mirror of
				https://github.com/python/cpython.git
				synced 2025-11-04 03:44:55 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			2019 lines
		
	
	
	
		
			60 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2019 lines
		
	
	
	
		
			60 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
#include "Python.h"
 | 
						|
#include "internal/mem.h"
 | 
						|
#include "internal/pystate.h"
 | 
						|
 | 
						|
#include <stdbool.h>
 | 
						|
 | 
						|
 | 
						|
/* Defined in tracemalloc.c */
 | 
						|
extern void _PyMem_DumpTraceback(int fd, const void *ptr);
 | 
						|
 | 
						|
 | 
						|
/* Python's malloc wrappers (see pymem.h) */
 | 
						|
 | 
						|
#undef  uint
 | 
						|
#define uint    unsigned int    /* assuming >= 16 bits */
 | 
						|
 | 
						|
/* Forward declaration */
 | 
						|
static void* _PyMem_DebugRawMalloc(void *ctx, size_t size);
 | 
						|
static void* _PyMem_DebugRawCalloc(void *ctx, size_t nelem, size_t elsize);
 | 
						|
static void* _PyMem_DebugRawRealloc(void *ctx, void *ptr, size_t size);
 | 
						|
static void _PyMem_DebugRawFree(void *ctx, void *ptr);
 | 
						|
 | 
						|
static void* _PyMem_DebugMalloc(void *ctx, size_t size);
 | 
						|
static void* _PyMem_DebugCalloc(void *ctx, size_t nelem, size_t elsize);
 | 
						|
static void* _PyMem_DebugRealloc(void *ctx, void *ptr, size_t size);
 | 
						|
static void _PyMem_DebugFree(void *ctx, void *p);
 | 
						|
 | 
						|
static void _PyObject_DebugDumpAddress(const void *p);
 | 
						|
static void _PyMem_DebugCheckAddress(char api_id, const void *p);
 | 
						|
 | 
						|
#if defined(__has_feature)  /* Clang */
 | 
						|
 #if __has_feature(address_sanitizer)  /* is ASAN enabled? */
 | 
						|
  #define ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS \
 | 
						|
        __attribute__((no_address_safety_analysis))
 | 
						|
 #else
 | 
						|
  #define ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS
 | 
						|
 #endif
 | 
						|
#else
 | 
						|
 #if defined(__SANITIZE_ADDRESS__)  /* GCC 4.8.x, is ASAN enabled? */
 | 
						|
  #define ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS \
 | 
						|
        __attribute__((no_address_safety_analysis))
 | 
						|
 #else
 | 
						|
  #define ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS
 | 
						|
 #endif
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef WITH_PYMALLOC
 | 
						|
 | 
						|
#ifdef MS_WINDOWS
 | 
						|
#  include <windows.h>
 | 
						|
#elif defined(HAVE_MMAP)
 | 
						|
#  include <sys/mman.h>
 | 
						|
#  ifdef MAP_ANONYMOUS
 | 
						|
#    define ARENAS_USE_MMAP
 | 
						|
#  endif
 | 
						|
#endif
 | 
						|
 | 
						|
/* Forward declaration */
 | 
						|
static void* _PyObject_Malloc(void *ctx, size_t size);
 | 
						|
static void* _PyObject_Calloc(void *ctx, size_t nelem, size_t elsize);
 | 
						|
static void _PyObject_Free(void *ctx, void *p);
 | 
						|
static void* _PyObject_Realloc(void *ctx, void *ptr, size_t size);
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
static void *
 | 
						|
_PyMem_RawMalloc(void *ctx, size_t size)
 | 
						|
{
 | 
						|
    /* PyMem_RawMalloc(0) means malloc(1). Some systems would return NULL
 | 
						|
       for malloc(0), which would be treated as an error. Some platforms would
 | 
						|
       return a pointer with no memory behind it, which would break pymalloc.
