mirror of
				https://github.com/python/cpython.git
				synced 2025-11-04 03:44:55 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			3928 lines
		
	
	
	
		
			121 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3928 lines
		
	
	
	
		
			121 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* Math module -- standard C math library functions, pi and e */
 | 
						|
 | 
						|
/* Here are some comments from Tim Peters, extracted from the
 | 
						|
   discussion attached to http://bugs.python.org/issue1640.  They
 | 
						|
   describe the general aims of the math module with respect to
 | 
						|
   special values, IEEE-754 floating-point exceptions, and Python
 | 
						|
   exceptions.
 | 
						|
 | 
						|
These are the "spirit of 754" rules:
 | 
						|
 | 
						|
1. If the mathematical result is a real number, but of magnitude too
 | 
						|
large to approximate by a machine float, overflow is signaled and the
 | 
						|
result is an infinity (with the appropriate sign).
 | 
						|
 | 
						|
2. If the mathematical result is a real number, but of magnitude too
 | 
						|
small to approximate by a machine float, underflow is signaled and the
 | 
						|
result is a zero (with the appropriate sign).
 | 
						|
 | 
						|
3. At a singularity (a value x such that the limit of f(y) as y
 | 
						|
approaches x exists and is an infinity), "divide by zero" is signaled
 | 
						|
and the result is an infinity (with the appropriate sign).  This is
 | 
						|
complicated a little by that the left-side and right-side limits may
 | 
						|
not be the same; e.g., 1/x approaches +inf or -inf as x approaches 0
 | 
						|
from the positive or negative directions.  In that specific case, the
 | 
						|
sign of the zero determines the result of 1/0.
 | 
						|
 | 
						|
4. At a point where a function has no defined result in the extended
 | 
						|
reals (i.e., the reals plus an infinity or two), invalid operation is
 | 
						|
signaled and a NaN is returned.
 | 
						|
 | 
						|
And these are what Python has historically /tried/ to do (but not
 | 
						|
always successfully, as platform libm behavior varies a lot):
 | 
						|
 | 
						|
For #1, raise OverflowError.
 | 
						|
 | 
						|
For #2, return a zero (with the appropriate sign if that happens by
 | 
						|
accident ;-)).
 | 
						|
 | 
						|
For #3 and #4, raise ValueError.  It may have made sense to raise
 | 
						|
Python's ZeroDivisionError in #3, but historically that's only been
 | 
						|
raised for division by zero and mod by zero.
 | 
						|
 | 
						|
*/
 | 
						|
 | 
						|
/*
 | 
						|
   In general, on an IEEE-754 platform the aim is to follow the C99
 | 
						|
   standard, including Annex 'F', whenever possible.  Where the
 | 
						|
   standard recommends raising the 'divide-by-zero' or 'invalid'
 | 
						|
   floating-point exceptions, Python should raise a ValueError.  Where
 | 
						|
   the standard recommends raising 'overflow', Python should raise an
 | 
						|
   OverflowError.  In all other circumstances a value should be
 | 
						|
   returned.
 | 
						|
 */
 | 
						|
 | 
						|
#ifndef Py_BUILD_CORE_BUILTIN
 | 
						|
#  define Py_BUILD_CORE_MODULE 1
 | 
						|
#endif
 | 
						|
 | 
						|
#include "Python.h"
 | 
						|
#include "pycore_bitutils.h"      // _Py_bit_length()
 | 
						|
#include "pycore_call.h"          // _PyObject_CallNoArgs()
 | 
						|
#include "pycore_dtoa.h"          // _Py_dg_infinity()
 | 
						|
#include "pycore_long.h"          // _PyLong_GetZero()
 | 
						|
/* For DBL_EPSILON in _math.h */
 | 
						|
#include <float.h>
 | 
						|
/* For _Py_log1p with workarounds for buggy handling of zeros. */
 | 
						|
#include "_math.h"
 | 
						|
 | 
						|
#include "clinic/mathmodule.c.h"
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
module math
 | 
						|
[clinic start generated code]*/
 | 
						|
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=76bc7002685dd942]*/
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
   sin(pi*x), giving accurate results for all finite x (especially x
 | 
						|
   integral or close to an integer).  This is here for use in the
 | 
						|
   reflection formula for the gamma function.  It conforms to IEEE
 | 
						|
   754-2008 for finite arguments, but not for infinities or nans.
 | 
						|
*/
 | 
						|
 | 
						|
static const double pi = 3.141592653589793238462643383279502884197;
 | 
						|
static const double logpi = 1.144729885849400174143427351353058711647;
 | 
						|
#if !defined(HAVE_ERF) || !defined(HAVE_ERFC)
 | 
						|
static const double sqrtpi = 1.772453850905516027298167483341145182798;
 | 
						|
#endif /* !defined(HAVE_ERF) || !defined(HAVE_ERFC) */
 | 
						|
 | 
						|
 | 
						|
/* Version of PyFloat_AsDouble() with in-line fast paths
 | 
						|
   for exact floats and integers.  Gives a substantial
 | 
						|
   speed improvement for extracting float arguments.
 | 
						|
*/
 | 
						|
 | 
						|
#define ASSIGN_DOUBLE(target_var, obj, error_label)        \
 | 
						|
    if (PyFloat_CheckExact(obj)) {                         \
 | 
						|
        target_var = PyFloat_AS_DOUBLE(obj);               \
 | 
						|
    }                                                      \
 | 
						|
    else if (PyLong_CheckExact(obj)) {                     \
 | 
						|
        target_var = PyLong_AsDouble(obj);                 \
 | 
						|
        if (target_var == -1.0 && PyErr_Occurred()) {      \
 | 
						|
            goto error_label;                              \
 | 
						|
        }                                                  \
 | 
						|
    }                                                      \
 | 
						|
    else {                                                 \
 | 
						|
        target_var = PyFloat_AsDouble(obj);                \
 | 
						|
        if (target_var == -1.0 && PyErr_Occurred()) {      \
 | 
						|
            goto error_label;                              \
 | 
						|
        }                                                  \
 | 
						|
    }
 | 
						|
 | 
						|
static double
 | 
						|
m_sinpi(double x)
 | 
						|
{
 | 
						|
    double y, r;
 | 
						|
    int n;
 | 
						|
    /* this function should only ever be called for finite arguments */
 | 
						|
    assert(Py_IS_FINITE(x));
 | 
						|
    y = fmod(fabs(x), 2.0);
 | 
						|
    n = (int)round(2.0*y);
 | 
						|
    assert(0 <= n && n <= 4);
 | 
						|
    switch (n) {
 | 
						|
    case 0:
 | 
						|
        r = sin(pi*y);
 | 
						|
        break;
 | 
						|
    case 1:
 | 
						|
        r = cos(pi*(y-0.5));
 | 
						|
        break;
 | 
						|
    case 2:
 | 
						|
        /* N.B. -sin(pi*(y-1.0)) is *not* equivalent: it would give
 | 
						|
           -0.0 instead of 0.0 when y == 1.0. */
 | 
						|
        r = sin(pi*(1.0-y));
 | 
						|
        break;
 | 
						|
    case 3:
 | 
						|
        r = -cos(pi*(y-1.5));
 | 
						|
        break;
 | 
						|
    case 4:
 | 
						|
        r = sin(pi*(y-2.0));
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        Py_UNREACHABLE();
 | 
						|
    }
 | 
						|
    return copysign(1.0, x)*r;
 | 
						|
}
 | 
						|
 | 
						|
/* Implementation of the real gamma function.  In extensive but non-exhaustive
 | 
						|
   random tests, this function proved accurate to within <= 10 ulps across the
 | 
						|
   entire float domain.  Note that accuracy may depend on the quality of the
 | 
						|
   system math functions, the pow function in particular.  Special cases
 | 
						|
   follow C99 annex F.  The parameters and method are tailored to platforms
 | 
						|
   whose double format is the IEEE 754 binary64 format.
 | 
						|
 | 
						|
   Method: for x > 0.0 we use the Lanczos approximation with parameters N=13
 | 
						|
   and g=6.024680040776729583740234375; these parameters are amongst those
 | 
						|
   used by the Boost library.  Following Boost (again), we re-express the
 | 
						|
   Lanczos sum as a rational function, and compute it that way.  The
 | 
						|
   coefficients below were computed independently using MPFR, and have been
 | 
						|
   double-checked against the coefficients in the Boost source code.
 | 
						|
 | 
						|
   For x < 0.0 we use the reflection formula.
 | 
						|
 | 
						|
   There's one minor tweak that deserves explanation: Lanczos' formula for
 | 
						|
   Gamma(x) involves computing pow(x+g-0.5, x-0.5) / exp(x+g-0.5).  For many x
 | 
						|
   values, x+g-0.5 can be represented exactly.  However, in cases where it
 | 
						|
   can't be represented exactly the small error in x+g-0.5 can be magnified
 | 
						|
   significantly by the pow and exp calls, especially for large x.  A cheap
 | 
						|
   correction is to multiply by (1 + e*g/(x+g-0.5)), where e is the error
 | 
						|
   involved in the computation of x+g-0.5 (that is, e = computed value of
 | 
						|
   x+g-0.5 - exact value of x+g-0.5).  Here's the proof:
 | 
						|
 | 
						|
   Correction factor
 | 
						|
   -----------------
 | 
						|
   Write x+g-0.5 = y-e, where y is exactly representable as an IEEE 754
 | 
						|
   double, and e is tiny.  Then:
 | 
						|
 | 
						|
     pow(x+g-0.5,x-0.5)/exp(x+g-0.5) = pow(y-e, x-0.5)/exp(y-e)
 | 
						|
     = pow(y, x-0.5)/exp(y) * C,
 | 
						|
 | 
						|
   where the correction_factor C is given by
 | 
						|
 | 
						|
     C = pow(1-e/y, x-0.5) * exp(e)
 | 
						|
 | 
						|
   Since e is tiny, pow(1-e/y, x-0.5) ~ 1-(x-0.5)*e/y, and exp(x) ~ 1+e, so:
 | 
						|
 | 
						|
     C ~ (1-(x-0.5)*e/y) * (1+e) ~ 1 + e*(y-(x-0.5))/y
 | 
						|
 | 
						|
   But y-(x-0.5) = g+e, and g+e ~ g.  So we get C ~ 1 + e*g/y, and
 | 
						|
 | 
						|
     pow(x+g-0.5,x-0.5)/exp(x+g-0.5) ~ pow(y, x-0.5)/exp(y) * (1 + e*g/y),
 | 
						|
 | 
						|
   Note that for accuracy, when computing r*C it's better to do
 | 
						|
 | 
						|
     r + e*g/y*r;
 | 
						|
 | 
						|
   than
 | 
						|
 | 
						|
     r * (1 + e*g/y);
 | 
						|
 | 
						|
   since the addition in the latter throws away most of the bits of
 | 
						|
   information in e*g/y.
 | 
						|
*/
 | 
						|
 | 
						|
#define LANCZOS_N 13
 | 
						|
static const double lanczos_g = 6.024680040776729583740234375;
 | 
						|
static const double lanczos_g_minus_half = 5.524680040776729583740234375;
 | 
						|
static const double lanczos_num_coeffs[LANCZOS_N] = {
 | 
						|
    23531376880.410759688572007674451636754734846804940,
 | 
						|
    42919803642.649098768957899047001988850926355848959,
 | 
						|
    35711959237.355668049440185451547166705960488635843,
 | 
						|
    17921034426.037209699919755754458931112671403265390,
 | 
						|
    6039542586.3520280050642916443072979210699388420708,
 | 
						|
    1439720407.3117216736632230727949123939715485786772,
 | 
						|
    248874557.86205415651146038641322942321632125127801,
 | 
						|
    31426415.585400194380614231628318205362874684987640,
 | 
						|
    2876370.6289353724412254090516208496135991145378768,
 | 
						|
    186056.26539522349504029498971604569928220784236328,
 | 
						|
    8071.6720023658162106380029022722506138218516325024,
 | 
						|
    210.82427775157934587250973392071336271166969580291,
 | 
						|
    2.5066282746310002701649081771338373386264310793408
 | 
						|
};
 | 
						|
 | 
						|
/* denominator is x*(x+1)*...*(x+LANCZOS_N-2) */
 | 
						|
static const double lanczos_den_coeffs[LANCZOS_N] = {
 | 
						|
    0.0, 39916800.0, 120543840.0, 150917976.0, 105258076.0, 45995730.0,
 | 
						|
    13339535.0, 2637558.0, 357423.0, 32670.0, 1925.0, 66.0, 1.0};
 | 
						|
 | 
						|
/* gamma values for small positive integers, 1 though NGAMMA_INTEGRAL */
 | 
						|
#define NGAMMA_INTEGRAL 23
 | 
						|
static const double gamma_integral[NGAMMA_INTEGRAL] = {
 | 
						|
    1.0, 1.0, 2.0, 6.0, 24.0, 120.0, 720.0, 5040.0, 40320.0, 362880.0,
 | 
						|
    3628800.0, 39916800.0, 479001600.0, 6227020800.0, 87178291200.0,
 | 
						|
    1307674368000.0, 20922789888000.0, 355687428096000.0,
 | 
						|
    6402373705728000.0, 121645100408832000.0, 2432902008176640000.0,
 | 
						|
    51090942171709440000.0, 1124000727777607680000.0,
 | 
						|
};
 | 
						|
 | 
						|
/* Lanczos' sum L_g(x), for positive x */
 | 
						|
 | 
						|
static double
 | 
						|
lanczos_sum(double x)
 | 
						|
{
 | 
						|
    double num = 0.0, den = 0.0;
 | 
						|
    int i;
 | 
						|
    assert(x > 0.0);
 | 
						|
    /* evaluate the rational function lanczos_sum(x).  For large
 | 
						|
       x, the obvious algorithm risks overflow, so we instead
 | 
						|
       rescale the denominator and numerator of the rational
 | 
						|
       function by x**(1-LANCZOS_N) and treat this as a
 | 
						|
       rational function in 1/x.  This also reduces the error for
 | 
						|
       larger x values.  The choice of cutoff point (5.0 below) is
 | 
						|
       somewhat arbitrary; in tests, smaller cutoff values than
 | 
						|
       this resulted in lower accuracy. */
 | 
						|
    if (x < 5.0) {
 | 
						|
        for (i = LANCZOS_N; --i >= 0; ) {
 | 
						|
            num = num * x + lanczos_num_coeffs[i];
 | 
						|
            den = den * x + lanczos_den_coeffs[i];
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        for (i = 0; i < LANCZOS_N; i++) {
 | 
						|
            num = num / x + lanczos_num_coeffs[i];
 | 
						|
            den = den / x + lanczos_den_coeffs[i];
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return num/den;
 | 
						|
}
 | 
						|
 | 
						|
/* Constant for +infinity, generated in the same way as float('inf'). */
 | 
						|
 | 
						|
static double
 | 
						|
m_inf(void)
 | 
						|
{
 | 
						|
#ifndef PY_NO_SHORT_FLOAT_REPR
 | 
						|
    return _Py_dg_infinity(0);
 | 
						|
#else
 | 
						|
    return Py_HUGE_VAL;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/* Constant nan value, generated in the same way as float('nan'). */
 | 
						|
/* We don't currently assume that Py_NAN is defined everywhere. */
 | 
						|
 | 
						|
#if !defined(PY_NO_SHORT_FLOAT_REPR) || defined(Py_NAN)
 | 
						|
 | 
						|
static double
 | 
						|
m_nan(void)
 | 
						|
{
 | 
						|
#ifndef PY_NO_SHORT_FLOAT_REPR
 | 
						|
    return _Py_dg_stdnan(0);
 | 
						|
#else
 | 
						|
    return Py_NAN;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
static double
 | 
						|
m_tgamma(double x)
 | 
						|
{
 | 
						|
    double absx, r, y, z, sqrtpow;
 | 
						|
 | 
						|
    /* special cases */
 | 
						|
    if (!Py_IS_FINITE(x)) {
 | 
						|
        if (Py_IS_NAN(x) || x > 0.0)
 | 
						|
            return x;  /* tgamma(nan) = nan, tgamma(inf) = inf */
 | 
						|
        else {
 | 
						|
            errno = EDOM;
 | 
						|
            return Py_NAN;  /* tgamma(-inf) = nan, invalid */
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (x == 0.0) {
 | 
						|
        errno = EDOM;
 | 
						|
        /* tgamma(+-0.0) = +-inf, divide-by-zero */
 | 
						|
        return copysign(Py_HUGE_VAL, x);
 | 
						|
    }
 | 
						|
 | 
						|
    /* integer arguments */
 | 
						|
    if (x == floor(x)) {
 | 
						|
        if (x < 0.0) {
 | 
						|
            errno = EDOM;  /* tgamma(n) = nan, invalid for */
 | 
						|
            return Py_NAN; /* negative integers n */
 | 
						|
        }
 | 
						|
        if (x <= NGAMMA_INTEGRAL)
 | 
						|
            return gamma_integral[(int)x - 1];
 | 
						|
    }
 | 
						|
    absx = fabs(x);
 | 
						|
 | 
						|
    /* tiny arguments:  tgamma(x) ~ 1/x for x near 0 */
 | 
						|
    if (absx < 1e-20) {
 | 
						|
        r = 1.0/x;
 | 
						|
        if (Py_IS_INFINITY(r))
 | 
						|
            errno = ERANGE;
 | 
						|
        return r;
 | 
						|
    }
 | 
						|
 | 
						|
    /* large arguments: assuming IEEE 754 doubles, tgamma(x) overflows for
 | 
						|
       x > 200, and underflows to +-0.0 for x < -200, not a negative
 | 
						|
       integer. */
 | 
						|
    if (absx > 200.0) {
 | 
						|
        if (x < 0.0) {
 | 
						|
            return 0.0/m_sinpi(x);
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            errno = ERANGE;
 | 
						|
            return Py_HUGE_VAL;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    y = absx + lanczos_g_minus_half;
 | 
						|
    /* compute error in sum */
 | 
						|
    if (absx > lanczos_g_minus_half) {
 | 
						|
        /* note: the correction can be foiled by an optimizing
 | 
						|
           compiler that (incorrectly) thinks that an expression like
 | 
						|
           a + b - a - b can be optimized to 0.0.  This shouldn't
 | 
						|
           happen in a standards-conforming compiler. */
 | 
						|
        double q = y - absx;
 | 
						|
        z = q - lanczos_g_minus_half;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        double q = y - lanczos_g_minus_half;
 | 
						|
        z = q - absx;
 | 
						|
    }
 | 
						|
    z = z * lanczos_g / y;
 | 
						|
    if (x < 0.0) {
 | 
						|
        r = -pi / m_sinpi(absx) / absx * exp(y) / lanczos_sum(absx);
 | 
						|
        r -= z * r;
 | 
						|
        if (absx < 140.0) {
 | 
						|
            r /= pow(y, absx - 0.5);
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            sqrtpow = pow(y, absx / 2.0 - 0.25);
 | 
						|
            r /= sqrtpow;
 | 
						|
            r /= sqrtpow;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        r = lanczos_sum(absx) / exp(y);
 | 
						|
        r += z * r;
 | 
						|
        if (absx < 140.0) {
 | 
						|
            r *= pow(y, absx - 0.5);
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            sqrtpow = pow(y, absx / 2.0 - 0.25);
 | 
						|
            r *= sqrtpow;
 | 
						|
            r *= sqrtpow;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (Py_IS_INFINITY(r))
 | 
						|
        errno = ERANGE;
 | 
						|
    return r;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
   lgamma:  natural log of the absolute value of the Gamma function.
 | 
						|
   For large arguments, Lanczos' formula works extremely well here.
 | 
						|
*/
 | 
						|
 | 
						|
static double
 | 
						|
m_lgamma(double x)
 | 
						|
{
 | 
						|
    double r;
 | 
						|
    double absx;
 | 
						|
 | 
						|
    /* special cases */
 | 
						|
    if (!Py_IS_FINITE(x)) {
 | 
						|
        if (Py_IS_NAN(x))
 | 
						|
            return x;  /* lgamma(nan) = nan */
 | 
						|
        else
 | 
						|
            return Py_HUGE_VAL; /* lgamma(+-inf) = +inf */
 | 
						|
    }
 | 
						|
 | 
						|
    /* integer arguments */
 | 
						|
    if (x == floor(x) && x <= 2.0) {
 | 
						|
        if (x <= 0.0) {
 | 
						|
            errno = EDOM;  /* lgamma(n) = inf, divide-by-zero for */
 | 
						|
            return Py_HUGE_VAL; /* integers n <= 0 */
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            return 0.0; /* lgamma(1) = lgamma(2) = 0.0 */
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    absx = fabs(x);
 | 
						|
    /* tiny arguments: lgamma(x) ~ -log(fabs(x)) for small x */
 | 
						|
    if (absx < 1e-20)
 | 
						|
        return -log(absx);
 | 
						|
 | 
						|
    /* Lanczos' formula.  We could save a fraction of a ulp in accuracy by
 | 
						|
       having a second set of numerator coefficients for lanczos_sum that
 | 
						|
       absorbed the exp(-lanczos_g) term, and throwing out the lanczos_g
 | 
						|
       subtraction below; it's probably not worth it. */
 | 
						|
    r = log(lanczos_sum(absx)) - lanczos_g;
 | 
						|
    r += (absx - 0.5) * (log(absx + lanczos_g - 0.5) - 1);
 | 
						|
    if (x < 0.0)
 | 
						|
        /* Use reflection formula to get value for negative x. */
 | 
						|
        r = logpi - log(fabs(m_sinpi(absx))) - log(absx) - r;
 | 
						|
    if (Py_IS_INFINITY(r))
 | 
						|
        errno = ERANGE;
 | 
						|
    return r;
 | 
						|
}
 | 
						|
 | 
						|
#if !defined(HAVE_ERF) || !defined(HAVE_ERFC)
 | 
						|
 | 
						|
/*
 | 
						|
   Implementations of the error function erf(x) and the complementary error
 | 
						|
   function erfc(x).
 | 
						|
 | 
						|
   Method: we use a series approximation for erf for small x, and a continued
 | 
						|
   fraction approximation for erfc(x) for larger x;
 | 
						|
   combined with the relations erf(-x) = -erf(x) and erfc(x) = 1.0 - erf(x),
 | 
						|
   this gives us erf(x) and erfc(x) for all x.
 | 
						|
 | 
						|
   The series expansion used is:
 | 
						|
 | 
						|
      erf(x) = x*exp(-x*x)/sqrt(pi) * [
 | 
						|
                     2/1 + 4/3 x**2 + 8/15 x**4 + 16/105 x**6 + ...]
 | 
						|
 | 
						|
   The coefficient of x**(2k-2) here is 4**k*factorial(k)/factorial(2*k).
 | 
						|
   This series converges well for smallish x, but slowly for larger x.
 | 
						|
 | 
						|
   The continued fraction expansion used is:
 | 
						|
 | 
						|
      erfc(x) = x*exp(-x*x)/sqrt(pi) * [1/(0.5 + x**2 -) 0.5/(2.5 + x**2 - )
 | 
						|
                              3.0/(4.5 + x**2 - ) 7.5/(6.5 + x**2 - ) ...]
