3.0)
 | 
						|
        self.assertEqual(format(z, ''), str(z))
 | 
						|
        self.assertEqual(format(z, '-'), str(z))
 | 
						|
        self.assertEqual(format(z, '<'), str(z))
 | 
						|
        self.assertEqual(format(z, '2'), str(z))
 | 
						|
        z = complex(-0.0, 2.0)
 | 
						|
        self.assertEqual(format(z, ''), str(z))
 | 
						|
        self.assertEqual(format(z, '-'), str(z))
 | 
						|
        self.assertEqual(format(z, '<'), str(z))
 | 
						|
        self.assertEqual(format(z, '3'), str(z))
 | 
						|
 | 
						|
        self.assertEqual(format(1+3j, 'g'), '1+3j')
 | 
						|
        self.assertEqual(format(3j, 'g'), '0+3j')
 | 
						|
        self.assertEqual(format(1.5+3.5j, 'g'), '1.5+3.5j')
 | 
						|
 | 
						|
        self.assertEqual(format(1.5+3.5j, '+g'), '+1.5+3.5j')
 | 
						|
        self.assertEqual(format(1.5-3.5j, '+g'), '+1.5-3.5j')
 | 
						|
        self.assertEqual(format(1.5-3.5j, '-g'), '1.5-3.5j')
 | 
						|
        self.assertEqual(format(1.5+3.5j, ' g'), ' 1.5+3.5j')
 | 
						|
        self.assertEqual(format(1.5-3.5j, ' g'), ' 1.5-3.5j')
 | 
						|
        self.assertEqual(format(-1.5+3.5j, ' g'), '-1.5+3.5j')
 | 
						|
        self.assertEqual(format(-1.5-3.5j, ' g'), '-1.5-3.5j')
 | 
						|
 | 
						|
        self.assertEqual(format(-1.5-3.5e-20j, 'g'), '-1.5-3.5e-20j')
 | 
						|
        self.assertEqual(format(-1.5-3.5j, 'f'), '-1.500000-3.500000j')
 | 
						|
        self.assertEqual(format(-1.5-3.5j, 'F'), '-1.500000-3.500000j')
 | 
						|
        self.assertEqual(format(-1.5-3.5j, 'e'), '-1.500000e+00-3.500000e+00j')
 | 
						|
        self.assertEqual(format(-1.5-3.5j, '.2e'), '-1.50e+00-3.50e+00j')
 | 
						|
        self.assertEqual(format(-1.5-3.5j, '.2E'), '-1.50E+00-3.50E+00j')
 | 
						|
        self.assertEqual(format(-1.5e10-3.5e5j, '.2G'), '-1.5E+10-3.5E+05j')
 | 
						|
 | 
						|
        self.assertEqual(format(1.5+3j, '<20g'),  '1.5+3j              ')
 | 
						|
        self.assertEqual(format(1.5+3j, '*<20g'), '1.5+3j**************')
 | 
						|
        self.assertEqual(format(1.5+3j, '>20g'),  '              1.5+3j')
 | 
						|
        self.assertEqual(format(1.5+3j, '^20g'),  '       1.5+3j       ')
 | 
						|
        self.assertEqual(format(1.5+3j, '<20'),   '(1.5+3j)            ')
 | 
						|
        self.assertEqual(format(1.5+3j, '>20'),   '            (1.5+3j)')
 | 
						|
        self.assertEqual(format(1.5+3j, '^20'),   '      (1.5+3j)      ')
 | 
						|
        self.assertEqual(format(1.123-3.123j, '^20.2'), '     (1.1-3.1j)     ')
 | 
						|
 | 
						|
        self.assertEqual(format(1.5+3j, '20.2f'), '          1.50+3.00j')
 | 
						|
        self.assertEqual(format(1.5+3j, '>20.2f'), '          1.50+3.00j')
 | 
						|
        self.assertEqual(format(1.5+3j, '<20.2f'), '1.50+3.00j          ')
 | 
						|
        self.assertEqual(format(1.5e20+3j, '<20.2f'), '150000000000000000000.00+3.00j')
 | 
						|
        self.assertEqual(format(1.5e20+3j, '>40.2f'), '          150000000000000000000.00+3.00j')
 | 
						|
        self.assertEqual(format(1.5e20+3j, '^40,.2f'), '  150,000,000,000,000,000,000.00+3.00j  ')
 | 
						|
        self.assertEqual(format(1.5e21+3j, '^40,.2f'), ' 1,500,000,000,000,000,000,000.00+3.00j ')
 | 
						|
        self.assertEqual(format(1.5e21+3000j, ',.2f'), '1,500,000,000,000,000,000,000.00+3,000.00j')
 | 
						|
 | 
						|
        # Issue 7094: Alternate formatting (specified by #)
 | 
						|
        self.assertEqual(format(1+1j, '.0e'), '1e+00+1e+00j')
 | 
						|