 | 
						|
       To solve these problems, allocate an extra byte. */
 | 
						|
    if (size == 0)
 | 
						|
        size = 1;
 | 
						|
    return malloc(size);
 | 
						|
}
 | 
						|
 | 
						|
static void *
 | 
						|
_PyMem_RawCalloc(void *ctx, size_t nelem, size_t elsize)
 | 
						|
{
 | 
						|
    /* PyMem_RawCalloc(0, 0) means calloc(1, 1). Some systems would return NULL
 | 
						|
       for calloc(0, 0), which would be treated as an error. Some platforms
 | 
						|
       would return a pointer with no memory behind it, which would break
 | 
						|
       pymalloc.  To solve these problems, allocate an extra byte. */
 | 
						|
    if (nelem == 0 || elsize == 0) {
 | 
						|
        nelem = 1;
 | 
						|
        elsize = 1;
 | 
						|
    }
 | 
						|
    return calloc(nelem, elsize);
 | 
						|
}
 | 
						|
 | 
						|
static void *
 | 
						|
_PyMem_RawRealloc(void *ctx, void *ptr, size_t size)
 | 
						|
{
 | 
						|
    if (size == 0)
 | 
						|
        size = 1;
 | 
						|
    return realloc(ptr, size);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
_PyMem_RawFree(void *ctx, void *ptr)
 | 
						|
{
 | 
						|
    free(ptr);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#ifdef MS_WINDOWS
 | 
						|
static void *
 | 
						|
_PyObject_ArenaVirtualAlloc(void *ctx, size_t size)
 | 
						|
{
 | 
						|
    return VirtualAlloc(NULL, size,
 | 
						|
                        MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
_PyObject_ArenaVirtualFree(void *ctx, void *ptr, size_t size)
 | 
						|
{
 | 
						|
    VirtualFree(ptr, 0, MEM_RELEASE);
 | 
						|
}
 | 
						|
 | 
						|
#elif defined(ARENAS_USE_MMAP)
 | 
						|
static void *
 | 
						|
_PyObject_ArenaMmap(void *ctx, size_t size)
 | 
						|
{
 | 
						|
    void *ptr;
 | 
						|
    ptr = mmap(NULL, size, PROT_READ|PROT_WRITE,
 | 
						|
               MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
 | 
						|
    if (ptr == MAP_FAILED)
 | 
						|
        return NULL;
 | 
						|
    assert(ptr != NULL);
 | 
						|
    return ptr;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
_PyObject_ArenaMunmap(void *ctx, void *ptr, size_t size)
 | 
						|
{
 | 
						|
    munmap(ptr, size);
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
static void *
 | 
						|
_PyObject_ArenaMalloc(void *ctx, size_t size)
 | 
						|
{
 | 
						|
    return malloc(size);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
_PyObject_ArenaFree(void *ctx, void *ptr, size_t size)
 | 
						|
{
 | 
						|
    free(ptr);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
#define PYRAW_FUNCS _PyMem_RawMalloc, _PyMem_RawCalloc, _PyMem_RawRealloc, _PyMem_RawFree
 | 
						|
#ifdef WITH_PYMALLOC
 | 
						|
#  define PYOBJ_FUNCS _PyObject_Malloc, _PyObject_Calloc, _PyObject_Realloc, _PyObject_Free
 | 
						|
#else
 | 
						|
#  define PYOBJ_FUNCS PYRAW_FUNCS
 | 
						|
#endif
 | 
						|
#define PYMEM_FUNCS PYOBJ_FUNCS
 | 
						|
 | 
						|
typedef struct {
 | 
						|
    /* We tag each block with an API ID in order to tag API violations */
 | 
						|
    char api_id;
 | 
						|
    PyMemAllocatorEx alloc;
 | 
						|
} debug_alloc_api_t;
 | 
						|
static struct {
 | 
						|
    debug_alloc_api_t raw;
 | 
						|
    debug_alloc_api_t mem;
 | 
						|
    debug_alloc_api_t obj;
 | 
						|
} _PyMem_Debug = {
 | 
						|
    {'r', {NULL, PYRAW_FUNCS}},
 | 
						|
    {'m', {NULL, PYMEM_FUNCS}},
 | 