 | 
						|
 | 
						|
   after the first term, the general term has the form:
 | 
						|
 | 
						|
      k*(k-0.5)/(2*k+0.5 + x**2 - ...).
 | 
						|
 | 
						|
   This expansion converges fast for larger x, but convergence becomes
 | 
						|
   infinitely slow as x approaches 0.0.  The (somewhat naive) continued
 | 
						|
   fraction evaluation algorithm used below also risks overflow for large x;
 | 
						|
   but for large x, erfc(x) == 0.0 to within machine precision.  (For
 | 
						|
   example, erfc(30.0) is approximately 2.56e-393).
 | 
						|
 | 
						|
   Parameters: use series expansion for abs(x) < ERF_SERIES_CUTOFF and
 | 
						|
   continued fraction expansion for ERF_SERIES_CUTOFF <= abs(x) <
 | 
						|
   ERFC_CONTFRAC_CUTOFF.  ERFC_SERIES_TERMS and ERFC_CONTFRAC_TERMS are the
 | 
						|
   numbers of terms to use for the relevant expansions.  */
 | 
						|
 | 
						|
#define ERF_SERIES_CUTOFF 1.5
 | 
						|
#define ERF_SERIES_TERMS 25
 | 
						|
#define ERFC_CONTFRAC_CUTOFF 30.0
 | 
						|
#define ERFC_CONTFRAC_TERMS 50
 | 
						|
 | 
						|
/*
 | 
						|
   Error function, via power series.
 | 
						|
 | 
						|
   Given a finite float x, return an approximation to erf(x).
 | 
						|
   Converges reasonably fast for small x.
 | 
						|
*/
 | 
						|
 | 
						|
static double
 | 
						|
m_erf_series(double x)
 | 
						|
{
 | 
						|
    double x2, acc, fk, result;
 | 
						|
    int i, saved_errno;
 | 
						|
 | 
						|
    x2 = x * x;
 | 
						|
    acc = 0.0;
 | 
						|
    fk = (double)ERF_SERIES_TERMS + 0.5;
 | 
						|
    for (i = 0; i < ERF_SERIES_TERMS; i++) {
 | 
						|
        acc = 2.0 + x2 * acc / fk;
 | 
						|
        fk -= 1.0;
 | 
						|
    }
 | 
						|
    /* Make sure the exp call doesn't affect errno;
 | 
						|
       see m_erfc_contfrac for more. */
 | 
						|
    saved_errno = errno;
 | 
						|
    result = acc * x * exp(-x2) / sqrtpi;
 | 
						|
    errno = saved_errno;
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
   Complementary error function, via continued fraction expansion.
 | 
						|
 | 
						|
   Given a positive float x, return an approximation to erfc(x).  Converges
 | 
						|
   reasonably fast for x large (say, x > 2.0), and should be safe from
 | 
						|
   overflow if x and nterms are not too large.  On an IEEE 754 machine, with x
 | 
						|
   <= 30.0, we're safe up to nterms = 100.  For x >= 30.0, erfc(x) is smaller
 | 
						|
   than the smallest representable nonzero float.  */
 | 
						|
 | 
						|
static double
 | 
						|
m_erfc_contfrac(double x)
 | 
						|
{
 | 
						|
    double x2, a, da, p, p_last, q, q_last, b, result;
 | 
						|
    int i, saved_errno;
 | 
						|
 | 
						|
    if (x >= ERFC_CONTFRAC_CUTOFF)
 | 
						|
        return 0.0;
 | 
						|
 | 
						|
    x2 = x*x;
 | 
						|
    a = 0.0;
 | 
						|
    da = 0.5;
 | 
						|
    p = 1.0; p_last = 0.0;
 | 
						|
    q = da + x2; q_last = 1.0;
 | 
						|
    for (i = 0; i < ERFC_CONTFRAC_TERMS; i++) {
 | 
						|
        double temp;
 | 
						|
        a += da;
 | 
						|
        da += 2.0;
 | 
						|
        b = da + x2;
 | 
						|
        temp = p; p = b*p - a*p_last; p_last = temp;
 | 
						|
        temp = q; q = b*q - a*q_last; q_last = temp;
 | 
						|
    }
 | 
						|
    /* Issue #8986: On some platforms, exp sets errno on underflow to zero;
 | 
						|
       save the current errno value so that we can restore it later. */
 | 
						|
    saved_errno = errno;
 | 
						|
    result = p / q * x * exp(-x2) / sqrtpi;
 | 
						|
    errno = saved_errno;
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
#endif /* !defined(HAVE_ERF) || !defined(HAVE_ERFC) */
 | 
						|
 | 
						|
/* Error function erf(x), for general x */
 | 
						|
 | 
						|
static double
 | 
						|
m_erf(double x)
 | 
						|
{
 | 
						|
#ifdef HAVE_ERF
 | 
						|
    return erf(x);
 | 
						|
#else
 | 
						|
    double absx, cf;
 | 
						|
 | 
						|
    if (Py_IS_NAN(x))
 | 
						|
        return x;
 | 
						|
    absx = fabs(x);
 | 
						|
    if (absx < ERF_SERIES_CUTOFF)
 | 
						|
        return m_erf_series(x);
 | 
						|
    else {
 | 
						|
        cf = m_erfc_contfrac(absx);
 | 
						|
        return x > 0.0 ? 1.0 - cf : cf - 1.0;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/* Complementary error function erfc(x), for general x. */
 | 
						|
 | 
						|
static double
 | 
						|
m_erfc(double x)
 | 
						|
{
 | 
						|
#ifdef HAVE_ERFC
 | 
						|
    return erfc(x);
 | 
						|
#else
 | 
						|
    double absx, cf;
 | 
						|
 | 
						|
    if (Py_IS_NAN(x))
 | 
						|
        return x;
 | 
						|
    absx = fabs(x);
 | 
						|
    if (absx < ERF_SERIES_CUTOFF)
 | 
						|
        return 1.0 - m_erf_series(x);
 | 
						|
    else {
 | 
						|
        cf = m_erfc_contfrac(absx);
 | 
						|
        return x > 0.0 ? cf : 2.0 - cf;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
   wrapper for atan2 that deals directly with special cases before
 | 
						|
   delegating to the platform libm for the remaining cases.  This
 | 
						|
   is necessary to get consistent behaviour across platforms.
 | 
						|
   Windows, FreeBSD and alpha Tru64 are amongst platforms that don't
 | 
						|
   always follow C99.
 | 
						|
*/
 | 
						|
 | 
						|
static double
 | 
						|
m_atan2(double y, double x)
 | 
						|
{
 | 
						|
    if (Py_IS_NAN(x) || Py_IS_NAN(y))
 | 
						|
        return Py_NAN;
 | 
						|
    if (Py_IS_INFINITY(y)) {
 | 
						|
        if (Py_IS_INFINITY(x)) {
 | 
						|
            if (copysign(1., x) == 1.)
 | 
						|
                /* atan2(+-inf, +inf) == +-pi/4 */
 | 
						|
                return copysign(0.25*Py_MATH_PI, y);
 | 
						|
            else
 | 
						|
                /* atan2(+-inf, -inf) == +-pi*3/4 */
 | 
						|
                return copysign(0.75*Py_MATH_PI, y);
 | 
						|
        }
 | 
						|
        /* atan2(+-inf, x) == +-pi/2 for finite x */
 | 
						|
        return copysign(0.5*Py_MATH_PI, y);
 | 
						|
    }
 | 
						|
    if (Py_IS_INFINITY(x) || y == 0.) {
 | 
						|
        if (copysign(1., x) == 1.)
 | 
						|
            /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */
 | 
						|
            return copysign(0., y);
 | 
						|
        else
 | 
						|
            /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */
 | 
						|
            return copysign(Py_MATH_PI, y);
 | 
						|
    }
 | 
						|
    return atan2(y, x);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* IEEE 754-style remainder operation: x - n*y where n*y is the nearest
 | 
						|
   multiple of y to x, taking n even in the case of a tie. Assuming an IEEE 754
 | 
						|
   binary floating-point format, the result is always exact. */
 | 
						|
 | 
						|
static double
 | 
						|
m_remainder(double x, double y)
 | 
						|
{
 | 
						|
    /* Deal with most common case first. */
 | 
						|
    if (Py_IS_FINITE(x) && Py_IS_FINITE(y)) {
 | 
						|
        double absx, absy, c, m, r;
 | 
						|
 | 
						|
        if (y == 0.0) {
 | 
						|
            return Py_NAN;
 | 
						|
        }
 | 
						|
 | 
						|
        absx = fabs(x);
 | 
						|
        absy = fabs(y);
 | 
						|
        m = fmod(absx, absy);
 | 
						|
 | 
						|
        /*
 | 
						|
           Warning: some subtlety here. What we *want* to know at this point is
 | 
						|
           whether the remainder m is less than, equal to, or greater than half
 | 
						|
           of absy. However, we can't do that comparison directly because we
 | 
						|
           can't be sure that 0.5*absy is representable (the multiplication
 | 
						|
           might incur precision loss due to underflow). So instead we compare
 | 
						|
           m with the complement c = absy - m: m < 0.5*absy if and only if m <
 | 
						|
           c, and so on. The catch is that absy - m might also not be
 | 
						|
           representable, but it turns out that it doesn't matter:
 | 
						|
 | 
						|
           - if m > 0.5*absy then absy - m is exactly representable, by
 | 
						|
             Sterbenz's lemma, so m > c
 | 
						|
           - if m == 0.5*absy then again absy - m is exactly representable
 | 
						|
             and m == c
 | 
						|
           - if m < 0.5*absy then either (i) 0.5*absy is exactly representable,
 | 
						|
             in which case 0.5*absy < absy - m, so 0.5*absy <= c and hence m <
 | 
						|
             c, or (ii) absy is tiny, either subnormal or in the lowest normal
 | 
						|
             binade. Then absy - m is exactly representable and again m < c.
 | 
						|
        */
 | 
						|
 | 
						|
        c = absy - m;
 | 
						|
        if (m < c) {
 | 
						|
            r = m;
 | 
						|
        }
 | 
						|
        else if (m > c) {
 | 
						|
            r = -c;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            /*
 | 
						|
               Here absx is exactly halfway between two multiples of absy,
 | 
						|
               and we need to choose the even multiple. x now has the form
 | 
						|
 | 
						|
                   absx = n * absy + m
 | 
						|
 | 
						|
               for some integer n (recalling that m = 0.5*absy at this point).
 | 
						|
               If n is even we want to return m; if n is odd, we need to
 | 
						|
               return -m.
 | 
						|
 | 
						|
               So
 | 
						|
 | 
						|
                   0.5 * (absx - m) = (n/2) * absy
 | 
						|
 | 
						|
               and now reducing modulo absy gives us:
 | 
						|
 | 
						|
                                                  | m, if n is odd
 | 
						|
                   fmod(0.5 * (absx - m), absy) = |
 | 
						|
                                                  | 0, if n is even
 | 
						|
 | 
						|
               Now m - 2.0 * fmod(...) gives the desired result: m
 | 
						|
               if n is even, -m if m is odd.
 | 
						|
 | 
						|
               Note that all steps in fmod(0.5 * (absx - m), absy)
 | 
						|
               will be computed exactly, with no rounding error
 | 
						|
               introduced.
 | 
						|
            */
 | 
						|
            assert(m == c);
 | 
						|
            r = m - 2.0 * fmod(0.5 * (absx - m), absy);
 | 
						|
        }
 | 
						|
        return copysign(1.0, x) * r;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Special values. */
 | 
						|
    if (Py_IS_NAN(x)) {
 | 
						|
        return x;
 | 
						|
    }
 | 
						|
    if (Py_IS_NAN(y)) {
 | 
						|
        return y;
 | 
						|
    }
 | 
						|
    if (Py_IS_INFINITY(x)) {
 | 
						|
        return Py_NAN;
 | 
						|
    }
 | 
						|
    assert(Py_IS_INFINITY(y));
 | 
						|
    return x;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
    Various platforms (Solaris, OpenBSD) do nonstandard things for log(0),
 | 
						|
    log(-ve), log(NaN).  Here are wrappers for log and log10 that deal with
 | 
						|
    special values directly, passing positive non-special values through to
 | 
						|
    the system log/log10.
 | 
						|
 */
 | 
						|
 | 
						|
static double
 | 
						|
m_log(double x)
 | 
						|
{
 | 
						|
    if (Py_IS_FINITE(x)) {
 | 
						|
        if (x > 0.0)
 | 
						|
            return log(x);
 | 
						|
        errno = EDOM;
 | 
						|
        if (x == 0.0)
 | 
						|
            return -Py_HUGE_VAL; /* log(0) = -inf */
 | 
						|
        else
 | 
						|
            return Py_NAN; /* log(-ve) = nan */
 | 
						|
    }
 | 
						|
    else if (Py_IS_NAN(x))
 | 
						|
        return x; /* log(nan) = nan */
 | 
						|
    else if (x > 0.0)
 | 
						|
        return x; /* log(inf) = inf */
 | 
						|
    else {
 | 
						|
        errno = EDOM;
 | 
						|
        return Py_NAN; /* log(-inf) = nan */
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
   log2: log to base 2.
 | 
						|
 | 
						|
   Uses an algorithm that should:
 | 
						|
 | 
						|
     (a) produce exact results for powers of 2, and
 | 
						|
     (b) give a monotonic log2 (for positive finite floats),
 | 
						|
         assuming that the system log is monotonic.
 | 
						|
*/
 | 
						|
 | 
						|
static double
 | 
						|
m_log2(double x)
 | 
						|
{
 | 
						|
    if (!Py_IS_FINITE(x)) {
 | 
						|
        if (Py_IS_NAN(x))
 | 
						|
            return x; /* log2(nan) = nan */
 | 
						|
        else if (x > 0.0)
 | 
						|
            return x; /* log2(+inf) = +inf */
 | 
						|
        else {
 | 
						|
            errno = EDOM;
 | 
						|
            return Py_NAN; /* log2(-inf) = nan, invalid-operation */
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (x > 0.0) {
 | 
						|
#ifdef HAVE_LOG2
 | 
						|
        return log2(x);
 | 
						|
#else
 | 
						|
        double m;
 | 
						|
        int e;
 | 
						|
        m = frexp(x, &e);
 | 
						|
        /* We want log2(m * 2**e) == log(m) / log(2) + e.  Care is needed when
 | 
						|
         * x is just greater than 1.0: in that case e is 1, log(m) is negative,
 | 
						|
         * and we get significant cancellation error from the addition of
 | 
						|
         * log(m) / log(2) to e.  The slight rewrite of the expression below
 | 
						|
         * avoids this problem.
 | 
						|
         */
 | 
						|
        if (x >= 1.0) {
 | 
						|
            return log(2.0 * m) / log(2.0) + (e - 1);
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            return log(m) / log(2.0) + e;
 | 
						|
        }
 | 
						|
#endif
 | 
						|
    }
 | 
						|
    else if (x == 0.0) {
 | 
						|
        errno = EDOM;
 | 
						|
        return -Py_HUGE_VAL; /* log2(0) = -inf, divide-by-zero */
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        errno = EDOM;
 | 
						|
        return Py_NAN; /* log2(-inf) = nan, invalid-operation */
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static double
 | 
						|
m_log10(double x)
 | 
						|
{
 | 
						|
    if (Py_IS_FINITE(x)) {
 | 
						|
        if (x > 0.0)
 | 
						|
            return log10(x);
 | 
						|
        errno = EDOM;
 | 
						|
        if (x == 0.0)
 | 
						|
            return -Py_HUGE_VAL; /* log10(0) = -inf */
 | 
						|
        else
 | 
						|
            return Py_NAN; /* log10(-ve) = nan */
 | 
						|
    }
 | 
						|
    else if (Py_IS_NAN(x))
 | 
						|
        return x; /* log10(nan) = nan */
 | 
						|
    else if (x > 0.0)
 | 
						|
        return x; /* log10(inf) = inf */
 | 
						|
    else {
 | 
						|
        errno = EDOM;
 | 
						|
        return Py_NAN; /* log10(-inf) = nan */
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_gcd(PyObject *module, PyObject * const *args, Py_ssize_t nargs)
 | 
						|
{
 | 
						|
    PyObject *res, *x;
 | 
						|
    Py_ssize_t i;
 | 
						|
 | 
						|
    if (nargs == 0) {
 | 
						|
        return PyLong_FromLong(0);
 | 
						|
    }
 | 
						|
    res = PyNumber_Index(args[0]);
 | 
						|
    if (res == NULL) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    if (nargs == 1) {
 | 
						|
        Py_SETREF(res, PyNumber_Absolute(res));
 | 
						|
        return res;
 | 
						|
    }
 | 
						|
 | 
						|
    PyObject *one = _PyLong_GetOne();  // borrowed ref
 | 
						|
    for (i = 1; i < nargs; i++) {
 | 
						|
        x = _PyNumber_Index(args[i]);
 | 
						|
        if (x == NULL) {
 | 
						|
            Py_DECREF(res);
 | 
						|
            return NULL;
 | 
						|
        }
 | 
						|
        if (res == one) {
 | 
						|
            /* Fast path: just check arguments.
 | 
						|
               It is okay to use identity comparison here. */
 | 
						|
            Py_DECREF(x);
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
        Py_SETREF(res, _PyLong_GCD(res, x));
 | 
						|
        Py_DECREF(x);
 | 
						|
        if (res == NULL) {
 | 
						|
            return NULL;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(math_gcd_doc,
 | 
						|
"gcd($module, *integers)\n"
 | 
						|
"--\n"
 | 
						|
"\n"
 | 
						|
"Greatest Common Divisor.");
 | 
						|
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_lcm(PyObject *a, PyObject *b)
 | 
						|
{
 | 
						|
    PyObject *g, *m, *f, *ab;
 | 
						|
 | 
						|
    if (Py_SIZE(a) == 0 || Py_SIZE(b) == 0) {
 | 
						|
        return PyLong_FromLong(0);
 | 
						|
    }
 | 
						|
    g = _PyLong_GCD(a, b);
 | 
						|
    if (g == NULL) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    f = PyNumber_FloorDivide(a, g);
 | 
						|
    Py_DECREF(g);
 | 
						|
    if (f == NULL) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    m = PyNumber_Multiply(f, b);
 | 
						|
    Py_DECREF(f);
 | 
						|
    if (m == NULL) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    ab = PyNumber_Absolute(m);
 | 
						|
    Py_DECREF(m);
 | 
						|
    return ab;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_lcm(PyObject *module, PyObject * const *args, Py_ssize_t nargs)
 | 
						|
{
 | 
						|
    PyObject *res, *x;
 | 
						|
    Py_ssize_t i;
 | 
						|
 | 
						|
    if (nargs == 0) {
 | 
						|
        return PyLong_FromLong(1);
 | 
						|
    }
 | 
						|
    res = PyNumber_Index(args[0]);
 | 
						|
    if (res == NULL) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    if (nargs == 1) {
 | 
						|
        Py_SETREF(res, PyNumber_Absolute(res));
 | 
						|
        return res;
 | 
						|
    }
 | 
						|
 | 
						|
    PyObject *zero = _PyLong_GetZero();  // borrowed ref
 | 
						|
    for (i = 1; i < nargs; i++) {
 | 
						|
        x = PyNumber_Index(args[i]);
 | 
						|
        if (x == NULL) {
 | 
						|
            Py_DECREF(res);
 | 
						|
            return NULL;
 | 
						|
        }
 | 
						|
        if (res == zero) {
 | 
						|
            /* Fast path: just check arguments.
 | 
						|
               It is okay to use identity comparison here. */
 | 
						|
            Py_DECREF(x);
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
        Py_SETREF(res, long_lcm(res, x));
 | 
						|
        Py_DECREF(x);
 | 
						|
        if (res == NULL) {
 | 
						|
            return NULL;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
PyDoc_STRVAR(math_lcm_doc,
 | 
						|
"lcm($module, *integers)\n"
 | 
						|
"--\n"
 | 
						|
"\n"
 | 
						|
"Least Common Multiple.");
 | 
						|
 | 
						|
 | 
						|
/* Call is_error when errno != 0, and where x is the result libm
 | 
						|
 * returned.  is_error will usually set up an exception and return
 | 
						|
 * true (1), but may return false (0) without setting up an exception.
 | 
						|
 */
 | 
						|
static int
 | 
						|
is_error(double x)
 | 
						|
{
 | 
						|
    int result = 1;     /* presumption of guilt */
 | 
						|
    assert(errno);      /* non-zero errno is a precondition for calling */
 | 
						|
    if (errno == EDOM)
 | 
						|
        PyErr_SetString(PyExc_ValueError, "math domain error");
 | 
						|
 | 
						|
    else if (errno == ERANGE) {
 | 
						|
        /* ANSI C generally requires libm functions to set ERANGE
 | 
						|
         * on overflow, but also generally *allows* them to set
 | 
						|
         * ERANGE on underflow too.  There's no consistency about
 | 
						|
         * the latter across platforms.
 | 
						|
         * Alas, C99 never requires that errno be set.
 | 
						|
         * Here we suppress the underflow errors (libm functions
 | 
						|
         * should return a zero on underflow, and +- HUGE_VAL on
 | 
						|
         * overflow, so testing the result for zero suffices to
 | 
						|
         * distinguish the cases).
 | 
						|
         *
 | 
						|
         * On some platforms (Ubuntu/ia64) it seems that errno can be
 | 
						|
         * set to ERANGE for subnormal results that do *not* underflow
 | 
						|
         * to zero.  So to be safe, we'll ignore ERANGE whenever the
 | 
						|
         * function result is less than 1.5 in absolute value.
 | 
						|
         *
 | 
						|
         * bpo-46018: Changed to 1.5 to ensure underflows in expm1()
 | 
						|
         * are correctly detected, since the function may underflow
 | 
						|
         * toward -1.0 rather than 0.0.
 | 
						|
         */
 | 
						|
        if (fabs(x) < 1.5)
 | 
						|
            result = 0;
 | 
						|
        else
 | 
						|
            PyErr_SetString(PyExc_OverflowError,
 | 
						|
                            "math range error");
 | 
						|
    }
 | 
						|
    else
 | 
						|
        /* Unexpected math error */
 | 
						|
        PyErr_SetFromErrno(PyExc_ValueError);
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
   math_1 is used to wrap a libm function f that takes a double
 | 
						|
   argument and returns a double.
 | 
						|
 | 
						|
   The error reporting follows these rules, which are designed to do
 | 
						|
   the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
 | 
						|
   platforms.
 | 
						|
 | 
						|
   - a NaN result from non-NaN inputs causes ValueError to be raised
 | 
						|
   - an infinite result from finite inputs causes OverflowError to be
 | 
						|
     raised if can_overflow is 1, or raises ValueError if can_overflow
 | 
						|
     is 0.
 | 
						|
   - if the result is finite and errno == EDOM then ValueError is
 | 
						|
     raised
 | 
						|
   - if the result is finite and nonzero and errno == ERANGE then
 | 
						|
     OverflowError is raised
 | 
						|
 | 
						|
   The last rule is used to catch overflow on platforms which follow
 | 
						|
   C89 but for which HUGE_VAL is not an infinity.