        self.assertEqual(format(1+1j, '#.0e'), '1.e+00+1.e+00j')
 | 
						|
        self.assertEqual(format(1+1j, '.0f'), '1+1j')
 | 
						|
        self.assertEqual(format(1+1j, '#.0f'), '1.+1.j')
 | 
						|
        self.assertEqual(format(1.1+1.1j, 'g'), '1.1+1.1j')
 | 
						|
        self.assertEqual(format(1.1+1.1j, '#g'), '1.10000+1.10000j')
 | 
						|
 | 
						|
        # Alternate doesn't make a difference for these, they format the same with or without it
 | 
						|
        self.assertEqual(format(1+1j, '.1e'),  '1.0e+00+1.0e+00j')
 | 
						|
        self.assertEqual(format(1+1j, '#.1e'), '1.0e+00+1.0e+00j')
 | 
						|
        self.assertEqual(format(1+1j, '.1f'),  '1.0+1.0j')
 | 
						|
        self.assertEqual(format(1+1j, '#.1f'), '1.0+1.0j')
 | 
						|
 | 
						|
        # Misc. other alternate tests
 | 
						|
        self.assertEqual(format((-1.5+0.5j), '#f'), '-1.500000+0.500000j')
 | 
						|
        self.assertEqual(format((-1.5+0.5j), '#.0f'), '-2.+0.j')
 | 
						|
        self.assertEqual(format((-1.5+0.5j), '#e'), '-1.500000e+00+5.000000e-01j')
 | 
						|
        self.assertEqual(format((-1.5+0.5j), '#.0e'), '-2.e+00+5.e-01j')
 | 
						|
        self.assertEqual(format((-1.5+0.5j), '#g'), '-1.50000+0.500000j')
 | 
						|
        self.assertEqual(format((-1.5+0.5j), '.0g'), '-2+0.5j')
 | 
						|
        self.assertEqual(format((-1.5+0.5j), '#.0g'), '-2.+0.5j')
 | 
						|
 | 
						|
        # zero padding is invalid
 | 
						|
        self.assertRaises(ValueError, (1.5+0.5j).__format__, '010f')
 | 
						|
 | 
						|
        # '=' alignment is invalid
 | 
						|
        self.assertRaises(ValueError, (1.5+3j).__format__, '=20')
 | 
						|
 | 
						|
        # integer presentation types are an error
 | 
						|
        for t in 'bcdoxX':
 | 
						|
            self.assertRaises(ValueError, (1.5+0.5j).__format__, t)
 | 
						|
 | 
						|
        # make sure everything works in ''.format()
 | 
						|
        self.assertEqual('*{0:.3f}*'.format(3.14159+2.71828j), '*3.142+2.718j*')
 | 
						|
 | 
						|
        # issue 3382
 | 
						|
        self.assertEqual(format(complex(NAN, NAN), 'f'), 'nan+nanj')
 | 
						|
        self.assertEqual(format(complex(1, NAN), 'f'), '1.000000+nanj')
 | 
						|
        self.assertEqual(format(complex(NAN, 1), 'f'), 'nan+1.000000j')
 | 
						|
        self.assertEqual(format(complex(NAN, -1), 'f'), 'nan-1.000000j')
 | 
						|
        self.assertEqual(format(complex(NAN, NAN), 'F'), 'NAN+NANj')
 | 
						|
        self.assertEqual(format(complex(1, NAN), 'F'), '1.000000+NANj')
 | 
						|
        self.assertEqual(format(complex(NAN, 1), 'F'), 'NAN+1.000000j')
 | 
						|
        self.assertEqual(format(complex(NAN, -1), 'F'), 'NAN-1.000000j')
 | 
						|
        self.assertEqual(format(complex(INF, INF), 'f'), 'inf+infj')
 | 
						|
        self.assertEqual(format(complex(1, INF), 'f'), '1.000000+infj')
 | 
						|
        self.assertEqual(format(complex(INF, 1), 'f'), 'inf+1.000000j')
 | 
						|
        self.assertEqual(format(complex(INF, -1), 'f'), 'inf-1.000000j')
 | 
						|
        self.assertEqual(format(complex(INF, INF), 'F'), 'INF+INFj')
 | 
						|
        self.assertEqual(format(complex(1, INF), 'F'), '1.000000+INFj')
 | 
						|
        self.assertEqual(format(complex(INF, 1), 'F'), 'INF+1.000000j')
 | 
						|
        self.assertEqual(format(complex(INF, -1), 'F'), 'INF-1.000000j')
 | 
						|
 | 
						|
def test_main():
 | 
						|
    support.run_unittest(ComplexTest)
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    test_main()
 |