						|
    {'o', {NULL, PYOBJ_FUNCS}}
 | 
						|
    };
 | 
						|
 | 
						|
#define PYRAWDBG_FUNCS \
 | 
						|
    _PyMem_DebugRawMalloc, _PyMem_DebugRawCalloc, _PyMem_DebugRawRealloc, _PyMem_DebugRawFree
 | 
						|
#define PYDBG_FUNCS \
 | 
						|
    _PyMem_DebugMalloc, _PyMem_DebugCalloc, _PyMem_DebugRealloc, _PyMem_DebugFree
 | 
						|
 | 
						|
 | 
						|
#define _PyMem_Raw _PyRuntime.mem.allocators.raw
 | 
						|
static const PyMemAllocatorEx _pymem_raw = {
 | 
						|
#ifdef Py_DEBUG
 | 
						|
    &_PyMem_Debug.raw, PYRAWDBG_FUNCS
 | 
						|
#else
 | 
						|
    NULL, PYRAW_FUNCS
 | 
						|
#endif
 | 
						|
    };
 | 
						|
 | 
						|
#define _PyMem _PyRuntime.mem.allocators.mem
 | 
						|
static const PyMemAllocatorEx _pymem = {
 | 
						|
#ifdef Py_DEBUG
 | 
						|
    &_PyMem_Debug.mem, PYDBG_FUNCS
 | 
						|
#else
 | 
						|
    NULL, PYMEM_FUNCS
 | 
						|
#endif
 | 
						|
    };
 | 
						|
 | 
						|
#define _PyObject _PyRuntime.mem.allocators.obj
 | 
						|
static const PyMemAllocatorEx _pyobject = {
 | 
						|
#ifdef Py_DEBUG
 | 
						|
    &_PyMem_Debug.obj, PYDBG_FUNCS
 | 
						|
#else
 | 
						|
    NULL, PYOBJ_FUNCS
 | 
						|
#endif
 | 
						|
    };
 | 
						|
 | 
						|
int
 | 
						|
_PyMem_SetupAllocators(const char *opt)
 | 
						|
{
 | 
						|
    if (opt == NULL || *opt == '\0') {
 | 
						|
        /* PYTHONMALLOC is empty or is not set or ignored (-E/-I command line
 | 
						|
           options): use default allocators */
 | 
						|
#ifdef Py_DEBUG
 | 
						|
#  ifdef WITH_PYMALLOC
 | 
						|
        opt = "pymalloc_debug";
 | 
						|
#  else
 | 
						|
        opt = "malloc_debug";
 | 
						|
#  endif
 | 
						|
#else
 | 
						|
   /* !Py_DEBUG */
 | 
						|
#  ifdef WITH_PYMALLOC
 | 
						|
        opt = "pymalloc";
 | 
						|
#  else
 | 
						|
        opt = "malloc";
 | 
						|
#  endif
 | 
						|
#endif
 | 
						|
    }
 | 
						|
 | 
						|
    if (strcmp(opt, "debug") == 0) {
 | 
						|
        PyMem_SetupDebugHooks();
 | 
						|
    }
 | 
						|
    else if (strcmp(opt, "malloc") == 0 || strcmp(opt, "malloc_debug") == 0)
 | 
						|
    {
 | 
						|
        PyMemAllocatorEx alloc = {NULL, PYRAW_FUNCS};
 | 
						|
 | 
						|
        PyMem_SetAllocator(PYMEM_DOMAIN_RAW, &alloc);
 | 
						|
        PyMem_SetAllocator(PYMEM_DOMAIN_MEM, &alloc);
 | 
						|
        PyMem_SetAllocator(PYMEM_DOMAIN_OBJ, &alloc);
 | 
						|
 | 
						|
        if (strcmp(opt, "malloc_debug") == 0)
 | 
						|
            PyMem_SetupDebugHooks();
 | 
						|
    }
 | 
						|
#ifdef WITH_PYMALLOC
 | 
						|
    else if (strcmp(opt, "pymalloc") == 0
 | 
						|
             || strcmp(opt, "pymalloc_debug") == 0)
 | 
						|
    {
 | 
						|
        PyMemAllocatorEx raw_alloc = {NULL, PYRAW_FUNCS};
 | 
						|
        PyMemAllocatorEx mem_alloc = {NULL, PYMEM_FUNCS};
 | 
						|
        PyMemAllocatorEx obj_alloc = {NULL, PYOBJ_FUNCS};
 | 
						|
 | 
						|
        PyMem_SetAllocator(PYMEM_DOMAIN_RAW, &raw_alloc);
 | 
						|
        PyMem_SetAllocator(PYMEM_DOMAIN_MEM, &mem_alloc);
 | 
						|
        PyMem_SetAllocator(PYMEM_DOMAIN_OBJ, &obj_alloc);
 | 
						|
 | 
						|
        if (strcmp(opt, "pymalloc_debug") == 0)
 | 
						|
            PyMem_SetupDebugHooks();
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    else {
 | 
						|
        /* unknown allocator */
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
#undef PYRAW_FUNCS