 | 
						|
 | 
						|
   For the majority of one-argument functions these rules are enough
 | 
						|
   to ensure that Python's functions behave as specified in 'Annex F'
 | 
						|
   of the C99 standard, with the 'invalid' and 'divide-by-zero'
 | 
						|
   floating-point exceptions mapping to Python's ValueError and the
 | 
						|
   'overflow' floating-point exception mapping to OverflowError.
 | 
						|
   math_1 only works for functions that don't have singularities *and*
 | 
						|
   the possibility of overflow; fortunately, that covers everything we
 | 
						|
   care about right now.
 | 
						|
*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_1_to_whatever(PyObject *arg, double (*func) (double),
 | 
						|
                   PyObject *(*from_double_func) (double),
 | 
						|
                   int can_overflow)
 | 
						|
{
 | 
						|
    double x, r;
 | 
						|
    x = PyFloat_AsDouble(arg);
 | 
						|
    if (x == -1.0 && PyErr_Occurred())
 | 
						|
        return NULL;
 | 
						|
    errno = 0;
 | 
						|
    r = (*func)(x);
 | 
						|
    if (Py_IS_NAN(r) && !Py_IS_NAN(x)) {
 | 
						|
        PyErr_SetString(PyExc_ValueError,
 | 
						|
                        "math domain error"); /* invalid arg */
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    if (Py_IS_INFINITY(r) && Py_IS_FINITE(x)) {
 | 
						|
        if (can_overflow)
 | 
						|
            PyErr_SetString(PyExc_OverflowError,
 | 
						|
                            "math range error"); /* overflow */
 | 
						|
        else
 | 
						|
            PyErr_SetString(PyExc_ValueError,
 | 
						|
                            "math domain error"); /* singularity */
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    if (Py_IS_FINITE(r) && errno && is_error(r))
 | 
						|
        /* this branch unnecessary on most platforms */
 | 
						|
        return NULL;
 | 
						|
 | 
						|
    return (*from_double_func)(r);
 | 
						|
}
 | 
						|
 | 
						|
/* variant of math_1, to be used when the function being wrapped is known to
 | 
						|
   set errno properly (that is, errno = EDOM for invalid or divide-by-zero,
 | 
						|
   errno = ERANGE for overflow). */
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_1a(PyObject *arg, double (*func) (double))
 | 
						|
{
 | 
						|
    double x, r;
 | 
						|
    x = PyFloat_AsDouble(arg);
 | 
						|
    if (x == -1.0 && PyErr_Occurred())
 | 
						|
        return NULL;
 | 
						|
    errno = 0;
 | 
						|
    r = (*func)(x);
 | 
						|
    if (errno && is_error(r))
 | 
						|
        return NULL;
 | 
						|
    return PyFloat_FromDouble(r);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
   math_2 is used to wrap a libm function f that takes two double
 | 
						|
   arguments and returns a double.
 | 
						|
 | 
						|
   The error reporting follows these rules, which are designed to do
 | 
						|
   the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
 | 
						|
   platforms.
 | 
						|
 | 
						|
   - a NaN result from non-NaN inputs causes ValueError to be raised
 | 
						|
   - an infinite result from finite inputs causes OverflowError to be
 | 
						|
     raised.
 | 
						|
   - if the result is finite and errno == EDOM then ValueError is
 | 
						|
     raised
 | 
						|
   - if the result is finite and nonzero and errno == ERANGE then
 | 
						|
     OverflowError is raised
 | 
						|
 | 
						|
   The last rule is used to catch overflow on platforms which follow
 | 
						|
   C89 but for which HUGE_VAL is not an infinity.
 | 
						|
 | 
						|
   For most two-argument functions (copysign, fmod, hypot, atan2)
 | 
						|
   these rules are enough to ensure that Python's functions behave as
 | 
						|
   specified in 'Annex F' of the C99 standard, with the 'invalid' and
 | 
						|
   'divide-by-zero' floating-point exceptions mapping to Python's
 | 
						|
   ValueError and the 'overflow' floating-point exception mapping to
 | 
						|
   OverflowError.
 | 
						|
*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_1(PyObject *arg, double (*func) (double), int can_overflow)
 | 
						|
{
 | 
						|
    return math_1_to_whatever(arg, func, PyFloat_FromDouble, can_overflow);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_2(PyObject *const *args, Py_ssize_t nargs,
 | 
						|
       double (*func) (double, double), const char *funcname)
 | 
						|
{
 | 
						|
    double x, y, r;
 | 
						|
    if (!_PyArg_CheckPositional(funcname, nargs, 2, 2))
 | 
						|
        return NULL;
 | 
						|
    x = PyFloat_AsDouble(args[0]);
 | 
						|
    if (x == -1.0 && PyErr_Occurred()) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    y = PyFloat_AsDouble(args[1]);
 | 
						|
    if (y == -1.0 && PyErr_Occurred()) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    errno = 0;
 | 
						|
    r = (*func)(x, y);
 | 
						|
    if (Py_IS_NAN(r)) {
 | 
						|
        if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
 | 
						|
            errno = EDOM;
 | 
						|
        else
 | 
						|
            errno = 0;
 | 
						|
    }
 | 
						|
    else if (Py_IS_INFINITY(r)) {
 | 
						|
        if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
 | 
						|
            errno = ERANGE;
 | 
						|
        else
 | 
						|
            errno = 0;
 | 
						|
    }
 | 
						|
    if (errno && is_error(r))
 | 
						|
        return NULL;
 | 
						|
    else
 | 
						|
        return PyFloat_FromDouble(r);
 | 
						|
}
 | 
						|
 | 
						|
#define FUNC1(funcname, func, can_overflow, docstring)                  \
 | 
						|
    static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
 | 
						|
        return math_1(args, func, can_overflow);                            \
 | 
						|
    }\
 | 
						|
    PyDoc_STRVAR(math_##funcname##_doc, docstring);
 | 
						|
 | 
						|
#define FUNC1A(funcname, func, docstring)                               \
 | 
						|
    static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
 | 
						|
        return math_1a(args, func);                                     \
 | 
						|
    }\
 | 
						|
    PyDoc_STRVAR(math_##funcname##_doc, docstring);
 | 
						|
 | 
						|
#define FUNC2(funcname, func, docstring) \
 | 
						|
    static PyObject * math_##funcname(PyObject *self, PyObject *const *args, Py_ssize_t nargs) { \
 | 
						|
        return math_2(args, nargs, func, #funcname); \
 | 
						|
    }\
 | 
						|
    PyDoc_STRVAR(math_##funcname##_doc, docstring);
 | 
						|
 | 
						|
FUNC1(acos, acos, 0,
 | 
						|
      "acos($module, x, /)\n--\n\n"
 | 
						|
      "Return the arc cosine (measured in radians) of x.\n\n"
 | 
						|
      "The result is between 0 and pi.")
 | 
						|
FUNC1(acosh, acosh, 0,
 | 
						|
      "acosh($module, x, /)\n--\n\n"
 | 
						|
      "Return the inverse hyperbolic cosine of x.")
 | 
						|
FUNC1(asin, asin, 0,
 | 
						|
      "asin($module, x, /)\n--\n\n"
 | 
						|
      "Return the arc sine (measured in radians) of x.\n\n"
 | 
						|
      "The result is between -pi/2 and pi/2.")
 | 
						|
FUNC1(asinh, asinh, 0,
 | 
						|
      "asinh($module, x, /)\n--\n\n"
 | 
						|
      "Return the inverse hyperbolic sine of x.")
 | 
						|
FUNC1(atan, atan, 0,
 | 
						|
      "atan($module, x, /)\n--\n\n"
 | 
						|
      "Return the arc tangent (measured in radians) of x.\n\n"
 | 
						|
      "The result is between -pi/2 and pi/2.")
 | 
						|
FUNC2(atan2, m_atan2,
 | 
						|
      "atan2($module, y, x, /)\n--\n\n"
 | 
						|
      "Return the arc tangent (measured in radians) of y/x.\n\n"
 | 
						|
      "Unlike atan(y/x), the signs of both x and y are considered.")
 | 
						|
FUNC1(atanh, atanh, 0,
 | 
						|
      "atanh($module, x, /)\n--\n\n"
 | 
						|
      "Return the inverse hyperbolic tangent of x.")
 | 
						|
FUNC1(cbrt, cbrt, 0,
 | 
						|
      "cbrt($module, x, /)\n--\n\n"
 | 
						|
      "Return the cube root of x.")
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
math.ceil
 | 
						|
 | 
						|
    x as number: object
 | 
						|
    /
 | 
						|
 | 
						|
Return the ceiling of x as an Integral.
 | 
						|
 | 
						|
This is the smallest integer >= x.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_ceil(PyObject *module, PyObject *number)
 | 
						|
/*[clinic end generated code: output=6c3b8a78bc201c67 input=2725352806399cab]*/
 | 
						|
{
 | 
						|
    _Py_IDENTIFIER(__ceil__);
 | 
						|
 | 
						|
    if (!PyFloat_CheckExact(number)) {
 | 
						|
        PyObject *method = _PyObject_LookupSpecial(number, &PyId___ceil__);
 | 
						|
        if (method != NULL) {
 | 
						|
            PyObject *result = _PyObject_CallNoArgs(method);
 | 
						|
            Py_DECREF(method);
 | 
						|
            return result;
 | 
						|
        }
 | 
						|
        if (PyErr_Occurred())
 | 
						|
            return NULL;
 | 
						|
    }
 | 
						|
    double x = PyFloat_AsDouble(number);
 | 
						|
    if (x == -1.0 && PyErr_Occurred())
 | 
						|
        return NULL;
 | 
						|
 | 
						|
    return PyLong_FromDouble(ceil(x));
 | 
						|
}
 | 
						|
 | 
						|
FUNC2(copysign, copysign,
 | 
						|
      "copysign($module, x, y, /)\n--\n\n"
 | 
						|
       "Return a float with the magnitude (absolute value) of x but the sign of y.\n\n"
 | 
						|
      "On platforms that support signed zeros, copysign(1.0, -0.0)\n"
 | 
						|
      "returns -1.0.\n")
 | 
						|
FUNC1(cos, cos, 0,
 | 
						|
      "cos($module, x, /)\n--\n\n"
 | 
						|
      "Return the cosine of x (measured in radians).")
 | 
						|
FUNC1(cosh, cosh, 1,
 | 
						|
      "cosh($module, x, /)\n--\n\n"
 | 
						|
      "Return the hyperbolic cosine of x.")
 | 
						|
FUNC1A(erf, m_erf,
 | 
						|
       "erf($module, x, /)\n--\n\n"
 | 
						|
       "Error function at x.")
 | 
						|
FUNC1A(erfc, m_erfc,
 | 
						|
       "erfc($module, x, /)\n--\n\n"
 | 
						|
       "Complementary error function at x.")
 | 
						|
FUNC1(exp, exp, 1,
 | 
						|
      "exp($module, x, /)\n--\n\n"
 | 
						|
      "Return e raised to the power of x.")
 | 
						|
FUNC1(exp2, exp2, 1,
 | 
						|
      "exp2($module, x, /)\n--\n\n"
 | 
						|
      "Return 2 raised to the power of x.")
 | 
						|
FUNC1(expm1, expm1, 1,
 | 
						|
      "expm1($module, x, /)\n--\n\n"
 | 
						|
      "Return exp(x)-1.\n\n"
 | 
						|
      "This function avoids the loss of precision involved in the direct "
 | 
						|
      "evaluation of exp(x)-1 for small x.")
 | 
						|
FUNC1(fabs, fabs, 0,
 | 
						|
      "fabs($module, x, /)\n--\n\n"
 | 
						|
      "Return the absolute value of the float x.")
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
math.floor
 | 
						|
 | 
						|
    x as number: object
 | 
						|
    /
 | 
						|
 | 
						|
Return the floor of x as an Integral.
 | 
						|
 | 
						|
This is the largest integer <= x.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_floor(PyObject *module, PyObject *number)
 | 
						|
/*[clinic end generated code: output=c6a65c4884884b8a input=63af6b5d7ebcc3d6]*/
 | 
						|
{
 | 
						|
    double x;
 | 
						|
 | 
						|
    _Py_IDENTIFIER(__floor__);
 | 
						|
 | 
						|
    if (PyFloat_CheckExact(number)) {
 | 
						|
        x = PyFloat_AS_DOUBLE(number);
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        PyObject *method = _PyObject_LookupSpecial(number, &PyId___floor__);
 | 
						|
        if (method != NULL) {
 | 
						|
            PyObject *result = _PyObject_CallNoArgs(method);
 | 
						|
            Py_DECREF(method);
 | 
						|
            return result;
 | 
						|
        }
 | 
						|
        if (PyErr_Occurred())
 | 
						|
            return NULL;
 | 
						|
        x = PyFloat_AsDouble(number);
 | 
						|
        if (x == -1.0 && PyErr_Occurred())
 | 
						|
            return NULL;
 | 
						|
    }
 | 
						|
    return PyLong_FromDouble(floor(x));
 | 
						|
}
 | 
						|
 | 
						|
FUNC1A(gamma, m_tgamma,
 | 
						|
      "gamma($module, x, /)\n--\n\n"
 | 
						|
      "Gamma function at x.")
 | 
						|
FUNC1A(lgamma, m_lgamma,
 | 
						|
      "lgamma($module, x, /)\n--\n\n"
 | 
						|
      "Natural logarithm of absolute value of Gamma function at x.")
 | 
						|
FUNC1(log1p, m_log1p, 0,
 | 
						|
      "log1p($module, x, /)\n--\n\n"
 | 
						|
      "Return the natural logarithm of 1+x (base e).\n\n"
 | 
						|
      "The result is computed in a way which is accurate for x near zero.")
 | 
						|
FUNC2(remainder, m_remainder,
 | 
						|
      "remainder($module, x, y, /)\n--\n\n"
 | 
						|
      "Difference between x and the closest integer multiple of y.\n\n"
 | 
						|
      "Return x - n*y where n*y is the closest integer multiple of y.\n"
 | 
						|
      "In the case where x is exactly halfway between two multiples of\n"
 | 
						|
      "y, the nearest even value of n is used. The result is always exact.")
 | 
						|
FUNC1(sin, sin, 0,
 | 
						|
      "sin($module, x, /)\n--\n\n"
 | 
						|
      "Return the sine of x (measured in radians).")
 | 
						|
FUNC1(sinh, sinh, 1,
 | 
						|
      "sinh($module, x, /)\n--\n\n"
 | 
						|
      "Return the hyperbolic sine of x.")
 | 
						|
FUNC1(sqrt, sqrt, 0,
 | 
						|
      "sqrt($module, x, /)\n--\n\n"
 | 
						|
      "Return the square root of x.")
 | 
						|
FUNC1(tan, tan, 0,
 | 
						|
      "tan($module, x, /)\n--\n\n"
 | 
						|
      "Return the tangent of x (measured in radians).")
 | 
						|
FUNC1(tanh, tanh, 0,
 | 
						|
      "tanh($module, x, /)\n--\n\n"
 | 
						|
      "Return the hyperbolic tangent of x.")
 | 
						|
 | 
						|
/* Precision summation function as msum() by Raymond Hettinger in
 | 
						|
   <http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090>,
 | 
						|
   enhanced with the exact partials sum and roundoff from Mark
 | 
						|
   Dickinson's post at <http://bugs.python.org/file10357/msum4.py>.
 | 
						|
   See those links for more details, proofs and other references.
 | 
						|
 | 
						|
   Note 1: IEEE 754R floating point semantics are assumed,
 | 
						|
   but the current implementation does not re-establish special
 | 
						|
   value semantics across iterations (i.e. handling -Inf + Inf).
 | 
						|
 | 
						|
   Note 2:  No provision is made for intermediate overflow handling;
 | 
						|
   therefore, sum([1e+308, 1e-308, 1e+308]) returns 1e+308 while
 | 
						|
   sum([1e+308, 1e+308, 1e-308]) raises an OverflowError due to the
 | 
						|
   overflow of the first partial sum.
 | 
						|
 | 
						|
   Note 3: The intermediate values lo, yr, and hi are declared volatile so
 | 
						|
   aggressive compilers won't algebraically reduce lo to always be exactly 0.0.
 | 
						|
   Also, the volatile declaration forces the values to be stored in memory as
 | 
						|
   regular doubles instead of extended long precision (80-bit) values.  This
 | 
						|
   prevents double rounding because any addition or subtraction of two doubles
 | 
						|
   can be resolved exactly into double-sized hi and lo values.  As long as the
 | 
						|
   hi value gets forced into a double before yr and lo are computed, the extra
 | 
						|
   bits in downstream extended precision operations (x87 for example) will be
 | 
						|
   exactly zero and therefore can be losslessly stored back into a double,
 | 
						|
   thereby preventing double rounding.
 | 
						|
 | 
						|
   Note 4: A similar implementation is in Modules/cmathmodule.c.
 | 
						|
   Be sure to update both when making changes.
 | 
						|
 | 
						|
   Note 5: The signature of math.fsum() differs from builtins.sum()
 | 
						|
   because the start argument doesn't make sense in the context of
 | 
						|
   accurate summation.  Since the partials table is collapsed before
 | 
						|
   returning a result, sum(seq2, start=sum(seq1)) may not equal the
 | 
						|
   accurate result returned by sum(itertools.chain(seq1, seq2)).
 | 
						|
*/
 | 
						|
 | 
						|
#define NUM_PARTIALS  32  /* initial partials array size, on stack */
 | 
						|
 | 
						|
/* Extend the partials array p[] by doubling its size. */
 | 
						|
static int                          /* non-zero on error */
 | 
						|
_fsum_realloc(double **p_ptr, Py_ssize_t  n,
 | 
						|
             double  *ps,    Py_ssize_t *m_ptr)
 | 
						|
{
 | 
						|
    void *v = NULL;
 | 
						|
    Py_ssize_t m = *m_ptr;
 | 
						|
 | 
						|
    m += m;  /* double */
 | 
						|
    if (n < m && (size_t)m < ((size_t)PY_SSIZE_T_MAX / sizeof(double))) {
 | 
						|
        double *p = *p_ptr;
 | 
						|
        if (p == ps) {
 | 
						|
            v = PyMem_Malloc(sizeof(double) * m);
 | 
						|
            if (v != NULL)
 | 
						|
                memcpy(v, ps, sizeof(double) * n);
 | 
						|
        }
 | 
						|
        else
 | 
						|
            v = PyMem_Realloc(p, sizeof(double) * m);
 | 
						|
    }
 | 
						|
    if (v == NULL) {        /* size overflow or no memory */
 | 
						|
        PyErr_SetString(PyExc_MemoryError, "math.fsum partials");
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
    *p_ptr = (double*) v;
 | 
						|
    *m_ptr = m;
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Full precision summation of a sequence of floats.
 | 
						|
 | 
						|
   def msum(iterable):
 | 
						|
       partials = []  # sorted, non-overlapping partial sums
 | 
						|
       for x in iterable:
 | 
						|
           i = 0
 | 
						|
           for y in partials:
 | 
						|
               if abs(x) < abs(y):
 | 
						|
                   x, y = y, x
 | 
						|
               hi = x + y
 | 
						|
               lo = y - (hi - x)
 | 
						|
               if lo:
 | 
						|
                   partials[i] = lo
 | 
						|
                   i += 1
 | 
						|
               x = hi
 | 
						|
           partials[i:] = [x]
 | 
						|
       return sum_exact(partials)
 | 
						|
 | 
						|
   Rounded x+y stored in hi with the roundoff stored in lo.  Together hi+lo
 | 
						|
   are exactly equal to x+y.  The inner loop applies hi/lo summation to each
 | 
						|
   partial so that the list of partial sums remains exact.
 | 
						|
 | 
						|
   Sum_exact() adds the partial sums exactly and correctly rounds the final
 | 
						|
   result (using the round-half-to-even rule).  The items in partials remain
 | 
						|
   non-zero, non-special, non-overlapping and strictly increasing in
 | 
						|
   magnitude, but possibly not all having the same sign.
 | 
						|
 | 
						|
   Depends on IEEE 754 arithmetic guarantees and half-even rounding.
 | 
						|
*/
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
math.fsum
 | 
						|
 | 
						|
    seq: object
 | 
						|
    /
 | 
						|
 | 
						|
Return an accurate floating point sum of values in the iterable seq.
 | 
						|
 | 
						|
Assumes IEEE-754 floating point arithmetic.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_fsum(PyObject *module, PyObject *seq)
 | 
						|
/*[clinic end generated code: output=ba5c672b87fe34fc input=c51b7d8caf6f6e82]*/
 | 
						|
{
 | 
						|
    PyObject *item, *iter, *sum = NULL;
 | 
						|
    Py_ssize_t i, j, n = 0, m = NUM_PARTIALS;
 | 
						|
    double x, y, t, ps[NUM_PARTIALS], *p = ps;
 | 
						|
    double xsave, special_sum = 0.0, inf_sum = 0.0;
 | 
						|
    volatile double hi, yr, lo;
 | 
						|
 | 
						|
    iter = PyObject_GetIter(seq);
 | 
						|
    if (iter == NULL)
 | 
						|
        return NULL;
 | 
						|
 | 
						|
    for(;;) {           /* for x in iterable */
 | 
						|
        assert(0 <= n && n <= m);
 | 
						|
        assert((m == NUM_PARTIALS && p == ps) ||
 | 
						|
               (m >  NUM_PARTIALS && p != NULL));
 | 
						|
 | 
						|
        item = PyIter_Next(iter);
 | 
						|
        if (item == NULL) {
 | 
						|
            if (PyErr_Occurred())
 | 
						|
                goto _fsum_error;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        ASSIGN_DOUBLE(x, item, error_with_item);
 | 
						|
        Py_DECREF(item);
 | 
						|
 | 
						|
        xsave = x;
 | 
						|
        for (i = j = 0; j < n; j++) {       /* for y in partials */
 | 
						|
            y = p[j];
 | 
						|
            if (fabs(x) < fabs(y)) {
 | 
						|
                t = x; x = y; y = t;
 | 
						|
            }
 | 
						|
            hi = x + y;
 | 
						|
            yr = hi - x;
 | 
						|
            lo = y - yr;
 | 
						|
            if (lo != 0.0)
 | 
						|
                p[i++] = lo;
 | 
						|
            x = hi;
 | 
						|
        }
 | 
						|
 | 
						|
        n = i;                              /* ps[i:] = [x] */
 | 
						|
        if (x != 0.0) {
 | 
						|
            if (! Py_IS_FINITE(x)) {
 | 
						|
                /* a nonfinite x could arise either as
 | 
						|
                   a result of intermediate overflow, or
 | 
						|
                   as a result of a nan or inf in the
 | 
						|
                   summands */
 | 
						|
                if (Py_IS_FINITE(xsave)) {
 | 
						|
                    PyErr_SetString(PyExc_OverflowError,
 | 
						|
                          "intermediate overflow in fsum");
 | 
						|
                    goto _fsum_error;
 | 
						|
                }
 | 
						|
                if (Py_IS_INFINITY(xsave))
 | 
						|
                    inf_sum += xsave;
 | 
						|
                special_sum += xsave;
 | 
						|
                /* reset partials */
 | 
						|
                n = 0;
 | 
						|
            }
 | 
						|
            else if (n >= m && _fsum_realloc(&p, n, ps, &m))
 | 
						|
                goto _fsum_error;
 | 
						|
            else
 | 
						|
                p[n++] = x;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (special_sum != 0.0) {
 | 
						|
        if (Py_IS_NAN(inf_sum))
 | 
						|
            PyErr_SetString(PyExc_ValueError,
 | 
						|
                            "-inf + inf in fsum");
 | 
						|
        else
 | 
						|
            sum = PyFloat_FromDouble(special_sum);
 | 
						|
        goto _fsum_error;
 | 
						|
    }
 | 
						|
 | 
						|
    hi = 0.0;
 | 
						|
    if (n > 0) {
 | 
						|
        hi = p[--n];
 | 
						|
        /* sum_exact(ps, hi) from the top, stop when the sum becomes
 | 
						|
           inexact. */
 | 
						|
        while (n > 0) {
 | 
						|
            x = hi;
 | 
						|
            y = p[--n];
 | 
						|
            assert(fabs(y) < fabs(x));
 | 
						|
            hi = x + y;
 | 
						|
            yr = hi - x;
 | 
						|
            lo = y - yr;
 | 
						|
            if (lo != 0.0)
 | 
						|
                break;
 | 
						|
        }
 | 
						|
        /* Make half-even rounding work across multiple partials.
 | 
						|
           Needed so that sum([1e-16, 1, 1e16]) will round-up the last
 | 
						|
           digit to two instead of down to zero (the 1e-16 makes the 1
 | 
						|
           slightly closer to two).  With a potential 1 ULP rounding
 | 
						|
           error fixed-up, math.fsum() can guarantee commutativity. */
 | 
						|
        if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) ||
 | 
						|
                      (lo > 0.0 && p[n-1] > 0.0))) {
 | 
						|
            y = lo * 2.0;
 | 
						|
            x = hi + y;
 | 
						|
            yr = x - hi;
 | 
						|
            if (y == yr)
 | 
						|
                hi = x;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    sum = PyFloat_FromDouble(hi);
 | 
						|
 | 
						|
  _fsum_error:
 | 
						|
    Py_DECREF(iter);
 | 
						|
    if (p != ps)
 | 
						|
        PyMem_Free(p);
 | 
						|
    return sum;
 | 
						|
 | 
						|
  error_with_item:
 | 
						|
    Py_DECREF(item);
 | 
						|
    goto _fsum_error;
 | 
						|
}
 | 
						|
 | 
						|
#undef NUM_PARTIALS
 | 
						|
 | 
						|
 | 
						|
static unsigned long
 | 
						|
count_set_bits(unsigned long n)
 | 
						|
{
 | 
						|
    unsigned long count = 0;
 | 
						|
    while (n != 0) {
 | 
						|
        ++count;
 | 
						|
        n &= n - 1; /* clear least significant bit */
 | 
						|
    }
 | 
						|
    return count;
 | 
						|
}
 | 
						|
 | 
						|
/* Integer square root
 | 
						|
 | 
						|
Given a nonnegative integer `n`, we want to compute the largest integer
 | 
						|
`a` for which `a * a <= n`, or equivalently the integer part of the exact
 | 
						|
square root of `n`.
 | 
						|
 | 
						|
We use an adaptive-precision pure-integer version of Newton's iteration. Given
 | 
						|
a positive integer `n`, the algorithm produces at each iteration an integer
 | 
						|
approximation `a` to the square root of `n >> s` for some even integer `s`,
 | 
						|
with `s` decreasing as the iterations progress. On the final iteration, `s` is
 | 
						|
zero and we have an approximation to the square root of `n` itself.
 | 
						|
 | 
						|
At every step, the approximation `a` is strictly within 1.0 of the true square
 | 
						|
root, so we have
 | 
						|
 | 
						|
    (a - 1)**2 < (n >> s) < (a + 1)**2
 | 
						|
 | 
						|
After the final iteration, a check-and-correct step is needed to determine
 | 
						|
whether `a` or `a - 1` gives the desired integer square root of `n`.
 | 
						|
 | 
						|
The algorithm is remarkable in its simplicity. There's no need for a
 | 
						|
per-iteration check-and-correct step, and termination is straightforward: the
 | 
						|
number of iterations is known in advance (it's exactly `floor(log2(log2(n)))`
 | 
						|
for `n > 1`). The only tricky part of the correctness proof is in establishing
 | 
						|
that the bound `(a - 1)**2 < (n >> s) < (a + 1)**2` is maintained from one
 | 
						|
iteration to the next. A sketch of the proof of this is given below.
 | 
						|
 | 
						|
In addition to the proof sketch, a formal, computer-verified proof
 | 
						|
of correctness (using Lean) of an equivalent recursive algorithm can be found
 | 
						|
here:
 | 
						|
 | 
						|
    https://github.com/mdickinson/snippets/blob/master/proofs/isqrt/src/isqrt.lean
 | 
						|
 | 
						|
 | 
						|
Here's Python code equivalent to the C implementation below:
 | 
						|
 | 
						|
    def isqrt(n):
 | 
						|
        """
 | 
						|
        Return the integer part of the square root of the input.
 | 
						|
        """
 | 
						|
        n = operator.index(n)
 | 
						|
 | 
						|
        if n < 0:
 | 
						|
            raise ValueError("isqrt() argument must be nonnegative")
 | 
						|
        if n == 0:
 | 
						|
            return 0
 | 
						|
 | 
						|
        c = (n.bit_length() - 1) // 2
 | 
						|
        a = 1
 | 
						|
        d = 0
 | 
						|
        for s in reversed(range(c.bit_length())):
 | 
						|
            # Loop invariant: (a-1)**2 < (n >> 2*(c - d)) < (a+1)**2
 | 
						|
            e = d
 | 
						|
            d = c >> s
 | 
						|
            a = (a << d - e - 1) + (n >> 2*c - e - d + 1) // a
 | 
						|
 | 
						|
        return a - (a*a > n)
 | 
						|
 | 
						|
 | 
						|
Sketch of proof of correctness
 | 
						|
------------------------------
 | 
						|
 | 
						|
The delicate part of the correctness proof is showing that the loop invariant
 | 
						|
is preserved from one iteration to the next. That is, just before the line
 | 
						|
 | 
						|
    a = (a << d - e - 1) + (n >> 2*c - e - d + 1) // a
 | 
						|
 | 
						|
is executed in the above code, we know that
 | 
						|
 | 
						|
    (1)  (a - 1)**2 < (n >> 2*(c - e)) < (a + 1)**2.
 | 
						|
 | 
						|
(since `e` is always the value of `d` from the previous iteration). We must
 | 
						|
prove that after that line is executed, we have
 | 
						|
 | 
						|
    (a - 1)**2 < (n >> 2*(c - d)) < (a + 1)**2
 | 
						|
 | 
						|
To facilitate the proof, we make some changes of notation. Write `m` for
 | 
						|
`n >> 2*(c-d)`, and write `b` for the new value of `a`, so
 | 
						|
 | 
						|
    b = (a << d - e - 1) + (n >> 2*c - e - d + 1) // a
 | 
						|
 | 
						|
or equivalently:
 | 
						|
 | 
						|
    (2)  b = (a << d - e - 1) + (m >> d - e + 1) // a
 | 
						|
 | 
						|
Then we can rewrite (1) as:
 | 
						|
 | 
						|
    (3)  (a - 1)**2 < (m >> 2*(d - e)) < (a + 1)**2
 | 
						|
 | 
						|
and we must show that (b - 1)**2 < m < (b + 1)**2.
 | 
						|
 | 
						|
From this point on, we switch to mathematical notation, so `/` means exact
 | 
						|
division rather than integer division and `^` is used for exponentiation. We
 | 
						|
use the `√` symbol for the exact square root. In (3), we can remove the
 | 
						|
implicit floor operation to give:
 | 
						|
 | 
						|
    (4)  (a - 1)^2 < m / 4^(d - e) < (a + 1)^2
 | 
						|
 | 
						|
Taking square roots throughout (4), scaling by `2^(d-e)`, and rearranging gives
 | 
						|
 | 
						|
    (5)  0 <= | 2^(d-e)a - √m | < 2^(d-e)
 | 
						|
 | 
						|
Squaring and dividing through by `2^(d-e+1) a` gives
 | 
						|
 | 
						|
    (6)  0 <= 2^(d-e-1) a + m / (2^(d-e+1) a) - √m < 2^(d-e-1) / a
 | 
						|
 | 
						|
We'll show below that `2^(d-e-1) <= a`. Given that, we can replace the
 | 
						|
right-hand side of (6) with `1`, and now replacing the central
 | 
						|
term `m / (2^(d-e+1) a)` with its floor in (6) gives
 | 
						|
 | 
						|
    (7) -1 < 2^(d-e-1) a + m // 2^(d-e+1) a - √m < 1
 | 
						|
 | 
						|
Or equivalently, from (2):
 | 
						|
 | 
						|
    (7) -1 < b - √m < 1
 | 
						|
 | 
						|
and rearranging gives that `(b-1)^2 < m < (b+1)^2`, which is what we needed
 | 
						|
to prove.
 | 
						|
 | 
						|
We're not quite done: we still have to prove the inequality `2^(d - e - 1) <=
 | 
						|
a` that was used to get line (7) above. From the definition of `c`, we have
 | 
						|
`4^c <= n`, which implies
 | 
						|
 | 
						|
    (8)  4^d <= m
 | 
						|
 | 
						|
also, since `e == d >> 1`, `d` is at most `2e + 1`, from which it follows
 | 
						|
that `2d - 2e - 1 <= d` and hence that
 | 
						|
 | 
						|
    (9)  4^(2d - 2e - 1) <= m
 | 
						|
 | 
						|
Dividing both sides by `4^(d - e)` gives
 | 
						|
 | 
						|
    (10)  4^(d - e - 1) <= m / 4^(d - e)
 | 
						|
 | 
						|
But we know from (4) that `m / 4^(d-e) < (a + 1)^2`, hence
 | 
						|
 | 
						|
    (11)  4^(d - e - 1) < (a + 1)^2
 | 
						|
 | 
						|
Now taking square roots of both sides and observing that both `2^(d-e-1)` and
 | 
						|
`a` are integers gives `2^(d - e - 1) <= a`, which is what we needed. This
 | 
						|
completes the proof sketch.
 | 
						|
 | 
						|
*/
 | 
						|
 | 
						|
/*
 | 
						|
    The _approximate_isqrt_tab table provides approximate square roots for
 | 
						|
    16-bit integers. For any n in the range 2**14 <= n < 2**16, the value
 | 
						|
 | 
						|
        a = _approximate_isqrt_tab[(n >> 8) - 64]
 | 
						|
 | 
						|
    is an approximate square root of n, satisfying (a - 1)**2 < n < (a + 1)**2.
 | 
						|
 | 
						|
    The table was computed in Python using the expression:
 | 
						|
 | 
						|
        [min(round(sqrt(256*n + 128)), 255) for n in range(64, 256)]
 | 
						|
*/
 | 
						|
 | 
						|
static const uint8_t _approximate_isqrt_tab[192] = {
 | 
						|
    128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139,
 | 
						|
    140, 141, 142, 143, 144, 144, 145, 146, 147, 148, 149, 150,
 | 
						|
    151, 151, 152, 153, 154, 155, 156, 156, 157, 158, 159, 160,
 | 
						|
    160, 161, 162, 163, 164, 164, 165, 166, 167, 167, 168, 169,
 | 
						|
    170, 170, 171, 172, 173, 173, 174, 175, 176, 176, 177, 178,
 | 
						|
    179, 179, 180, 181, 181, 182, 183, 183, 184, 185, 186, 186,
 | 
						|
    187, 188, 188, 189, 190, 190, 191, 192, 192, 193, 194, 194,
 | 
						|
    195, 196, 196, 197, 198, 198, 199, 200, 200, 201, 201, 202,
 | 
						|
    203, 203, 204, 205, 205, 206, 206, 207, 208, 208, 209, 210,
 | 
						|
    210, 211, 211, 212, 213, 213, 214, 214, 215, 216, 216, 217,
 | 
						|
    217, 218, 219, 219, 220, 220, 221, 221, 222, 223, 223, 224,
 | 
						|
    224, 225, 225, 226, 227, 227, 228, 228, 229, 229, 230, 230,
 | 
						|
    231, 232, 232, 233, 233, 234, 234, 235, 235, 236, 237, 237,
 | 
						|
    238, 238, 239, 239, 240, 240, 241, 241, 242, 242, 243, 243,
 | 
						|
    244, 244, 245, 246, 246, 247, 247, 248, 248, 249, 249, 250,
 | 
						|
    250, 251, 251, 252, 252, 253, 253, 254, 254, 255, 255, 255,
 | 
						|
};
 | 
						|
 | 
						|
/* Approximate square root of a large 64-bit integer.
 | 
						|
 | 
						|
   Given `n` satisfying `2**62 <= n < 2**64`, return `a`
 | 
						|
   satisfying `(a - 1)**2 < n < (a + 1)**2`. */
 | 
						|
 | 
						|
static inline uint32_t
 | 
						|
_approximate_isqrt(uint64_t n)
 | 
						|
{
 | 
						|
    uint32_t u = _approximate_isqrt_tab[(n >> 56) - 64];
 | 
						|
    u = (u << 7) + (uint32_t)(n >> 41) / u;
 | 
						|
    return (u << 15) + (uint32_t)((n >> 17) / u);
 | 
						|
}
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
math.isqrt
 | 
						|
 | 
						|
    n: object
 | 
						|
    /
 | 
						|
 | 
						|
Return the integer part of the square root of the input.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_isqrt(PyObject *module, PyObject *n)
 | 
						|
/*[clinic end generated code: output=35a6f7f980beab26 input=5b6e7ae4fa6c43d6]*/
 | 
						|
{
 | 
						|
    int a_too_large, c_bit_length;
 | 
						|
    size_t c, d;
 | 
						|
    uint64_t m;
 | 
						|
    uint32_t u;
 | 
						|
    PyObject *a = NULL, *b;
 | 
						|
 | 
						|
    n = _PyNumber_Index(n);
 | 
						|
    if (n == NULL) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    if (_PyLong_Sign(n) < 0) {
 | 
						|
        PyErr_SetString(
 | 
						|
            PyExc_ValueError,
 | 
						|
            "isqrt() argument must be nonnegative");
 | 
						|
        goto error;
 | 
						|
    }
 | 
						|
    if (_PyLong_Sign(n) == 0) {
 | 
						|
        Py_DECREF(n);
 | 
						|
        return PyLong_FromLong(0);
 | 
						|
    }
 | 
						|
 | 
						|
    /* c = (n.bit_length() - 1) // 2 */
 | 
						|
    c = _PyLong_NumBits(n);
 | 
						|
    if (c == (size_t)(-1)) {
 | 
						|
        goto error;
 | 
						|
    }
 | 
						|
    c = (c - 1U) / 2U;
 | 
						|
 | 
						|
    /* Fast path: if c <= 31 then n < 2**64 and we can compute directly with a
 | 
						|
       fast, almost branch-free algorithm. */
 | 
						|
    if (c <= 31U) {
 | 
						|
        int shift = 31 - (int)c;
 | 
						|
        m = (uint64_t)PyLong_AsUnsignedLongLong(n);
 | 
						|
        Py_DECREF(n);
 | 
						|
        if (m == (uint64_t)(-1) && PyErr_Occurred()) {
 | 
						|
            return NULL;
 | 
						|
        }
 | 
						|
        u = _approximate_isqrt(m << 2*shift) >> shift;
 | 
						|
        u -= (uint64_t)u * u > m;
 | 
						|
        return PyLong_FromUnsignedLong(u);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Slow path: n >= 2**64. We perform the first five iterations in C integer
 | 
						|
       arithmetic, then switch to using Python long integers. */
 | 
						|
 | 
						|
    /* From n >= 2**64 it follows that c.bit_length() >= 6. */
 | 
						|
    c_bit_length = 6;
 | 
						|
    while ((c >> c_bit_length) > 0U) {
 | 
						|
        ++c_bit_length;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Initialise d and a. */
 | 
						|
    d = c >> (c_bit_length - 5);
 | 
						|
    b = _PyLong_Rshift(n, 2U*c - 62U);
 | 
						|
    if (b == NULL) {
 | 
						|
        goto error;
 | 
						|
    }
 | 
						|
    m = (uint64_t)PyLong_AsUnsignedLongLong(b);
 | 
						|
    Py_DECREF(b);
 | 
						|
    if (m == (uint64_t)(-1) && PyErr_Occurred()) {
 | 
						|
        goto error;
 | 
						|
    }
 | 
						|
    u = _approximate_isqrt(m) >> (31U - d);
 | 
						|
    a = PyLong_FromUnsignedLong(u);
 | 
						|
    if (a == NULL) {
 | 
						|
        goto error;
 | 
						|
    }
 | 
						|
 | 
						|
    for (int s = c_bit_length - 6; s >= 0; --s) {
 | 
						|
        PyObject *q;
 | 
						|
        size_t e = d;
 | 
						|
 | 
						|
        d = c >> s;
 | 
						|
 | 
						|
        /* q = (n >> 2*c - e - d + 1) // a */
 | 
						|
        q = _PyLong_Rshift(n, 2U*c - d - e + 1U);
 | 
						|
        if (q == NULL) {
 | 
						|
            goto error;
 | 
						|
        }
 | 
						|
        Py_SETREF(q, PyNumber_FloorDivide(q, a));
 | 
						|
        if (q == NULL) {
 | 
						|
            goto error;
 | 
						|
        }
 | 
						|
 | 
						|
        /* a = (a << d - 1 - e) + q */
 | 
						|
        Py_SETREF(a, _PyLong_Lshift(a, d - 1U - e));
 | 
						|
        if (a == NULL) {
 | 
						|
            Py_DECREF(q);
 | 
						|
            goto error;
 | 
						|
        }
 | 
						|
        Py_SETREF(a, PyNumber_Add(a, q));
 | 
						|
        Py_DECREF(q);
 | 
						|
        if (a == NULL) {
 | 
						|
            goto error;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* The correct result is either a or a - 1. Figure out which, and
 | 
						|
       decrement a if necessary. */
 | 
						|
 | 
						|
    /* a_too_large = n < a * a */
 | 
						|
    b = PyNumber_Multiply(a, a);
 | 
						|
    if (b == NULL) {
 | 
						|
        goto error;
 | 
						|
    }
 | 
						|
    a_too_large = PyObject_RichCompareBool(n, b, Py_LT);
 | 
						|
    Py_DECREF(b);
 | 
						|
    if (a_too_large == -1) {
 | 
						|
        goto error;
 | 
						|
    }
 | 
						|
 | 
						|
    if (a_too_large) {
 | 
						|
        Py_SETREF(a, PyNumber_Subtract(a, _PyLong_GetOne()));
 | 
						|
    }
 | 
						|
    Py_DECREF(n);
 | 
						|
    return a;
 | 
						|
 | 
						|
  error:
 | 
						|
    Py_XDECREF(a);
 | 
						|
    Py_DECREF(n);
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/* Divide-and-conquer factorial algorithm
 | 
						|
 *
 | 
						|
 * Based on the formula and pseudo-code provided at:
 | 
						|
 * http://www.luschny.de/math/factorial/binarysplitfact.html
 | 
						|
 *
 | 
						|
 * Faster algorithms exist, but they're more complicated and depend on
 | 
						|
 * a fast prime factorization algorithm.
 | 
						|
 *
 | 
						|
 * Notes on the algorithm
 | 
						|
 * ----------------------
 | 
						|
 *
 | 
						|
 * factorial(n) is written in the form 2**k * m, with m odd.  k and m are
 | 
						|
 * computed separately, and then combined using a left shift.
 | 
						|
 *
 | 
						|
 * The function factorial_odd_part computes the odd part m (i.e., the greatest
 | 
						|
 * odd divisor) of factorial(n), using the formula:
 | 
						|
 *
 | 
						|
 *   factorial_odd_part(n) =
 | 
						|
 *
 | 
						|
 *        product_{i >= 0} product_{0 < j <= n / 2**i, j odd} j
 | 
						|
 *
 | 
						|
 * Example: factorial_odd_part(20) =
 | 
						|
 *
 | 
						|
 *        (1) *
 | 
						|
 *        (1) *
 | 
						|
 *        (1 * 3 * 5) *
 | 
						|
 *        (1 * 3 * 5 * 7 * 9) *
 | 
						|
 *        (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19)
 | 
						|
 *
 | 
						|
 * Here i goes from large to small: the first term corresponds to i=4 (any
 | 
						|
 * larger i gives an empty product), and the last term corresponds to i=0.
 | 
						|
 * Each term can be computed from the last by multiplying by the extra odd
 | 
						|
 * numbers required: e.g., to get from the penultimate term to the last one,
 | 
						|
 * we multiply by (11 * 13 * 15 * 17 * 19).
 | 
						|
 *
 | 
						|
 * To see a hint of why this formula works, here are the same numbers as above
 | 
						|
 * but with the even parts (i.e., the appropriate powers of 2) included.  For
 | 
						|
 * each subterm in the product for i, we multiply that subterm by 2**i:
 | 
						|
 *
 | 
						|
 *   factorial(20) =
 | 
						|
 *
 | 
						|
 *        (16) *
 | 
						|
 *        (8) *
 | 
						|
 *        (4 * 12 * 20) *
 | 
						|
 *        (2 * 6 * 10 * 14 * 18) *
 | 
						|
 *        (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19)
 | 
						|
 *
 | 
						|
 * The factorial_partial_product function computes the product of all odd j in
 | 
						|
 * range(start, stop) for given start and stop.  It's used to compute the
 | 
						|
 * partial products like (11 * 13 * 15 * 17 * 19) in the example above.  It
 | 
						|
 * operates recursively, repeatedly splitting the range into two roughly equal
 | 
						|
 * pieces until the subranges are small enough to be computed using only C
 | 
						|
 * integer arithmetic.
 | 
						|
 *
 | 
						|
 * The two-valuation k (i.e., the exponent of the largest power of 2 dividing
 | 
						|
 * the factorial) is computed independently in the main math_factorial
 | 
						|
 * function.  By standard results, its value is:
 | 
						|
 *
 | 
						|
 *    two_valuation = n//2 + n//4 + n//8 + ....
 | 
						|
 *
 | 
						|
 * It can be shown (e.g., by complete induction on n) that two_valuation is
 | 
						|
 * equal to n - count_set_bits(n), where count_set_bits(n) gives the number of
 | 
						|
 * '1'-bits in the binary expansion of n.
 | 
						|
 */
 | 
						|
 | 
						|
/* factorial_partial_product: Compute product(range(start, stop, 2)) using
 | 
						|
 * divide and conquer.  Assumes start and stop are odd and stop > start.
 | 
						|
 * max_bits must be >= bit_length(stop - 2). */
 | 
						|
 | 
						|
static PyObject *
 | 
						|
factorial_partial_product(unsigned long start, unsigned long stop,
 | 
						|
                          unsigned long max_bits)
 | 
						|
{
 | 
						|
    unsigned long midpoint, num_operands;
 | 
						|
    PyObject *left = NULL, *right = NULL, *result = NULL;
 | 
						|
 | 
						|
    /* If the return value will fit an unsigned long, then we can
 | 
						|
     * multiply in a tight, fast loop where each multiply is O(1).
 | 
						|
     * Compute an upper bound on the number of bits required to store
 | 
						|
     * the answer.
 | 
						|
     *
 | 
						|
     * Storing some integer z requires floor(lg(z))+1 bits, which is
 | 
						|
     * conveniently the value returned by bit_length(z).  The
 | 
						|
     * product x*y will require at most
 | 
						|
     * bit_length(x) + bit_length(y) bits to store, based
 | 
						|
     * on the idea that lg product = lg x + lg y.
 | 
						|
     *
 | 
						|
     * We know that stop - 2 is the largest number to be multiplied.  From
 | 
						|
     * there, we have: bit_length(answer) <= num_operands *
 | 
						|
     * bit_length(stop - 2)
 | 
						|
     */
 | 
						|
 | 
						|
    num_operands = (stop - start) / 2;
 | 
						|
    /* The "num_operands <= 8 * SIZEOF_LONG" check guards against the
 | 
						|
     * unlikely case of an overflow in num_operands * max_bits. */
 | 
						|
    if (num_operands <= 8 * SIZEOF_LONG &&
 | 
						|
        num_operands * max_bits <= 8 * SIZEOF_LONG) {
 | 
						|
        unsigned long j, total;
 | 
						|
        for (total = start, j = start + 2; j < stop; j += 2)
 | 
						|
            total *= j;
 | 
						|
        return PyLong_FromUnsignedLong(total);
 | 
						|
    }
 | 
						|
 | 
						|
    /* find midpoint of range(start, stop), rounded up to next odd number. */
 | 
						|
    midpoint = (start + num_operands) | 1;
 | 
						|
    left = factorial_partial_product(start, midpoint,
 | 
						|
                                     _Py_bit_length(midpoint - 2));
 | 
						|
    if (left == NULL)
 | 
						|
        goto error;
 | 
						|
    right = factorial_partial_product(midpoint, stop, max_bits);
 | 
						|
    if (right == NULL)
 | 
						|
        goto error;
 | 
						|
    result = PyNumber_Multiply(left, right);
 | 
						|
 | 
						|
  error:
 | 
						|
    Py_XDECREF(left);
 | 
						|
    Py_XDECREF(right);
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
/* factorial_odd_part:  compute the odd part of factorial(n). */
 | 
						|
 | 
						|
static PyObject *
 | 
						|
factorial_odd_part(unsigned long n)
 | 
						|
{
 | 
						|
    long i;
 | 
						|
    unsigned long v, lower, upper;
 | 
						|
    PyObject *partial, *tmp, *inner, *outer;
 | 
						|
 | 
						|
    inner = PyLong_FromLong(1);
 | 
						|
    if (inner == NULL)
 | 
						|
        return NULL;
 | 
						|
    outer = inner;
 | 
						|
    Py_INCREF(outer);
 | 
						|
 | 
						|
    upper = 3;
 | 
						|
    for (i = _Py_bit_length(n) - 2; i >= 0; i--) {
 | 
						|
        v = n >> i;
 | 
						|
        if (v <= 2)
 | 
						|
            continue;
 | 
						|
        lower = upper;
 | 
						|
        /* (v + 1) | 1 = least odd integer strictly larger than n / 2**i */
 | 
						|
        upper = (v + 1) | 1;
 | 
						|
        /* Here inner is the product of all odd integers j in the range (0,
 | 
						|
           n/2**(i+1)].  The factorial_partial_product call below gives the
 | 
						|
           product of all odd integers j in the range (n/2**(i+1), n/2**i]. */
 | 
						|
        partial = factorial_partial_product(lower, upper, _Py_bit_length(upper-2));
 | 
						|
        /* inner *= partial */
 | 
						|
        if (partial == NULL)
 | 
						|
            goto error;
 | 
						|
        tmp = PyNumber_Multiply(inner, partial);
 | 
						|
        Py_DECREF(partial);
 | 
						|
        if (tmp == NULL)
 | 
						|
            goto error;
 | 
						|
        Py_DECREF(inner);
 | 
						|
        inner = tmp;
 | 
						|
        /* Now inner is the product of all odd integers j in the range (0,
 | 
						|
           n/2**i], giving the inner product in the formula above. */
 | 
						|
 | 
						|
        /* outer *= inner; */
 | 
						|
        tmp = PyNumber_Multiply(outer, inner);
 | 
						|
        if (tmp == NULL)
 | 
						|
            goto error;
 | 
						|
        Py_DECREF(outer);
 | 
						|
        outer = tmp;
 | 
						|
    }
 | 
						|
    Py_DECREF(inner);
 | 
						|
    return outer;
 | 
						|
 | 
						|
  error:
 | 
						|
    Py_DECREF(outer);
 | 
						|
    Py_DECREF(inner);
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Lookup table for small factorial values */
 | 
						|
 | 
						|
static const unsigned long SmallFactorials[] = {
 | 
						|
    1, 1, 2, 6, 24, 120, 720, 5040, 40320,
 | 
						|
    362880, 3628800, 39916800, 479001600,
 | 
						|
#if SIZEOF_LONG >= 8
 | 
						|
    6227020800, 87178291200, 1307674368000,
 | 
						|
    20922789888000, 355687428096000, 6402373705728000,
 | 
						|
    121645100408832000, 2432902008176640000
 | 
						|
#endif
 | 
						|
};
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
math.factorial
 | 
						|
 | 
						|
    x as arg: object
 | 
						|
    /
 | 
						|
 | 
						|
Find x!.
 | 
						|
 | 
						|
Raise a ValueError if x is negative or non-integral.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_factorial(PyObject *module, PyObject *arg)
 | 
						|
/*[clinic end generated code: output=6686f26fae00e9ca input=6d1c8105c0d91fb4]*/
 | 
						|
{
 | 
						|
    long x, two_valuation;
 | 
						|
    int overflow;
 | 
						|
    PyObject *result, *odd_part;
 | 
						|
 | 
						|
    x = PyLong_AsLongAndOverflow(arg, &overflow);
 | 
						|
    if (x == -1 && PyErr_Occurred()) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    else if (overflow == 1) {
 | 
						|
        PyErr_Format(PyExc_OverflowError,
 | 
						|
                     "factorial() argument should not exceed %ld",
 | 
						|
                     LONG_MAX);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    else if (overflow == -1 || x < 0) {
 | 
						|
        PyErr_SetString(PyExc_ValueError,
 | 
						|
                        "factorial() not defined for negative values");
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    /* use lookup table if x is small */
 | 
						|
    if (x < (long)Py_ARRAY_LENGTH(SmallFactorials))
 | 
						|
        return PyLong_FromUnsignedLong(SmallFactorials[x]);
 | 
						|
 | 
						|
    /* else express in the form odd_part * 2**two_valuation, and compute as
 | 
						|
       odd_part << two_valuation. */
 | 
						|
    odd_part = factorial_odd_part(x);
 | 
						|
    if (odd_part == NULL)
 | 
						|
        return NULL;
 | 
						|
    two_valuation = x - count_set_bits(x);
 | 
						|
    result = _PyLong_Lshift(odd_part, two_valuation);
 | 
						|
    Py_DECREF(odd_part);
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
math.trunc
 | 
						|
 | 
						|
    x: object
 | 
						|
    /
 | 
						|
 | 
						|
Truncates the Real x to the nearest Integral toward 0.
 | 
						|
 | 
						|
Uses the __trunc__ magic method.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_trunc(PyObject *module, PyObject *x)
 | 
						|
/*[clinic end generated code: output=34b9697b707e1031 input=2168b34e0a09134d]*/
 | 
						|
{
 | 
						|
    _Py_IDENTIFIER(__trunc__);
 | 
						|
    PyObject *trunc, *result;
 | 
						|
 | 
						|
    if (PyFloat_CheckExact(x)) {
 | 
						|
        return PyFloat_Type.tp_as_number->nb_int(x);
 | 
						|
    }
 | 
						|
 | 
						|
    if (Py_TYPE(x)->tp_dict == NULL) {
 | 
						|
        if (PyType_Ready(Py_TYPE(x)) < 0)
 | 
						|
            return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    trunc = _PyObject_LookupSpecial(x, &PyId___trunc__);
 | 
						|
    if (trunc == NULL) {
 | 
						|
        if (!PyErr_Occurred())
 | 
						|
            PyErr_Format(PyExc_TypeError,
 | 
						|
                         "type %.100s doesn't define __trunc__ method",
 | 
						|
                         Py_TYPE(x)->tp_name);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    result = _PyObject_CallNoArgs(trunc);
 | 
						|
    Py_DECREF(trunc);
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
math.frexp
 | 
						|
 | 
						|
    x: double
 | 
						|
    /
 | 
						|
 | 
						|
Return the mantissa and exponent of x, as pair (m, e).
 | 
						|
 | 
						|
m is a float and e is an int, such that x = m * 2.**e.
 | 
						|
If x is 0, m and e are both 0.  Else 0.5 <= abs(m) < 1.0.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_frexp_impl(PyObject *module, double x)
 | 
						|
/*[clinic end generated code: output=03e30d252a15ad4a input=96251c9e208bc6e9]*/
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    /* deal with special cases directly, to sidestep platform
 | 
						|
       differences */
 | 
						|
    if (Py_IS_NAN(x) || Py_IS_INFINITY(x) || !x) {
 | 
						|
        i = 0;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        x = frexp(x, &i);
 | 
						|
    }
 | 
						|
    return Py_BuildValue("(di)", x, i);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
math.ldexp
 | 
						|
 | 
						|
    x: double
 | 
						|
    i: object
 | 
						|
    /
 | 
						|
 | 
						|
Return x * (2**i).
 | 
						|
 | 
						|
This is essentially the inverse of frexp().
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_ldexp_impl(PyObject *module, double x, PyObject *i)
 | 
						|
/*[clinic end generated code: output=b6892f3c2df9cc6a input=17d5970c1a40a8c1]*/
 | 
						|
{
 | 
						|
    double r;
 | 
						|
    long exp;
 | 
						|
    int overflow;
 | 
						|
 | 
						|
    if (PyLong_Check(i)) {
 | 
						|
        /* on overflow, replace exponent with either LONG_MAX
 | 
						|
           or LONG_MIN, depending on the sign. */
 | 
						|
        exp = PyLong_AsLongAndOverflow(i, &overflow);
 | 
						|
        if (exp == -1 && PyErr_Occurred())
 | 
						|
            return NULL;
 | 
						|
        if (overflow)
 | 
						|
            exp = overflow < 0 ? LONG_MIN : LONG_MAX;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        PyErr_SetString(PyExc_TypeError,
 | 
						|
                        "Expected an int as second argument to ldexp.");
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    if (x == 0. || !Py_IS_FINITE(x)) {
 | 
						|
        /* NaNs, zeros and infinities are returned unchanged */
 | 
						|
        r = x;
 | 
						|
        errno = 0;
 | 
						|
    } else if (exp > INT_MAX) {
 | 
						|
        /* overflow */
 | 
						|
        r = copysign(Py_HUGE_VAL, x);
 | 
						|
        errno = ERANGE;
 | 
						|
    } else if (exp < INT_MIN) {
 | 
						|
        /* underflow to +-0 */
 | 
						|
        r = copysign(0., x);
 | 
						|
        errno = 0;
 | 
						|
    } else {
 | 
						|
        errno = 0;
 | 
						|
        r = ldexp(x, (int)exp);
 | 
						|
        if (Py_IS_INFINITY(r))
 | 
						|
            errno = ERANGE;
 | 
						|
    }
 | 
						|
 | 
						|
    if (errno && is_error(r))
 | 
						|
        return NULL;
 | 
						|
    return PyFloat_FromDouble(r);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
math.modf
 | 
						|
 | 
						|
    x: double
 | 
						|
    /
 | 
						|
 | 
						|
Return the fractional and integer parts of x.
 | 
						|
 | 
						|
Both results carry the sign of x and are floats.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_modf_impl(PyObject *module, double x)
 | 
						|
/*[clinic end generated code: output=90cee0260014c3c0 input=b4cfb6786afd9035]*/
 | 
						|
{
 | 
						|
    double y;
 | 
						|
    /* some platforms don't do the right thing for NaNs and
 | 
						|
       infinities, so we take care of special cases directly. */
 | 
						|
    if (!Py_IS_FINITE(x)) {
 | 
						|
        if (Py_IS_INFINITY(x))
 | 
						|
            return Py_BuildValue("(dd)", copysign(0., x), x);
 | 
						|
        else if (Py_IS_NAN(x))
 | 
						|
            return Py_BuildValue("(dd)", x, x);
 | 
						|
    }
 | 
						|
 | 
						|
    errno = 0;
 | 
						|
    x = modf(x, &y);
 | 
						|
    return Py_BuildValue("(dd)", x, y);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* A decent logarithm is easy to compute even for huge ints, but libm can't
 | 
						|
   do that by itself -- loghelper can.  func is log or log10, and name is
 | 
						|
   "log" or "log10".  Note that overflow of the result isn't possible: an int
 | 
						|
   can contain no more than INT_MAX * SHIFT bits, so has value certainly less
 | 
						|
   than 2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is
 | 
						|
   small enough to fit in an IEEE single.  log and log10 are even smaller.
 | 
						|
   However, intermediate overflow is possible for an int if the number of bits
 | 
						|
   in that int is larger than PY_SSIZE_T_MAX. */
 | 
						|
 | 
						|
static PyObject*
 | 
						|
loghelper(PyObject* arg, double (*func)(double), const char *funcname)
 | 
						|
{
 | 
						|
    /* If it is int, do it ourselves. */
 | 
						|
    if (PyLong_Check(arg)) {
 | 
						|
        double x, result;
 | 
						|
        Py_ssize_t e;
 | 
						|
 | 
						|
        /* Negative or zero inputs give a ValueError. */
 | 
						|
        if (Py_SIZE(arg) <= 0) {
 | 
						|
            PyErr_SetString(PyExc_ValueError,
 | 
						|
                            "math domain error");
 | 
						|
            return NULL;
 | 
						|
        }
 | 
						|
 | 
						|
        x = PyLong_AsDouble(arg);
 | 
						|
        if (x == -1.0 && PyErr_Occurred()) {
 | 
						|
            if (!PyErr_ExceptionMatches(PyExc_OverflowError))
 | 
						|
                return NULL;
 | 
						|
            /* Here the conversion to double overflowed, but it's possible
 | 
						|
               to compute the log anyway.  Clear the exception and continue. */
 | 
						|
            PyErr_Clear();
 | 
						|
            x = _PyLong_Frexp((PyLongObject *)arg, &e);
 | 
						|
            if (x == -1.0 && PyErr_Occurred())
 | 
						|
                return NULL;
 | 
						|
            /* Value is ~= x * 2**e, so the log ~= log(x) + log(2) * e. */
 | 
						|
            result = func(x) + func(2.0) * e;
 | 
						|
        }
 | 
						|
        else
 | 
						|
            /* Successfully converted x to a double. */
 | 
						|
            result = func(x);
 | 
						|
        return PyFloat_FromDouble(result);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Else let libm handle it by itself. */
 | 
						|
    return math_1(arg, func, 0);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
math.log
 | 
						|
 | 
						|
    x:    object
 | 
						|
    [
 | 
						|
    base: object(c_default="NULL") = math.e
 | 
						|
    ]
 | 
						|
    /
 | 
						|
 | 
						|
Return the logarithm of x to the given base.
 | 
						|
 | 
						|
If the base not specified, returns the natural logarithm (base e) of x.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_log_impl(PyObject *module, PyObject *x, int group_right_1,
 | 
						|
              PyObject *base)
 | 
						|
/*[clinic end generated code: output=7b5a39e526b73fc9 input=0f62d5726cbfebbd]*/
 | 
						|
{
 | 
						|
    PyObject *num, *den;
 | 
						|
    PyObject *ans;
 | 
						|
 | 
						|
    num = loghelper(x, m_log, "log");
 | 
						|
    if (num == NULL || base == NULL)
 | 
						|
        return num;
 | 
						|
 | 
						|
    den = loghelper(base, m_log, "log");
 | 
						|
    if (den == NULL) {
 | 
						|
        Py_DECREF(num);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    ans = PyNumber_TrueDivide(num, den);
 | 
						|
    Py_DECREF(num);
 | 
						|
    Py_DECREF(den);
 | 
						|
    return ans;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
math.log2
 | 
						|
 | 
						|
    x: object
 | 
						|
    /
 | 
						|
 | 
						|
Return the base 2 logarithm of x.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_log2(PyObject *module, PyObject *x)
 | 
						|
/*[clinic end generated code: output=5425899a4d5d6acb input=08321262bae4f39b]*/
 | 
						|
{
 | 
						|
    return loghelper(x, m_log2, "log2");
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
math.log10
 | 
						|
 | 
						|
    x: object
 | 
						|
    /
 | 
						|
 | 
						|
Return the base 10 logarithm of x.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_log10(PyObject *module, PyObject *x)
 | 
						|
/*[clinic end generated code: output=be72a64617df9c6f input=b2469d02c6469e53]*/
 | 
						|
{
 | 
						|
    return loghelper(x, m_log10, "log10");
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
math.fmod
 | 
						|
 | 
						|
    x: double
 | 
						|
    y: double
 | 
						|
    /
 | 
						|
 | 
						|
Return fmod(x, y), according to platform C.
 | 
						|
 | 
						|
x % y may differ.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_fmod_impl(PyObject *module, double x, double y)
 | 
						|
/*[clinic end generated code: output=7559d794343a27b5 input=4f84caa8cfc26a03]*/
 | 
						|
{
 | 
						|
    double r;
 | 
						|
    /* fmod(x, +/-Inf) returns x for finite x. */
 | 
						|
    if (Py_IS_INFINITY(y) && Py_IS_FINITE(x))
 | 
						|
        return PyFloat_FromDouble(x);
 | 
						|
    errno = 0;
 | 
						|
    r = fmod(x, y);
 | 
						|
    if (Py_IS_NAN(r)) {
 | 
						|
        if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
 | 
						|
            errno = EDOM;
 | 
						|
        else
 | 
						|
            errno = 0;
 | 
						|
    }
 | 
						|
    if (errno && is_error(r))
 | 
						|
        return NULL;
 | 
						|
    else
 | 
						|
        return PyFloat_FromDouble(r);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
Given a *vec* of values, compute the vector norm:
 | 
						|
 | 
						|
    sqrt(sum(x ** 2 for x in vec))
 | 
						|
 | 
						|
The *max* variable should be equal to the largest fabs(x).
 | 
						|
The *n* variable is the length of *vec*.
 | 
						|
If n==0, then *max* should be 0.0.
 | 
						|
If an infinity is present in the vec, *max* should be INF.
 | 
						|
The *found_nan* variable indicates whether some member of
 | 
						|
the *vec* is a NaN.
 | 
						|
 | 
						|
To avoid overflow/underflow and to achieve high accuracy giving results
 | 
						|
that are almost always correctly rounded, four techniques are used:
 | 
						|
 | 
						|
* lossless scaling using a power-of-two scaling factor
 | 
						|
* accurate squaring using Veltkamp-Dekker splitting [1]
 | 
						|
* compensated summation using a variant of the Neumaier algorithm [2]
 | 
						|
* differential correction of the square root [3]
 | 
						|
 | 
						|
The usual presentation of the Neumaier summation algorithm has an
 | 
						|
expensive branch depending on which operand has the larger
 | 
						|
magnitude.  We avoid this cost by arranging the calculation so that
 | 
						|
fabs(csum) is always as large as fabs(x).
 | 
						|
 | 
						|
To establish the invariant, *csum* is initialized to 1.0 which is
 | 
						|
always larger than x**2 after scaling or after division by *max*.
 | 
						|
After the loop is finished, the initial 1.0 is subtracted out for a
 | 
						|
net zero effect on the final sum.  Since *csum* will be greater than
 | 
						|
1.0, the subtraction of 1.0 will not cause fractional digits to be
 | 
						|
dropped from *csum*.
 | 
						|
 | 
						|
To get the full benefit from compensated summation, the largest
 | 
						|
addend should be in the range: 0.5 <= |x| <= 1.0.  Accordingly,
 | 
						|
scaling or division by *max* should not be skipped even if not
 | 
						|
otherwise needed to prevent overflow or loss of precision.
 | 
						|
 | 
						|
The assertion that hi*hi <= 1.0 is a bit subtle.  Each vector element
 | 
						|
gets scaled to a magnitude below 1.0.  The Veltkamp-Dekker splitting
 | 
						|
algorithm gives a *hi* value that is correctly rounded to half
 | 
						|
precision.  When a value at or below 1.0 is correctly rounded, it
 | 
						|
never goes above 1.0.  And when values at or below 1.0 are squared,
 | 
						|
they remain at or below 1.0, thus preserving the summation invariant.
 | 
						|
 | 
						|
Another interesting assertion is that csum+lo*lo == csum. In the loop,
 | 
						|
each scaled vector element has a magnitude less than 1.0.  After the
 | 
						|
Veltkamp split, *lo* has a maximum value of 2**-27.  So the maximum
 | 
						|
value of *lo* squared is 2**-54.  The value of ulp(1.0)/2.0 is 2**-53.
 | 
						|
Given that csum >= 1.0, we have:
 | 
						|
    lo**2 <= 2**-54 < 2**-53 == 1/2*ulp(1.0) <= ulp(csum)/2
 | 
						|
Since lo**2 is less than 1/2 ulp(csum), we have csum+lo*lo == csum.
 | 
						|
 | 
						|
To minimize loss of information during the accumulation of fractional
 | 
						|
values, each term has a separate accumulator.  This also breaks up
 | 
						|
sequential dependencies in the inner loop so the CPU can maximize
 | 
						|
floating point throughput. [4]  On a 2.6 GHz Haswell, adding one
 | 
						|
dimension has an incremental cost of only 5ns -- for example when
 | 
						|
moving from hypot(x,y) to hypot(x,y,z).
 | 
						|
 | 
						|
The square root differential correction is needed because a
 | 
						|
correctly rounded square root of a correctly rounded sum of
 | 
						|
squares can still be off by as much as one ulp.
 | 
						|
 | 
						|
The differential correction starts with a value *x* that is
 | 
						|
the difference between the square of *h*, the possibly inaccurately
 | 
						|
rounded square root, and the accurately computed sum of squares.
 | 
						|
The correction is the first order term of the Maclaurin series
 | 
						|
expansion of sqrt(h**2 + x) == h + x/(2*h) + O(x**2). [5]
 | 
						|
 | 
						|
Essentially, this differential correction is equivalent to one
 | 
						|
refinement step in Newton's divide-and-average square root
 | 
						|
algorithm, effectively doubling the number of accurate bits.
 | 
						|
This technique is used in Dekker's SQRT2 algorithm and again in
 | 
						|
Borges' ALGORITHM 4 and 5.
 | 
						|
 | 
						|
Without proof for all cases, hypot() cannot claim to be always
 | 
						|
correctly rounded.  However for n <= 1000, prior to the final addition
 | 
						|
that rounds the overall result, the internal accuracy of "h" together
 | 
						|
with its correction of "x / (2.0 * h)" is at least 100 bits. [6]
 | 
						|
Also, hypot() was tested against a Decimal implementation with
 | 
						|
prec=300.  After 100 million trials, no incorrectly rounded examples
 | 
						|
were found.  In addition, perfect commutativity (all permutations are
 | 
						|
exactly equal) was verified for 1 billion random inputs with n=5. [7]
 | 
						|
 | 
						|
References:
 | 
						|
 | 
						|
1. Veltkamp-Dekker splitting: http://csclub.uwaterloo.ca/~pbarfuss/dekker1971.pdf
 | 
						|
2. Compensated summation:  http://www.ti3.tu-harburg.de/paper/rump/Ru08b.pdf
 | 
						|
3. Square root differential correction:  https://arxiv.org/pdf/1904.09481.pdf
 | 
						|
4. Data dependency graph:  https://bugs.python.org/file49439/hypot.png
 | 
						|
5. https://www.wolframalpha.com/input/?i=Maclaurin+series+sqrt%28h**2+%2B+x%29+at+x%3D0
 | 
						|
6. Analysis of internal accuracy:  https://bugs.python.org/file49484/best_frac.py
 | 
						|
7. Commutativity test:  https://bugs.python.org/file49448/test_hypot_commutativity.py
 | 
						|
 | 
						|
*/
 | 
						|
 | 
						|
static inline double
 | 
						|
vector_norm(Py_ssize_t n, double *vec, double max, int found_nan)
 | 
						|
{
 | 
						|
    const double T27 = 134217729.0;     /* ldexp(1.0, 27) + 1.0) */
 | 
						|
    double x, scale, oldcsum, csum = 1.0, frac1 = 0.0, frac2 = 0.0, frac3 = 0.0;
 | 
						|
    double t, hi, lo, h;
 | 
						|
    int max_e;
 | 
						|
    Py_ssize_t i;
 | 
						|
 | 
						|
    if (Py_IS_INFINITY(max)) {
 | 
						|
        return max;
 | 
						|
    }
 | 
						|
    if (found_nan) {
 | 
						|
        return Py_NAN;
 | 
						|
    }
 | 
						|
    if (max == 0.0 || n <= 1) {
 | 
						|
        return max;
 | 
						|
    }
 | 
						|
    frexp(max, &max_e);
 | 
						|
    if (max_e >= -1023) {
 | 
						|
        scale = ldexp(1.0, -max_e);
 | 
						|
        assert(max * scale >= 0.5);
 | 
						|
        assert(max * scale < 1.0);
 | 
						|
        for (i=0 ; i < n ; i++) {
 | 
						|
            x = vec[i];
 | 
						|
            assert(Py_IS_FINITE(x) && fabs(x) <= max);
 | 
						|
 | 
						|
            x *= scale;
 | 
						|
            assert(fabs(x) < 1.0);
 | 
						|
 | 
						|
            t = x * T27;
 | 
						|
            hi = t - (t - x);
 | 
						|
            lo = x - hi;
 | 
						|
            assert(hi + lo == x);
 | 
						|
 | 
						|
            x = hi * hi;
 | 
						|
            assert(x <= 1.0);
 | 
						|
            assert(fabs(csum) >= fabs(x));
 | 
						|
            oldcsum = csum;
 | 
						|
            csum += x;
 | 
						|
            frac1 += (oldcsum - csum) + x;
 | 
						|
 | 
						|
            x = 2.0 * hi * lo;
 | 
						|
            assert(fabs(csum) >= fabs(x));
 | 
						|
            oldcsum = csum;
 | 
						|
            csum += x;
 | 
						|
            frac2 += (oldcsum - csum) + x;
 | 
						|
 | 
						|
            assert(csum + lo * lo == csum);
 | 
						|
            frac3 += lo * lo;
 | 
						|
        }
 | 
						|
        h = sqrt(csum - 1.0 + (frac1 + frac2 + frac3));
 | 
						|
 | 
						|
        x = h;
 | 
						|
        t = x * T27;
 | 
						|
        hi = t - (t - x);
 | 
						|
        lo = x - hi;
 | 
						|
        assert (hi + lo == x);
 | 
						|
 | 
						|
        x = -hi * hi;
 | 
						|
        assert(fabs(csum) >= fabs(x));
 | 
						|
        oldcsum = csum;
 | 
						|
        csum += x;
 | 
						|
        frac1 += (oldcsum - csum) + x;
 | 
						|
 | 
						|
        x = -2.0 * hi * lo;
 | 
						|
        assert(fabs(csum) >= fabs(x));
 | 
						|
        oldcsum = csum;
 | 
						|
        csum += x;
 | 
						|
        frac2 += (oldcsum - csum) + x;
 | 
						|
 | 
						|
        x = -lo * lo;
 | 
						|
        assert(fabs(csum) >= fabs(x));
 | 
						|
        oldcsum = csum;
 | 
						|
        csum += x;
 | 
						|
        frac3 += (oldcsum - csum) + x;
 | 
						|
 | 
						|
        x = csum - 1.0 + (frac1 + frac2 + frac3);
 | 
						|
        return (h + x / (2.0 * h)) / scale;
 | 
						|
    }
 | 
						|
    /* When max_e < -1023, ldexp(1.0, -max_e) overflows.
 | 
						|
       So instead of multiplying by a scale, we just divide by *max*.
 | 
						|
    */
 | 
						|
    for (i=0 ; i < n ; i++) {
 | 
						|
        x = vec[i];
 | 
						|
        assert(Py_IS_FINITE(x) && fabs(x) <= max);
 | 
						|
        x /= max;
 | 
						|
        x = x*x;
 | 
						|
        assert(x <= 1.0);
 | 
						|
        assert(fabs(csum) >= fabs(x));
 | 
						|
        oldcsum = csum;
 | 
						|
        csum += x;
 | 
						|
        frac1 += (oldcsum - csum) + x;
 | 
						|
    }
 | 
						|
    return max * sqrt(csum - 1.0 + frac1);
 | 
						|
}
 | 
						|
 | 
						|
#define NUM_STACK_ELEMS 16
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
math.dist
 | 
						|
 | 
						|
    p: object
 | 
						|
    q: object
 | 
						|
    /
 | 
						|
 | 
						|
Return the Euclidean distance between two points p and q.
 | 
						|
 | 
						|
The points should be specified as sequences (or iterables) of
 | 
						|
coordinates.  Both inputs must have the same dimension.
 | 
						|
 | 
						|
Roughly equivalent to:
 | 
						|
    sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q)))
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_dist_impl(PyObject *module, PyObject *p, PyObject *q)
 | 
						|
/*[clinic end generated code: output=56bd9538d06bbcfe input=74e85e1b6092e68e]*/
 | 
						|
{
 | 
						|
    PyObject *item;
 | 
						|
    double max = 0.0;
 | 
						|
    double x, px, qx, result;
 | 
						|
    Py_ssize_t i, m, n;
 | 
						|
    int found_nan = 0, p_allocated = 0, q_allocated = 0;
 | 
						|
    double diffs_on_stack[NUM_STACK_ELEMS];
 | 
						|
    double *diffs = diffs_on_stack;
 | 
						|
 | 
						|
    if (!PyTuple_Check(p)) {
 | 
						|
        p = PySequence_Tuple(p);
 | 
						|
        if (p == NULL) {
 | 
						|
            return NULL;
 | 
						|
        }
 | 
						|
        p_allocated = 1;
 | 
						|
    }
 | 
						|
    if (!PyTuple_Check(q)) {
 | 
						|
        q = PySequence_Tuple(q);
 | 
						|
        if (q == NULL) {
 | 
						|
            if (p_allocated) {
 | 
						|
                Py_DECREF(p);
 | 
						|
            }
 | 
						|
            return NULL;
 | 
						|
        }
 | 
						|
        q_allocated = 1;
 | 
						|
    }
 | 
						|
 | 
						|
    m = PyTuple_GET_SIZE(p);
 | 
						|
    n = PyTuple_GET_SIZE(q);
 | 
						|
    if (m != n) {
 | 
						|
        PyErr_SetString(PyExc_ValueError,
 | 
						|
                        "both points must have the same number of dimensions");
 | 
						|
        return NULL;
 | 
						|
 | 
						|
    }
 | 
						|
    if (n > NUM_STACK_ELEMS) {
 | 
						|
        diffs = (double *) PyObject_Malloc(n * sizeof(double));
 | 
						|
        if (diffs == NULL) {
 | 
						|
            return PyErr_NoMemory();
 | 
						|
        }
 | 
						|
    }
 | 
						|
    for (i=0 ; i<n ; i++) {
 | 
						|
        item = PyTuple_GET_ITEM(p, i);
 | 
						|
        ASSIGN_DOUBLE(px, item, error_exit);
 | 
						|
        item = PyTuple_GET_ITEM(q, i);
 | 
						|
        ASSIGN_DOUBLE(qx, item, error_exit);
 | 
						|
        x = fabs(px - qx);
 | 
						|
        diffs[i] = x;
 | 
						|
        found_nan |= Py_IS_NAN(x);
 | 
						|
        if (x > max) {
 | 
						|
            max = x;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    result = vector_norm(n, diffs, max, found_nan);
 | 
						|
    if (diffs != diffs_on_stack) {
 | 
						|
        PyObject_Free(diffs);
 | 
						|
    }
 | 
						|
    if (p_allocated) {
 | 
						|
        Py_DECREF(p);
 | 
						|
    }
 | 
						|
    if (q_allocated) {
 | 
						|
        Py_DECREF(q);
 | 
						|
    }
 | 
						|
    return PyFloat_FromDouble(result);
 | 
						|
 | 
						|
  error_exit:
 | 
						|
    if (diffs != diffs_on_stack) {
 | 
						|
        PyObject_Free(diffs);
 | 
						|
    }
 | 
						|
    if (p_allocated) {
 | 
						|
        Py_DECREF(p);
 | 
						|
    }
 | 
						|
    if (q_allocated) {
 | 
						|
        Py_DECREF(q);
 | 
						|
    }
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/* AC: cannot convert yet, waiting for *args support */
 | 
						|
static PyObject *
 | 
						|
math_hypot(PyObject *self, PyObject *const *args, Py_ssize_t nargs)
 | 
						|
{
 | 
						|
    Py_ssize_t i;
 | 
						|
    PyObject *item;
 | 
						|
    double max = 0.0;
 | 
						|
    double x, result;
 | 
						|
    int found_nan = 0;
 | 
						|
    double coord_on_stack[NUM_STACK_ELEMS];
 | 
						|
    double *coordinates = coord_on_stack;
 | 
						|
 | 
						|
    if (nargs > NUM_STACK_ELEMS) {
 | 
						|
        coordinates = (double *) PyObject_Malloc(nargs * sizeof(double));
 | 
						|
        if (coordinates == NULL) {
 | 
						|
            return PyErr_NoMemory();
 | 
						|
        }
 | 
						|
    }
 | 
						|
    for (i = 0; i < nargs; i++) {
 | 
						|
        item = args[i];
 | 
						|
        ASSIGN_DOUBLE(x, item, error_exit);
 | 
						|
        x = fabs(x);
 | 
						|
        coordinates[i] = x;
 | 
						|
        found_nan |= Py_IS_NAN(x);
 | 
						|
        if (x > max) {
 | 
						|
            max = x;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    result = vector_norm(nargs, coordinates, max, found_nan);
 | 
						|
    if (coordinates != coord_on_stack) {
 | 
						|
        PyObject_Free(coordinates);
 | 
						|
    }
 | 
						|
    return PyFloat_FromDouble(result);
 | 
						|
 | 
						|
  error_exit:
 | 
						|
    if (coordinates != coord_on_stack) {
 | 
						|
        PyObject_Free(coordinates);
 | 
						|
    }
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
#undef NUM_STACK_ELEMS
 | 
						|
 | 
						|
PyDoc_STRVAR(math_hypot_doc,
 | 
						|
             "hypot(*coordinates) -> value\n\n\
 | 
						|
Multidimensional Euclidean distance from the origin to a point.\n\
 | 
						|
\n\
 | 
						|
Roughly equivalent to:\n\
 | 
						|
    sqrt(sum(x**2 for x in coordinates))\n\
 | 
						|
\n\
 | 
						|
For a two dimensional point (x, y), gives the hypotenuse\n\
 | 
						|
using the Pythagorean theorem:  sqrt(x*x + y*y).\n\
 | 
						|
\n\
 | 
						|
For example, the hypotenuse of a 3/4/5 right triangle is:\n\
 | 
						|
\n\
 | 
						|
    >>> hypot(3.0, 4.0)\n\
 | 
						|
    5.0\n\
 | 
						|
");
 | 
						|
 | 
						|
/* pow can't use math_2, but needs its own wrapper: the problem is
 | 
						|
   that an infinite result can arise either as a result of overflow
 | 
						|
   (in which case OverflowError should be raised) or as a result of
 | 
						|
   e.g. 0.**-5. (for which ValueError needs to be raised.)
 | 
						|
*/
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
math.pow
 | 
						|
 | 
						|
    x: double
 | 
						|
    y: double
 | 
						|
    /
 | 
						|
 | 
						|
Return x**y (x to the power of y).
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_pow_impl(PyObject *module, double x, double y)
 | 
						|
/*[clinic end generated code: output=fff93e65abccd6b0 input=c26f1f6075088bfd]*/
 | 
						|
{
 | 
						|
    double r;
 | 
						|
    int odd_y;
 | 
						|
 | 
						|
    /* deal directly with IEEE specials, to cope with problems on various
 | 
						|
       platforms whose semantics don't exactly match C99 */
 | 
						|
    r = 0.; /* silence compiler warning */
 | 
						|
    if (!Py_IS_FINITE(x) || !Py_IS_FINITE(y)) {
 | 
						|
        errno = 0;
 | 
						|
        if (Py_IS_NAN(x))
 | 
						|
            r = y == 0. ? 1. : x; /* NaN**0 = 1 */
 | 
						|
        else if (Py_IS_NAN(y))
 | 
						|
            r = x == 1. ? 1. : y; /* 1**NaN = 1 */
 | 
						|
        else if (Py_IS_INFINITY(x)) {
 | 
						|
            odd_y = Py_IS_FINITE(y) && fmod(fabs(y), 2.0) == 1.0;
 | 
						|
            if (y > 0.)
 | 
						|
                r = odd_y ? x : fabs(x);
 | 
						|
            else if (y == 0.)
 | 
						|
                r = 1.;
 | 
						|
            else /* y < 0. */
 | 
						|
                r = odd_y ? copysign(0., x) : 0.;
 | 
						|
        }
 | 
						|
        else if (Py_IS_INFINITY(y)) {
 | 
						|
            if (fabs(x) == 1.0)
 | 
						|
                r = 1.;
 | 
						|
            else if (y > 0. && fabs(x) > 1.0)
 | 
						|
                r = y;
 | 
						|
            else if (y < 0. && fabs(x) < 1.0) {
 | 
						|
                r = -y; /* result is +inf */
 | 
						|
            }
 | 
						|
            else
 | 
						|
                r = 0.;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        /* let libm handle finite**finite */
 | 
						|
        errno = 0;
 | 
						|
        r = pow(x, y);
 | 
						|
        /* a NaN result should arise only from (-ve)**(finite
 | 
						|
           non-integer); in this case we want to raise ValueError. */
 | 
						|
        if (!Py_IS_FINITE(r)) {
 | 
						|
            if (Py_IS_NAN(r)) {
 | 
						|
                errno = EDOM;
 | 
						|
            }
 | 
						|
            /*
 | 
						|
               an infinite result here arises either from:
 | 
						|
               (A) (+/-0.)**negative (-> divide-by-zero)
 | 
						|
               (B) overflow of x**y with x and y finite
 | 
						|
            */
 | 
						|
            else if (Py_IS_INFINITY(r)) {
 | 
						|
                if (x == 0.)
 | 
						|
                    errno = EDOM;
 | 
						|
                else
 | 
						|
                    errno = ERANGE;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (errno && is_error(r))
 | 
						|
        return NULL;
 | 
						|
    else
 | 
						|
        return PyFloat_FromDouble(r);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static const double degToRad = Py_MATH_PI / 180.0;
 | 
						|
static const double radToDeg = 180.0 / Py_MATH_PI;
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
math.degrees
 | 
						|
 | 
						|
    x: double
 | 
						|
    /
 | 
						|
 | 
						|
Convert angle x from radians to degrees.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_degrees_impl(PyObject *module, double x)
 | 
						|
/*[clinic end generated code: output=7fea78b294acd12f input=81e016555d6e3660]*/
 | 
						|
{
 | 
						|
    return PyFloat_FromDouble(x * radToDeg);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
math.radians
 | 
						|
 | 
						|
    x: double
 | 
						|
    /
 | 
						|
 | 
						|
Convert angle x from degrees to radians.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_radians_impl(PyObject *module, double x)
 | 
						|
/*[clinic end generated code: output=34daa47caf9b1590 input=91626fc489fe3d63]*/
 | 
						|
{
 | 
						|
    return PyFloat_FromDouble(x * degToRad);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
math.isfinite
 | 
						|
 | 
						|
    x: double
 | 
						|
    /
 | 
						|
 | 
						|
Return True if x is neither an infinity nor a NaN, and False otherwise.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_isfinite_impl(PyObject *module, double x)
 | 
						|
/*[clinic end generated code: output=8ba1f396440c9901 input=46967d254812e54a]*/
 | 
						|
{
 | 
						|
    return PyBool_FromLong((long)Py_IS_FINITE(x));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
math.isnan
 | 
						|
 | 
						|
    x: double
 | 
						|
    /
 | 
						|
 | 
						|
Return True if x is a NaN (not a number), and False otherwise.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_isnan_impl(PyObject *module, double x)
 | 
						|
/*[clinic end generated code: output=f537b4d6df878c3e input=935891e66083f46a]*/
 | 
						|
{
 | 
						|
    return PyBool_FromLong((long)Py_IS_NAN(x));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
math.isinf
 | 
						|
 | 
						|
    x: double
 | 
						|
    /
 | 
						|
 | 
						|
Return True if x is a positive or negative infinity, and False otherwise.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_isinf_impl(PyObject *module, double x)
 | 
						|
/*[clinic end generated code: output=9f00cbec4de7b06b input=32630e4212cf961f]*/
 | 
						|
{
 | 
						|
    return PyBool_FromLong((long)Py_IS_INFINITY(x));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
math.isclose -> bool
 | 
						|
 | 
						|
    a: double
 | 
						|
    b: double
 | 
						|
    *
 | 
						|
    rel_tol: double = 1e-09
 | 
						|
        maximum difference for being considered "close", relative to the
 | 
						|
        magnitude of the input values
 | 
						|
    abs_tol: double = 0.0
 | 
						|
        maximum difference for being considered "close", regardless of the
 | 
						|
        magnitude of the input values
 | 
						|
 | 
						|
Determine whether two floating point numbers are close in value.
 | 
						|
 | 
						|
Return True if a is close in value to b, and False otherwise.
 | 
						|
 | 
						|
For the values to be considered close, the difference between them
 | 
						|
must be smaller than at least one of the tolerances.
 | 
						|
 | 
						|
-inf, inf and NaN behave similarly to the IEEE 754 Standard.  That
 | 
						|
is, NaN is not close to anything, even itself.  inf and -inf are
 | 
						|
only close to themselves.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static int
 | 
						|
math_isclose_impl(PyObject *module, double a, double b, double rel_tol,
 | 
						|
                  double abs_tol)
 | 
						|
/*[clinic end generated code: output=b73070207511952d input=f28671871ea5bfba]*/
 | 
						|
{
 | 
						|
    double diff = 0.0;
 | 
						|
 | 
						|
    /* sanity check on the inputs */
 | 
						|
    if (rel_tol < 0.0 || abs_tol < 0.0 ) {
 | 
						|
        PyErr_SetString(PyExc_ValueError,
 | 
						|
                        "tolerances must be non-negative");
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    if ( a == b ) {
 | 
						|
        /* short circuit exact equality -- needed to catch two infinities of
 | 
						|
           the same sign. And perhaps speeds things up a bit sometimes.
 | 
						|
        */
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    /* This catches the case of two infinities of opposite sign, or
 | 
						|
       one infinity and one finite number. Two infinities of opposite
 | 
						|
       sign would otherwise have an infinite relative tolerance.
 | 
						|
       Two infinities of the same sign are caught by the equality check
 | 
						|
       above.
 | 
						|
    */
 | 
						|
 | 
						|
    if (Py_IS_INFINITY(a) || Py_IS_INFINITY(b)) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    /* now do the regular computation
 | 
						|
       this is essentially the "weak" test from the Boost library
 | 
						|
    */
 | 
						|
 | 
						|
    diff = fabs(b - a);
 | 
						|
 | 
						|
    return (((diff <= fabs(rel_tol * b)) ||
 | 
						|
             (diff <= fabs(rel_tol * a))) ||
 | 
						|
            (diff <= abs_tol));
 | 
						|
}
 | 
						|
 | 
						|
static inline int
 | 
						|
_check_long_mult_overflow(long a, long b) {
 | 
						|
 | 
						|
    /* From Python2's int_mul code:
 | 
						|
 | 
						|
    Integer overflow checking for * is painful:  Python tried a couple ways, but
 | 
						|
    they didn't work on all platforms, or failed in endcases (a product of
 | 
						|
    -sys.maxint-1 has been a particular pain).
 | 
						|
 | 
						|
    Here's another way:
 | 
						|
 | 
						|
    The native long product x*y is either exactly right or *way* off, being
 | 
						|
    just the last n bits of the true product, where n is the number of bits
 | 
						|
    in a long (the delivered product is the true product plus i*2**n for
 | 
						|
    some integer i).
 | 
						|
 | 
						|
    The native double product (double)x * (double)y is subject to three
 | 
						|
    rounding errors:  on a sizeof(long)==8 box, each cast to double can lose
 | 
						|
    info, and even on a sizeof(long)==4 box, the multiplication can lose info.
 | 
						|
    But, unlike the native long product, it's not in *range* trouble:  even
 | 
						|
    if sizeof(long)==32 (256-bit longs), the product easily fits in the
 | 
						|
    dynamic range of a double.  So the leading 50 (or so) bits of the double
 | 
						|
    product are correct.
 | 
						|
 | 
						|
    We check these two ways against each other, and declare victory if they're
 | 
						|
    approximately the same.  Else, because the native long product is the only
 | 
						|
    one that can lose catastrophic amounts of information, it's the native long
 | 
						|
    product that must have overflowed.
 | 
						|
 | 
						|
    */
 | 
						|
 | 
						|
    long longprod = (long)((unsigned long)a * b);
 | 
						|
    double doubleprod = (double)a * (double)b;
 | 
						|
    double doubled_longprod = (double)longprod;
 | 
						|
 | 
						|
    if (doubled_longprod == doubleprod) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    const double diff = doubled_longprod - doubleprod;
 | 
						|
    const double absdiff = diff >= 0.0 ? diff : -diff;
 | 
						|
    const double absprod = doubleprod >= 0.0 ? doubleprod : -doubleprod;
 | 
						|
 | 
						|
    if (32.0 * absdiff <= absprod) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
math.prod
 | 
						|
 | 
						|
    iterable: object
 | 
						|
    /
 | 
						|
    *
 | 
						|
    start: object(c_default="NULL") = 1
 | 
						|
 | 
						|
Calculate the product of all the elements in the input iterable.
 | 
						|
 | 
						|
The default start value for the product is 1.
 | 
						|
 | 
						|
When the iterable is empty, return the start value.  This function is
 | 
						|
intended specifically for use with numeric values and may reject
 | 
						|
non-numeric types.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_prod_impl(PyObject *module, PyObject *iterable, PyObject *start)
 | 
						|
/*[clinic end generated code: output=36153bedac74a198 input=4c5ab0682782ed54]*/
 | 
						|
{
 | 
						|
    PyObject *result = start;
 | 
						|
    PyObject *temp, *item, *iter;
 | 
						|
 | 
						|
    iter = PyObject_GetIter(iterable);
 | 
						|
    if (iter == NULL) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    if (result == NULL) {
 | 
						|
        result = _PyLong_GetOne();
 | 
						|
    }
 | 
						|
    Py_INCREF(result);
 | 
						|
#ifndef SLOW_PROD
 | 
						|
    /* Fast paths for integers keeping temporary products in C.
 | 
						|
     * Assumes all inputs are the same type.
 | 
						|
     * If the assumption fails, default to use PyObjects instead.
 | 
						|
    */
 | 
						|
    if (PyLong_CheckExact(result)) {
 | 
						|
        int overflow;
 | 
						|
        long i_result = PyLong_AsLongAndOverflow(result, &overflow);
 | 
						|
        /* If this already overflowed, don't even enter the loop. */
 | 
						|
        if (overflow == 0) {
 | 
						|
            Py_DECREF(result);
 | 
						|
            result = NULL;
 | 
						|
        }
 | 
						|
        /* Loop over all the items in the iterable until we finish, we overflow
 | 
						|
         * or we found a non integer element */
 | 
						|
        while (result == NULL) {
 | 
						|
            item = PyIter_Next(iter);
 | 
						|
            if (item == NULL) {
 | 
						|
                Py_DECREF(iter);
 | 
						|
                if (PyErr_Occurred()) {
 | 
						|
                    return NULL;
 | 
						|
                }
 | 
						|
                return PyLong_FromLong(i_result);
 | 
						|
            }
 | 
						|
            if (PyLong_CheckExact(item)) {
 | 
						|
                long b = PyLong_AsLongAndOverflow(item, &overflow);
 | 
						|
                if (overflow == 0 && !_check_long_mult_overflow(i_result, b)) {
 | 
						|
                    long x = i_result * b;
 | 
						|
                    i_result = x;
 | 
						|
                    Py_DECREF(item);
 | 
						|
                    continue;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            /* Either overflowed or is not an int.
 | 
						|
             * Restore real objects and process normally */
 | 
						|
            result = PyLong_FromLong(i_result);
 | 
						|
            if (result == NULL) {
 | 
						|
                Py_DECREF(item);
 | 
						|
                Py_DECREF(iter);
 | 
						|
                return NULL;
 | 
						|
            }
 | 
						|
            temp = PyNumber_Multiply(result, item);
 | 
						|
            Py_DECREF(result);
 | 
						|
            Py_DECREF(item);
 | 
						|
            result = temp;
 | 
						|
            if (result == NULL) {
 | 
						|
                Py_DECREF(iter);
 | 
						|
                return NULL;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Fast paths for floats keeping temporary products in C.
 | 
						|
     * Assumes all inputs are the same type.
 | 
						|
     * If the assumption fails, default to use PyObjects instead.
 | 
						|
    */
 | 
						|
    if (PyFloat_CheckExact(result)) {
 | 
						|
        double f_result = PyFloat_AS_DOUBLE(result);
 | 
						|
        Py_DECREF(result);
 | 
						|
        result = NULL;
 | 
						|
        while(result == NULL) {
 | 
						|
            item = PyIter_Next(iter);
 | 
						|
            if (item == NULL) {
 | 
						|
                Py_DECREF(iter);
 | 
						|
                if (PyErr_Occurred()) {
 | 
						|
                    return NULL;
 | 
						|
                }
 | 
						|
                return PyFloat_FromDouble(f_result);
 | 
						|
            }
 | 
						|
            if (PyFloat_CheckExact(item)) {
 | 
						|
                f_result *= PyFloat_AS_DOUBLE(item);
 | 
						|
                Py_DECREF(item);
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
            if (PyLong_CheckExact(item)) {
 | 
						|
                long value;
 | 
						|
                int overflow;
 | 
						|
                value = PyLong_AsLongAndOverflow(item, &overflow);
 | 
						|
                if (!overflow) {
 | 
						|
                    f_result *= (double)value;
 | 
						|
                    Py_DECREF(item);
 | 
						|
                    continue;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            result = PyFloat_FromDouble(f_result);
 | 
						|
            if (result == NULL) {
 | 
						|
                Py_DECREF(item);
 | 
						|
                Py_DECREF(iter);
 | 
						|
                return NULL;
 | 
						|
            }
 | 
						|
            temp = PyNumber_Multiply(result, item);
 | 
						|
            Py_DECREF(result);
 | 
						|
            Py_DECREF(item);
 | 
						|
            result = temp;
 | 
						|
            if (result == NULL) {
 | 
						|
                Py_DECREF(iter);
 | 
						|
                return NULL;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    /* Consume rest of the iterable (if any) that could not be handled
 | 
						|
     * by specialized functions above.*/
 | 
						|
    for(;;) {
 | 
						|
        item = PyIter_Next(iter);
 | 
						|
        if (item == NULL) {
 | 
						|
            /* error, or end-of-sequence */
 | 
						|
            if (PyErr_Occurred()) {
 | 
						|
                Py_DECREF(result);
 | 
						|
                result = NULL;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        temp = PyNumber_Multiply(result, item);
 | 
						|
        Py_DECREF(result);
 | 
						|
        Py_DECREF(item);
 | 
						|
        result = temp;
 | 
						|
        if (result == NULL)
 | 
						|
            break;
 | 
						|
    }
 | 
						|
    Py_DECREF(iter);
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* least significant 64 bits of the odd part of factorial(n), for n in range(128).
 | 
						|
 | 
						|
Python code to generate the values:
 | 
						|
 | 
						|
    import math
 | 
						|
 | 
						|
    for n in range(128):
 | 
						|
        fac = math.factorial(n)
 | 
						|
        fac_odd_part = fac // (fac & -fac)
 | 
						|
        reduced_fac_odd_part = fac_odd_part % (2**64)
 | 
						|
        print(f"{reduced_fac_odd_part:#018x}u")
 | 
						|
*/
 | 
						|
static const uint64_t reduced_factorial_odd_part[] = {
 | 
						|
    0x0000000000000001u, 0x0000000000000001u, 0x0000000000000001u, 0x0000000000000003u,
 | 
						|
    0x0000000000000003u, 0x000000000000000fu, 0x000000000000002du, 0x000000000000013bu,
 | 
						|
    0x000000000000013bu, 0x0000000000000b13u, 0x000000000000375fu, 0x0000000000026115u,
 | 
						|
    0x000000000007233fu, 0x00000000005cca33u, 0x0000000002898765u, 0x00000000260eeeebu,
 | 
						|
    0x00000000260eeeebu, 0x0000000286fddd9bu, 0x00000016beecca73u, 0x000001b02b930689u,
 | 
						|
    0x00000870d9df20adu, 0x0000b141df4dae31u, 0x00079dd498567c1bu, 0x00af2e19afc5266du,
 | 
						|
    0x020d8a4d0f4f7347u, 0x335281867ec241efu, 0x9b3093d46fdd5923u, 0x5e1f9767cc5866b1u,
 | 
						|
    0x92dd23d6966aced7u, 0xa30d0f4f0a196e5bu, 0x8dc3e5a1977d7755u, 0x2ab8ce915831734bu,
 | 
						|
    0x2ab8ce915831734bu, 0x81d2a0bc5e5fdcabu, 0x9efcac82445da75bu, 0xbc8b95cf58cde171u,
 | 
						|
    0xa0e8444a1f3cecf9u, 0x4191deb683ce3ffdu, 0xddd3878bc84ebfc7u, 0xcb39a64b83ff3751u,
 | 
						|
    0xf8203f7993fc1495u, 0xbd2a2a78b35f4bddu, 0x84757be6b6d13921u, 0x3fbbcfc0b524988bu,
 | 
						|
    0xbd11ed47c8928df9u, 0x3c26b59e41c2f4c5u, 0x677a5137e883fdb3u, 0xff74e943b03b93ddu,
 | 
						|
    0xfe5ebbcb10b2bb97u, 0xb021f1de3235e7e7u, 0x33509eb2e743a58fu, 0x390f9da41279fb7du,
 | 
						|
    0xe5cb0154f031c559u, 0x93074695ba4ddb6du, 0x81c471caa636247fu, 0xe1347289b5a1d749u,
 | 
						|
    0x286f21c3f76ce2ffu, 0x00be84a2173e8ac7u, 0x1595065ca215b88bu, 0xf95877595b018809u,
 | 
						|
    0x9c2efe3c5516f887u, 0x373294604679382bu, 0xaf1ff7a888adcd35u, 0x18ddf279a2c5800bu,
 | 
						|
    0x18ddf279a2c5800bu, 0x505a90e2542582cbu, 0x5bacad2cd8d5dc2bu, 0xfe3152bcbff89f41u,
 | 
						|
    0xe1467e88bf829351u, 0xb8001adb9e31b4d5u, 0x2803ac06a0cbb91fu, 0x1904b5d698805799u,
 | 
						|
    0xe12a648b5c831461u, 0x3516abbd6160cfa9u, 0xac46d25f12fe036du, 0x78bfa1da906b00efu,
 | 
						|
    0xf6390338b7f111bdu, 0x0f25f80f538255d9u, 0x4ec8ca55b8db140fu, 0x4ff670740b9b30a1u,
 | 
						|
    0x8fd032443a07f325u, 0x80dfe7965c83eeb5u, 0xa3dc1714d1213afdu, 0x205b7bbfcdc62007u,
 | 
						|
    0xa78126bbe140a093u, 0x9de1dc61ca7550cfu, 0x84f0046d01b492c5u, 0x2d91810b945de0f3u,
 | 
						|
    0xf5408b7f6008aa71u, 0x43707f4863034149u, 0xdac65fb9679279d5u, 0xc48406e7d1114eb7u,
 | 
						|
    0xa7dc9ed3c88e1271u, 0xfb25b2efdb9cb30du, 0x1bebda0951c4df63u, 0x5c85e975580ee5bdu,
 | 
						|
    0x1591bc60082cb137u, 0x2c38606318ef25d7u, 0x76ca72f7c5c63e27u, 0xf04a75d17baa0915u,
 | 
						|
    0x77458175139ae30du, 0x0e6c1330bc1b9421u, 0xdf87d2b5797e8293u, 0xefa5c703e1e68925u,
 | 
						|
    0x2b6b1b3278b4f6e1u, 0xceee27b382394249u, 0xd74e3829f5dab91du, 0xfdb17989c26b5f1fu,
 | 
						|
    0xc1b7d18781530845u, 0x7b4436b2105a8561u, 0x7ba7c0418372a7d7u, 0x9dbc5c67feb6c639u,
 | 
						|
    0x502686d7f6ff6b8fu, 0x6101855406be7a1fu, 0x9956afb5806930e7u, 0xe1f0ee88af40f7c5u,
 | 
						|
    0x984b057bda5c1151u, 0x9a49819acc13ea05u, 0x8ef0dead0896ef27u, 0x71f7826efe292b21u,
 | 
						|
    0xad80a480e46986efu, 0x01cdc0ebf5e0c6f7u, 0x6e06f839968f68dbu, 0xdd5943ab56e76139u,
 | 
						|
    0xcdcf31bf8604c5e7u, 0x7e2b4a847054a1cbu, 0x0ca75697a4d3d0f5u, 0x4703f53ac514a98bu,
 | 
						|
};
 | 
						|
 | 
						|
/* inverses of reduced_factorial_odd_part values modulo 2**64.
 | 
						|
 | 
						|
Python code to generate the values:
 | 
						|
 | 
						|
    import math
 | 
						|
 | 
						|
    for n in range(128):
 | 
						|
        fac = math.factorial(n)
 | 
						|
        fac_odd_part = fac // (fac & -fac)
 | 
						|
        inverted_fac_odd_part = pow(fac_odd_part, -1, 2**64)
 | 
						|
        print(f"{inverted_fac_odd_part:#018x}u")
 | 
						|
*/
 | 
						|
static const uint64_t inverted_factorial_odd_part[] = {
 | 
						|
    0x0000000000000001u, 0x0000000000000001u, 0x0000000000000001u, 0xaaaaaaaaaaaaaaabu,
 | 
						|
    0xaaaaaaaaaaaaaaabu, 0xeeeeeeeeeeeeeeefu, 0x4fa4fa4fa4fa4fa5u, 0x2ff2ff2ff2ff2ff3u,
 | 
						|
    0x2ff2ff2ff2ff2ff3u, 0x938cc70553e3771bu, 0xb71c27cddd93e49fu, 0xb38e3229fcdee63du,
 | 
						|
    0xe684bb63544a4cbfu, 0xc2f684917ca340fbu, 0xf747c9cba417526du, 0xbb26eb51d7bd49c3u,
 | 
						|
    0xbb26eb51d7bd49c3u, 0xb0a7efb985294093u, 0xbe4b8c69f259eabbu, 0x6854d17ed6dc4fb9u,
 | 
						|
    0xe1aa904c915f4325u, 0x3b8206df131cead1u, 0x79c6009fea76fe13u, 0xd8c5d381633cd365u,
 | 
						|
    0x4841f12b21144677u, 0x4a91ff68200b0d0fu, 0x8f9513a58c4f9e8bu, 0x2b3e690621a42251u,
 | 
						|
    0x4f520f00e03c04e7u, 0x2edf84ee600211d3u, 0xadcaa2764aaacdfdu, 0x161f4f9033f4fe63u,
 | 
						|
    0x161f4f9033f4fe63u, 0xbada2932ea4d3e03u, 0xcec189f3efaa30d3u, 0xf7475bb68330bf91u,
 | 
						|
    0x37eb7bf7d5b01549u, 0x46b35660a4e91555u, 0xa567c12d81f151f7u, 0x4c724007bb2071b1u,
 | 
						|
    0x0f4a0cce58a016bdu, 0xfa21068e66106475u, 0x244ab72b5a318ae1u, 0x366ce67e080d0f23u,
 | 
						|
    0xd666fdae5dd2a449u, 0xd740ddd0acc06a0du, 0xb050bbbb28e6f97bu, 0x70b003fe890a5c75u,
 | 
						|
    0xd03aabff83037427u, 0x13ec4ca72c783bd7u, 0x90282c06afdbd96fu, 0x4414ddb9db4a95d5u,
 | 
						|
    0xa2c68735ae6832e9u, 0xbf72d71455676665u, 0xa8469fab6b759b7fu, 0xc1e55b56e606caf9u,
 | 
						|
    0x40455630fc4a1cffu, 0x0120a7b0046d16f7u, 0xa7c3553b08faef23u, 0x9f0bfd1b08d48639u,
 | 
						|
    0xa433ffce9a304d37u, 0xa22ad1d53915c683u, 0xcb6cbc723ba5dd1du, 0x547fb1b8ab9d0ba3u,
 | 
						|
    0x547fb1b8ab9d0ba3u, 0x8f15a826498852e3u, 0x32e1a03f38880283u, 0x3de4cce63283f0c1u,
 | 
						|
    0x5dfe6667e4da95b1u, 0xfda6eeeef479e47du, 0xf14de991cc7882dfu, 0xe68db79247630ca9u,
 | 
						|
    0xa7d6db8207ee8fa1u, 0x255e1f0fcf034499u, 0xc9a8990e43dd7e65u, 0x3279b6f289702e0fu,
 | 
						|
    0xe7b5905d9b71b195u, 0x03025ba41ff0da69u, 0xb7df3d6d3be55aefu, 0xf89b212ebff2b361u,
 | 
						|
    0xfe856d095996f0adu, 0xd6e533e9fdf20f9du, 0xf8c0e84a63da3255u, 0xa677876cd91b4db7u,
 | 
						|
    0x07ed4f97780d7d9bu, 0x90a8705f258db62fu, 0xa41bbb2be31b1c0du, 0x6ec28690b038383bu,
 | 
						|
    0xdb860c3bb2edd691u, 0x0838286838a980f9u, 0x558417a74b36f77du, 0x71779afc3646ef07u,
 | 
						|
    0x743cda377ccb6e91u, 0x7fdf9f3fe89153c5u, 0xdc97d25df49b9a4bu, 0x76321a778eb37d95u,
 | 
						|
    0x7cbb5e27da3bd487u, 0x9cff4ade1a009de7u, 0x70eb166d05c15197u, 0xdcf0460b71d5fe3du,
 | 
						|
    0x5ac1ee5260b6a3c5u, 0xc922dedfdd78efe1u, 0xe5d381dc3b8eeb9bu, 0xd57e5347bafc6aadu,
 | 
						|
    0x86939040983acd21u, 0x395b9d69740a4ff9u, 0x1467299c8e43d135u, 0x5fe440fcad975cdfu,
 | 
						|
    0xcaa9a39794a6ca8du, 0xf61dbd640868dea1u, 0xac09d98d74843be7u, 0x2b103b9e1a6b4809u,
 | 
						|
    0x2ab92d16960f536fu, 0x6653323d5e3681dfu, 0xefd48c1c0624e2d7u, 0xa496fefe04816f0du,
 | 
						|
    0x1754a7b07bbdd7b1u, 0x23353c829a3852cdu, 0xbf831261abd59097u, 0x57a8e656df0618e1u,
 | 
						|
    0x16e9206c3100680fu, 0xadad4c6ee921dac7u, 0x635f2b3860265353u, 0xdd6d0059f44b3d09u,
 | 
						|
    0xac4dd6b894447dd7u, 0x42ea183eeaa87be3u, 0x15612d1550ee5b5du, 0x226fa19d656cb623u,
 | 
						|
};
 | 
						|
 | 
						|
/* exponent of the largest power of 2 dividing factorial(n), for n in range(68)
 | 
						|
 | 
						|
Python code to generate the values:
 | 
						|
 | 
						|
import math
 | 
						|
 | 
						|
for n in range(128):
 | 
						|
    fac = math.factorial(n)
 | 
						|
    fac_trailing_zeros = (fac & -fac).bit_length() - 1
 | 
						|
    print(fac_trailing_zeros)
 | 
						|
*/
 | 
						|
 | 
						|
static const uint8_t factorial_trailing_zeros[] = {
 | 
						|
     0,  0,  1,  1,  3,  3,  4,  4,  7,  7,  8,  8, 10, 10, 11, 11,  //  0-15
 | 
						|
    15, 15, 16, 16, 18, 18, 19, 19, 22, 22, 23, 23, 25, 25, 26, 26,  // 16-31
 | 
						|
    31, 31, 32, 32, 34, 34, 35, 35, 38, 38, 39, 39, 41, 41, 42, 42,  // 32-47
 | 
						|
    46, 46, 47, 47, 49, 49, 50, 50, 53, 53, 54, 54, 56, 56, 57, 57,  // 48-63
 | 
						|
    63, 63, 64, 64, 66, 66, 67, 67, 70, 70, 71, 71, 73, 73, 74, 74,  // 64-79
 | 
						|
    78, 78, 79, 79, 81, 81, 82, 82, 85, 85, 86, 86, 88, 88, 89, 89,  // 80-95
 | 
						|
    94, 94, 95, 95, 97, 97, 98, 98, 101, 101, 102, 102, 104, 104, 105, 105,  // 96-111
 | 
						|
    109, 109, 110, 110, 112, 112, 113, 113, 116, 116, 117, 117, 119, 119, 120, 120,  // 112-127
 | 
						|
};
 | 
						|
 | 
						|
/* Number of permutations and combinations.
 | 
						|
 * P(n, k) = n! / (n-k)!
 | 
						|
 * C(n, k) = P(n, k) / k!
 | 
						|
 */
 | 
						|
 | 
						|
/* Calculate C(n, k) for n in the 63-bit range. */
 | 
						|
static PyObject *
 | 
						|
perm_comb_small(unsigned long long n, unsigned long long k, int iscomb)
 | 
						|
{
 | 
						|
    if (k == 0) {
 | 
						|
        return PyLong_FromLong(1);
 | 
						|
    }
 | 
						|
 | 
						|
    /* For small enough n and k the result fits in the 64-bit range and can
 | 
						|
     * be calculated without allocating intermediate PyLong objects. */
 | 
						|
    if (iscomb) {
 | 
						|
        /* Maps k to the maximal n so that 2*k-1 <= n <= 127 and C(n, k)
 | 
						|
         * fits into a uint64_t.  Exclude k = 1, because the second fast
 | 
						|
         * path is faster for this case.*/
 | 
						|
        static const unsigned char fast_comb_limits1[] = {
 | 
						|
            0, 0, 127, 127, 127, 127, 127, 127,  // 0-7
 | 
						|
            127, 127, 127, 127, 127, 127, 127, 127,  // 8-15
 | 
						|
            116, 105, 97, 91, 86, 82, 78, 76,  // 16-23
 | 
						|
            74, 72, 71, 70, 69, 68, 68, 67,  // 24-31
 | 
						|
            67, 67, 67,  // 32-34
 | 
						|
        };
 | 
						|
        if (k < Py_ARRAY_LENGTH(fast_comb_limits1) && n <= fast_comb_limits1[k]) {
 | 
						|
            /*
 | 
						|
                comb(n, k) fits into a uint64_t. We compute it as
 | 
						|
 | 
						|
                    comb_odd_part << shift
 | 
						|
 | 
						|
                where 2**shift is the largest power of two dividing comb(n, k)
 | 
						|
                and comb_odd_part is comb(n, k) >> shift. comb_odd_part can be
 | 
						|
                calculated efficiently via arithmetic modulo 2**64, using three
 | 
						|
                lookups and two uint64_t multiplications.
 | 
						|
            */
 | 
						|
            uint64_t comb_odd_part = reduced_factorial_odd_part[n]
 | 
						|
                                   * inverted_factorial_odd_part[k]
 | 
						|
                                   * inverted_factorial_odd_part[n - k];
 | 
						|
            int shift = factorial_trailing_zeros[n]
 | 
						|
                      - factorial_trailing_zeros[k]
 | 
						|
                      - factorial_trailing_zeros[n - k];
 | 
						|
            return PyLong_FromUnsignedLongLong(comb_odd_part << shift);
 | 
						|
        }
 | 
						|
 | 
						|
        /* Maps k to the maximal n so that 2*k-1 <= n <= 127 and C(n, k)*k
 | 
						|
         * fits into a long long (which is at least 64 bit).  Only contains
 | 
						|
         * items larger than in fast_comb_limits1. */
 | 
						|
        static const unsigned long long fast_comb_limits2[] = {
 | 
						|
            0, ULLONG_MAX, 4294967296ULL, 3329022, 102570, 13467, 3612, 1449,  // 0-7
 | 
						|
            746, 453, 308, 227, 178, 147,  // 8-13
 | 
						|
        };
 | 
						|
        if (k < Py_ARRAY_LENGTH(fast_comb_limits2) && n <= fast_comb_limits2[k]) {
 | 
						|
            /* C(n, k) = C(n, k-1) * (n-k+1) / k */
 | 
						|
            unsigned long long result = n;
 | 
						|
            for (unsigned long long i = 1; i < k;) {
 | 
						|
                result *= --n;
 | 
						|
                result /= ++i;
 | 
						|
            }
 | 
						|
            return PyLong_FromUnsignedLongLong(result);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        /* Maps k to the maximal n so that k <= n and P(n, k)
 | 
						|
         * fits into a long long (which is at least 64 bit). */
 | 
						|
        static const unsigned long long fast_perm_limits[] = {
 | 
						|
            0, ULLONG_MAX, 4294967296ULL, 2642246, 65537, 7133, 1627, 568,  // 0-7
 | 
						|
            259, 142, 88, 61, 45, 36, 30, 26,  // 8-15
 | 
						|
            24, 22, 21, 20, 20,  // 16-20
 | 
						|
        };
 | 
						|
        if (k < Py_ARRAY_LENGTH(fast_perm_limits) && n <= fast_perm_limits[k]) {
 | 
						|
            if (n <= 127) {
 | 
						|
                /* P(n, k) fits into a uint64_t. */
 | 
						|
                uint64_t perm_odd_part = reduced_factorial_odd_part[n]
 | 
						|
                                       * inverted_factorial_odd_part[n - k];
 | 
						|
                int shift = factorial_trailing_zeros[n]
 | 
						|
                          - factorial_trailing_zeros[n - k];
 | 
						|
                return PyLong_FromUnsignedLongLong(perm_odd_part << shift);
 | 
						|
            }
 | 
						|
 | 
						|
            /* P(n, k) = P(n, k-1) * (n-k+1) */
 | 
						|
            unsigned long long result = n;
 | 
						|
            for (unsigned long long i = 1; i < k;) {
 | 
						|
                result *= --n;
 | 
						|
                ++i;
 | 
						|
            }
 | 
						|
            return PyLong_FromUnsignedLongLong(result);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* For larger n use recursive formulas:
 | 
						|
     *
 | 
						|
     *   P(n, k) = P(n, j) * P(n-j, k-j)
 | 
						|
     *   C(n, k) = C(n, j) * C(n-j, k-j) // C(k, j)
 | 
						|
     */
 | 
						|
    unsigned long long j = k / 2;
 | 
						|
    PyObject *a, *b;
 | 
						|
    a = perm_comb_small(n, j, iscomb);
 | 
						|
    if (a == NULL) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    b = perm_comb_small(n - j, k - j, iscomb);
 | 
						|
    if (b == NULL) {
 | 
						|
        goto error;
 | 
						|
    }
 | 
						|
    Py_SETREF(a, PyNumber_Multiply(a, b));
 | 
						|
    Py_DECREF(b);
 | 
						|
    if (iscomb && a != NULL) {
 | 
						|
        b = perm_comb_small(k, j, 1);
 | 
						|
        if (b == NULL) {
 | 
						|
            goto error;
 | 
						|
        }
 | 
						|
        Py_SETREF(a, PyNumber_FloorDivide(a, b));
 | 
						|
        Py_DECREF(b);
 | 
						|
    }
 | 
						|
    return a;
 | 
						|
 | 
						|
error:
 | 
						|
    Py_DECREF(a);
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/* Calculate P(n, k) or C(n, k) using recursive formulas.
 | 
						|
 * It is more efficient than sequential multiplication thanks to
 | 
						|
 * Karatsuba multiplication.
 | 
						|
 */
 | 
						|
static PyObject *
 | 
						|
perm_comb(PyObject *n, unsigned long long k, int iscomb)
 | 
						|
{
 | 
						|
    if (k == 0) {
 | 
						|
        return PyLong_FromLong(1);
 | 
						|
    }
 | 
						|
    if (k == 1) {
 | 
						|
        Py_INCREF(n);
 | 
						|
        return n;
 | 
						|
    }
 | 
						|
 | 
						|
    /* P(n, k) = P(n, j) * P(n-j, k-j) */
 | 
						|
    /* C(n, k) = C(n, j) * C(n-j, k-j) // C(k, j) */
 | 
						|
    unsigned long long j = k / 2;
 | 
						|
    PyObject *a, *b;
 | 
						|
    a = perm_comb(n, j, iscomb);
 | 
						|
    if (a == NULL) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    PyObject *t = PyLong_FromUnsignedLongLong(j);
 | 
						|
    if (t == NULL) {
 | 
						|
        goto error;
 | 
						|
    }
 | 
						|
    n = PyNumber_Subtract(n, t);
 | 
						|
    Py_DECREF(t);
 | 
						|
    if (n == NULL) {
 | 
						|
        goto error;
 | 
						|
    }
 | 
						|
    b = perm_comb(n, k - j, iscomb);
 | 
						|
    Py_DECREF(n);
 | 
						|
    if (b == NULL) {
 | 
						|
        goto error;
 | 
						|
    }
 | 
						|
    Py_SETREF(a, PyNumber_Multiply(a, b));
 | 
						|
    Py_DECREF(b);
 | 
						|
    if (iscomb && a != NULL) {
 | 
						|
        b = perm_comb_small(k, j, 1);
 | 
						|
        if (b == NULL) {
 | 
						|
            goto error;
 | 
						|
        }
 | 
						|
        Py_SETREF(a, PyNumber_FloorDivide(a, b));
 | 
						|
        Py_DECREF(b);
 | 
						|
    }
 | 
						|
    return a;
 | 
						|
 | 
						|
error:
 | 
						|
    Py_DECREF(a);
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
math.perm
 | 
						|
 | 
						|
    n: object
 | 
						|
    k: object = None
 | 
						|
    /
 | 
						|
 | 
						|
Number of ways to choose k items from n items without repetition and with order.
 | 
						|
 | 
						|
Evaluates to n! / (n - k)! when k <= n and evaluates
 | 
						|
to zero when k > n.
 | 
						|
 | 
						|
If k is not specified or is None, then k defaults to n
 | 
						|
and the function returns n!.
 | 
						|
 | 
						|
Raises TypeError if either of the arguments are not integers.
 | 
						|
Raises ValueError if either of the arguments are negative.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_perm_impl(PyObject *module, PyObject *n, PyObject *k)
 | 
						|
/*[clinic end generated code: output=e021a25469653e23 input=5311c5a00f359b53]*/
 | 
						|
{
 | 
						|
    PyObject *result = NULL;
 | 
						|
    int overflow, cmp;
 | 
						|
    long long ki, ni;
 | 
						|
 | 
						|
    if (k == Py_None) {
 | 
						|
        return math_factorial(module, n);
 | 
						|
    }
 | 
						|
    n = PyNumber_Index(n);
 | 
						|
    if (n == NULL) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    k = PyNumber_Index(k);
 | 
						|
    if (k == NULL) {
 | 
						|
        Py_DECREF(n);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    assert(PyLong_CheckExact(n) && PyLong_CheckExact(k));
 | 
						|
 | 
						|
    if (Py_SIZE(n) < 0) {
 | 
						|
        PyErr_SetString(PyExc_ValueError,
 | 
						|
                        "n must be a non-negative integer");
 | 
						|
        goto error;
 | 
						|
    }
 | 
						|
    if (Py_SIZE(k) < 0) {
 | 
						|
        PyErr_SetString(PyExc_ValueError,
 | 
						|
                        "k must be a non-negative integer");
 | 
						|
        goto error;
 | 
						|
    }
 | 
						|
 | 
						|
    cmp = PyObject_RichCompareBool(n, k, Py_LT);
 | 
						|
    if (cmp != 0) {
 | 
						|
        if (cmp > 0) {
 | 
						|
            result = PyLong_FromLong(0);
 | 
						|
            goto done;
 | 
						|
        }
 | 
						|
        goto error;
 | 
						|
    }
 | 
						|
 | 
						|
    ki = PyLong_AsLongLongAndOverflow(k, &overflow);
 | 
						|
    assert(overflow >= 0 && !PyErr_Occurred());
 | 
						|
    if (overflow > 0) {
 | 
						|
        PyErr_Format(PyExc_OverflowError,
 | 
						|
                     "k must not exceed %lld",
 | 
						|
                     LLONG_MAX);
 | 
						|
        goto error;
 | 
						|
    }
 | 
						|
    assert(ki >= 0);
 | 
						|
 | 
						|
    ni = PyLong_AsLongLongAndOverflow(n, &overflow);
 | 
						|
    assert(overflow >= 0 && !PyErr_Occurred());
 | 
						|
    if (!overflow && ki > 1) {
 | 
						|
        assert(ni >= 0);
 | 
						|
        result = perm_comb_small((unsigned long long)ni,
 | 
						|
                                 (unsigned long long)ki, 0);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        result = perm_comb(n, (unsigned long long)ki, 0);
 | 
						|
    }
 | 
						|
 | 
						|
done:
 | 
						|
    Py_DECREF(n);
 | 
						|
    Py_DECREF(k);
 | 
						|
    return result;
 | 
						|
 | 
						|
error:
 | 
						|
    Py_DECREF(n);
 | 
						|
    Py_DECREF(k);
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
math.comb
 | 
						|
 | 
						|
    n: object
 | 
						|
    k: object
 | 
						|
    /
 | 
						|
 | 
						|
Number of ways to choose k items from n items without repetition and without order.
 | 
						|
 | 
						|
Evaluates to n! / (k! * (n - k)!) when k <= n and evaluates
 | 
						|
to zero when k > n.
 | 
						|
 | 
						|
Also called the binomial coefficient because it is equivalent
 | 
						|
to the coefficient of k-th term in polynomial expansion of the
 | 
						|
expression (1 + x)**n.
 | 
						|
 | 
						|
Raises TypeError if either of the arguments are not integers.
 | 
						|
Raises ValueError if either of the arguments are negative.
 | 
						|
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_comb_impl(PyObject *module, PyObject *n, PyObject *k)
 | 
						|
/*[clinic end generated code: output=bd2cec8d854f3493 input=9a05315af2518709]*/
 | 
						|
{
 | 
						|
    PyObject *result = NULL, *temp;
 | 
						|
    int overflow, cmp;
 | 
						|
    long long ki, ni;
 | 
						|
 | 
						|
    n = PyNumber_Index(n);
 | 
						|
    if (n == NULL) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    k = PyNumber_Index(k);
 | 
						|
    if (k == NULL) {
 | 
						|
        Py_DECREF(n);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    assert(PyLong_CheckExact(n) && PyLong_CheckExact(k));
 | 
						|
 | 
						|
    if (Py_SIZE(n) < 0) {
 | 
						|
        PyErr_SetString(PyExc_ValueError,
 | 
						|
                        "n must be a non-negative integer");
 | 
						|
        goto error;
 | 
						|
    }
 | 
						|
    if (Py_SIZE(k) < 0) {
 | 
						|
        PyErr_SetString(PyExc_ValueError,
 | 
						|
                        "k must be a non-negative integer");
 | 
						|
        goto error;
 | 
						|
    }
 | 
						|
 | 
						|
    ni = PyLong_AsLongLongAndOverflow(n, &overflow);
 | 
						|
    assert(overflow >= 0 && !PyErr_Occurred());
 | 
						|
    if (!overflow) {
 | 
						|
        assert(ni >= 0);
 | 
						|
        ki = PyLong_AsLongLongAndOverflow(k, &overflow);
 | 
						|
        assert(overflow >= 0 && !PyErr_Occurred());
 | 
						|
        if (overflow || ki > ni) {
 | 
						|
            result = PyLong_FromLong(0);
 | 
						|
            goto done;
 | 
						|
        }
 | 
						|
        assert(ki >= 0);
 | 
						|
 | 
						|
        ki = Py_MIN(ki, ni - ki);
 | 
						|
        if (ki > 1) {
 | 
						|
            result = perm_comb_small((unsigned long long)ni,
 | 
						|
                                     (unsigned long long)ki, 1);
 | 
						|
            goto done;
 | 
						|
        }
 | 
						|
        /* For k == 1 just return the original n in perm_comb(). */
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        /* k = min(k, n - k) */
 | 
						|
        temp = PyNumber_Subtract(n, k);
 | 
						|
        if (temp == NULL) {
 | 
						|
            goto error;
 | 
						|
        }
 | 
						|
        if (Py_SIZE(temp) < 0) {
 | 
						|
            Py_DECREF(temp);
 | 
						|
            result = PyLong_FromLong(0);
 | 
						|
            goto done;
 | 
						|
        }
 | 
						|
        cmp = PyObject_RichCompareBool(temp, k, Py_LT);
 | 
						|
        if (cmp > 0) {
 | 
						|
            Py_SETREF(k, temp);
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            Py_DECREF(temp);
 | 
						|
            if (cmp < 0) {
 | 
						|
                goto error;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        ki = PyLong_AsLongLongAndOverflow(k, &overflow);
 | 
						|
        assert(overflow >= 0 && !PyErr_Occurred());
 | 
						|
        if (overflow) {
 | 
						|
            PyErr_Format(PyExc_OverflowError,
 | 
						|
                         "min(n - k, k) must not exceed %lld",
 | 
						|
                         LLONG_MAX);
 | 
						|
            goto error;
 | 
						|
        }
 | 
						|
        assert(ki >= 0);
 | 
						|
    }
 | 
						|
 | 
						|
    result = perm_comb(n, (unsigned long long)ki, 1);
 | 
						|
 | 
						|
done:
 | 
						|
    Py_DECREF(n);
 | 
						|
    Py_DECREF(k);
 | 
						|
    return result;
 | 
						|
 | 
						|
error:
 | 
						|
    Py_DECREF(n);
 | 
						|
    Py_DECREF(k);
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
math.nextafter
 | 
						|
 | 
						|
    x: double
 | 
						|
    y: double
 | 
						|
    /
 | 
						|
 | 
						|
Return the next floating-point value after x towards y.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_nextafter_impl(PyObject *module, double x, double y)
 | 
						|
/*[clinic end generated code: output=750c8266c1c540ce input=02b2d50cd1d9f9b6]*/
 | 
						|
{
 | 
						|
#if defined(_AIX)
 | 
						|
    if (x == y) {
 | 
						|
        /* On AIX 7.1, libm nextafter(-0.0, +0.0) returns -0.0.
 | 
						|
           Bug fixed in bos.adt.libm 7.2.2.0 by APAR IV95512. */
 | 
						|
        return PyFloat_FromDouble(y);
 | 
						|
    }
 | 
						|
    if (Py_IS_NAN(x)) {
 | 
						|
        return PyFloat_FromDouble(x);
 | 
						|
    }
 | 
						|
    if (Py_IS_NAN(y)) {
 | 
						|
        return PyFloat_FromDouble(y);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    return PyFloat_FromDouble(nextafter(x, y));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
math.ulp -> double
 | 
						|
 | 
						|
    x: double
 | 
						|
    /
 | 
						|
 | 
						|
Return the value of the least significant bit of the float x.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static double
 | 
						|
math_ulp_impl(PyObject *module, double x)
 | 
						|
/*[clinic end generated code: output=f5207867a9384dd4 input=31f9bfbbe373fcaa]*/
 | 
						|
{
 | 
						|
    if (Py_IS_NAN(x)) {
 | 
						|
        return x;
 | 
						|
    }
 | 
						|
    x = fabs(x);
 | 
						|
    if (Py_IS_INFINITY(x)) {
 | 
						|
        return x;
 | 
						|
    }
 | 
						|
    double inf = m_inf();
 | 
						|
    double x2 = nextafter(x, inf);
 | 
						|
    if (Py_IS_INFINITY(x2)) {
 | 
						|
        /* special case: x is the largest positive representable float */
 | 
						|
        x2 = nextafter(x, -inf);
 | 
						|
        return x - x2;
 | 
						|
    }
 | 
						|
    return x2 - x;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
math_exec(PyObject *module)
 | 
						|
{
 | 
						|
    if (PyModule_AddObject(module, "pi", PyFloat_FromDouble(Py_MATH_PI)) < 0) {
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    if (PyModule_AddObject(module, "e", PyFloat_FromDouble(Py_MATH_E)) < 0) {
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    // 2pi
 | 
						|
    if (PyModule_AddObject(module, "tau", PyFloat_FromDouble(Py_MATH_TAU)) < 0) {
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    if (PyModule_AddObject(module, "inf", PyFloat_FromDouble(m_inf())) < 0) {
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
#if !defined(PY_NO_SHORT_FLOAT_REPR) || defined(Py_NAN)
 | 
						|
    if (PyModule_AddObject(module, "nan", PyFloat_FromDouble(m_nan())) < 0) {
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static PyMethodDef math_methods[] = {
 | 
						|
    {"acos",            math_acos,      METH_O,         math_acos_doc},
 | 
						|
    {"acosh",           math_acosh,     METH_O,         math_acosh_doc},
 | 
						|
    {"asin",            math_asin,      METH_O,         math_asin_doc},
 | 
						|
    {"asinh",           math_asinh,     METH_O,         math_asinh_doc},
 | 
						|
    {"atan",            math_atan,      METH_O,         math_atan_doc},
 | 
						|
    {"atan2",           (PyCFunction)(void(*)(void))math_atan2,     METH_FASTCALL,  math_atan2_doc},
 | 
						|
    {"atanh",           math_atanh,     METH_O,         math_atanh_doc},
 | 
						|
    {"cbrt",            math_cbrt,      METH_O,         math_cbrt_doc},
 | 
						|
    MATH_CEIL_METHODDEF
 | 
						|
    {"copysign",        (PyCFunction)(void(*)(void))math_copysign,  METH_FASTCALL,  math_copysign_doc},
 | 
						|
    {"cos",             math_cos,       METH_O,         math_cos_doc},
 | 
						|
    {"cosh",            math_cosh,      METH_O,         math_cosh_doc},
 | 
						|
    MATH_DEGREES_METHODDEF
 | 
						|
    MATH_DIST_METHODDEF
 | 
						|
    {"erf",             math_erf,       METH_O,         math_erf_doc},
 | 
						|
    {"erfc",            math_erfc,      METH_O,         math_erfc_doc},
 | 
						|
    {"exp",             math_exp,       METH_O,         math_exp_doc},
 | 
						|
    {"exp2",            math_exp2,      METH_O,         math_exp2_doc},
 | 
						|
    {"expm1",           math_expm1,     METH_O,         math_expm1_doc},
 | 
						|
    {"fabs",            math_fabs,      METH_O,         math_fabs_doc},
 | 
						|
    MATH_FACTORIAL_METHODDEF
 | 
						|
    MATH_FLOOR_METHODDEF
 | 
						|
    MATH_FMOD_METHODDEF
 | 
						|
    MATH_FREXP_METHODDEF
 | 
						|
    MATH_FSUM_METHODDEF
 | 
						|
    {"gamma",           math_gamma,     METH_O,         math_gamma_doc},
 | 
						|
    {"gcd",             (PyCFunction)(void(*)(void))math_gcd,       METH_FASTCALL,  math_gcd_doc},
 | 
						|
    {"hypot",           (PyCFunction)(void(*)(void))math_hypot,     METH_FASTCALL,  math_hypot_doc},
 | 
						|
    MATH_ISCLOSE_METHODDEF
 | 
						|
    MATH_ISFINITE_METHODDEF
 | 
						|
    MATH_ISINF_METHODDEF
 | 
						|
    MATH_ISNAN_METHODDEF
 | 
						|
    MATH_ISQRT_METHODDEF
 | 
						|
    {"lcm",             (PyCFunction)(void(*)(void))math_lcm,       METH_FASTCALL,  math_lcm_doc},
 | 
						|
    MATH_LDEXP_METHODDEF
 | 
						|
    {"lgamma",          math_lgamma,    METH_O,         math_lgamma_doc},
 | 
						|
    MATH_LOG_METHODDEF
 | 
						|
    {"log1p",           math_log1p,     METH_O,         math_log1p_doc},
 | 
						|
    MATH_LOG10_METHODDEF
 | 
						|
    MATH_LOG2_METHODDEF
 | 
						|
    MATH_MODF_METHODDEF
 | 
						|
    MATH_POW_METHODDEF
 | 
						|
    MATH_RADIANS_METHODDEF
 | 
						|
    {"remainder",       (PyCFunction)(void(*)(void))math_remainder, METH_FASTCALL,  math_remainder_doc},
 | 
						|
    {"sin",             math_sin,       METH_O,         math_sin_doc},
 | 
						|
    {"sinh",            math_sinh,      METH_O,         math_sinh_doc},
 | 
						|
    {"sqrt",            math_sqrt,      METH_O,         math_sqrt_doc},
 | 
						|
    {"tan",             math_tan,       METH_O,         math_tan_doc},
 | 
						|
    {"tanh",            math_tanh,      METH_O,         math_tanh_doc},
 | 
						|
    MATH_TRUNC_METHODDEF
 | 
						|
    MATH_PROD_METHODDEF
 | 
						|
    MATH_PERM_METHODDEF
 | 
						|
    MATH_COMB_METHODDEF
 | 
						|
    MATH_NEXTAFTER_METHODDEF
 | 
						|
    MATH_ULP_METHODDEF
 | 
						|
    {NULL,              NULL}           /* sentinel */
 | 
						|
};
 | 
						|
 | 
						|
static PyModuleDef_Slot math_slots[] = {
 | 
						|
    {Py_mod_exec, math_exec},
 | 
						|
    {0, NULL}
 | 
						|
};
 | 
						|
 | 
						|
PyDoc_STRVAR(module_doc,
 | 
						|
"This module provides access to the mathematical functions\n"
 | 
						|
"defined by the C standard.");
 | 
						|
 | 
						|
static struct PyModuleDef mathmodule = {
 | 
						|
    PyModuleDef_HEAD_INIT,
 | 
						|
    .m_name = "math",
 | 
						|
    .m_doc = module_doc,
 | 
						|
    .m_size = 0,
 | 
						|
    .m_methods = math_methods,
 | 
						|
    .m_slots = math_slots,
 | 
						|
};
 | 
						|
 | 
						|
PyMODINIT_FUNC
 | 
						|
PyInit_math(void)
 | 
						|
{
 | 
						|
    return PyModuleDef_Init(&mathmodule);
 | 
						|
}
 |