 | 
						|
#undef PYMEM_FUNCS
 | 
						|
#undef PYOBJ_FUNCS
 | 
						|
#undef PYRAWDBG_FUNCS
 | 
						|
#undef PYDBG_FUNCS
 | 
						|
 | 
						|
static const PyObjectArenaAllocator _PyObject_Arena = {NULL,
 | 
						|
#ifdef MS_WINDOWS
 | 
						|
    _PyObject_ArenaVirtualAlloc, _PyObject_ArenaVirtualFree
 | 
						|
#elif defined(ARENAS_USE_MMAP)
 | 
						|
    _PyObject_ArenaMmap, _PyObject_ArenaMunmap
 | 
						|
#else
 | 
						|
    _PyObject_ArenaMalloc, _PyObject_ArenaFree
 | 
						|
#endif
 | 
						|
    };
 | 
						|
 | 
						|
void
 | 
						|
_PyObject_Initialize(struct _pyobj_runtime_state *state)
 | 
						|
{
 | 
						|
    state->allocator_arenas = _PyObject_Arena;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
_PyMem_Initialize(struct _pymem_runtime_state *state)
 | 
						|
{
 | 
						|
    state->allocators.raw = _pymem_raw;
 | 
						|
    state->allocators.mem = _pymem;
 | 
						|
    state->allocators.obj = _pyobject;
 | 
						|
 | 
						|
#ifdef WITH_PYMALLOC
 | 
						|
    Py_BUILD_ASSERT(NB_SMALL_SIZE_CLASSES == 64);
 | 
						|
 | 
						|
    for (int i = 0; i < 8; i++) {
 | 
						|
        for (int j = 0; j < 8; j++) {
 | 
						|
            int x = i * 8 + j;
 | 
						|
            poolp *addr = &(state->usedpools[2*(x)]);
 | 
						|
            poolp val = (poolp)((uint8_t *)addr - 2*sizeof(pyblock *));
 | 
						|
            state->usedpools[x * 2] = val;
 | 
						|
            state->usedpools[x * 2 + 1] = val;
 | 
						|
        };
 | 
						|
    };
 | 
						|
#endif /* WITH_PYMALLOC */
 | 
						|
}
 | 
						|
 | 
						|
#ifdef WITH_PYMALLOC
 | 
						|
static int
 | 
						|
_PyMem_DebugEnabled(void)
 | 
						|
{
 | 
						|
    return (_PyObject.malloc == _PyMem_DebugMalloc);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
_PyMem_PymallocEnabled(void)
 | 
						|
{
 | 
						|
    if (_PyMem_DebugEnabled()) {
 | 
						|
        return (_PyMem_Debug.obj.alloc.malloc == _PyObject_Malloc);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return (_PyObject.malloc == _PyObject_Malloc);
 | 
						|
    }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
void
 | 
						|
PyMem_SetupDebugHooks(void)
 | 
						|
{
 | 
						|
    PyMemAllocatorEx alloc;
 | 
						|
 | 
						|
    alloc.malloc = _PyMem_DebugRawMalloc;
 | 
						|
    alloc.calloc = _PyMem_DebugRawCalloc;
 | 
						|
    alloc.realloc = _PyMem_DebugRawRealloc;
 | 
						|
    alloc.free = _PyMem_DebugRawFree;
 | 
						|
 | 
						|
    if (_PyMem_Raw.malloc != _PyMem_DebugRawMalloc) {
 | 
						|
        alloc.ctx = &_PyMem_Debug.raw;
 | 
						|
        PyMem_GetAllocator(PYMEM_DOMAIN_RAW, &_PyMem_Debug.raw.alloc);
 | 
						|
        PyMem_SetAllocator(PYMEM_DOMAIN_RAW, &alloc);
 | 
						|
    }
 | 
						|
 | 
						|
    alloc.malloc = _PyMem_DebugMalloc;
 | 
						|
    alloc.calloc = _PyMem_DebugCalloc;
 | 
						|
    alloc.realloc = _PyMem_DebugRealloc;
 | 
						|
    alloc.free = _PyMem_DebugFree;
 | 
						|
 | 
						|
    if (_PyMem.malloc != _PyMem_DebugMalloc) {
 | 
						|
        alloc.ctx = &_PyMem_Debug.mem;
 | 
						|
        PyMem_GetAllocator(PYMEM_DOMAIN_MEM, &_PyMem_Debug.mem.alloc);
 | 
						|
        PyMem_SetAllocator(PYMEM_DOMAIN_MEM, &alloc);
 | 
						|
    }
 | 
						|
 | 
						|
    if (_PyObject.malloc != _PyMem_DebugMalloc) {
 | 
						|
        alloc.ctx = &_PyMem_Debug.obj;
 | 
						|
        PyMem_GetAllocator(PYMEM_DOMAIN_OBJ, &_PyMem_Debug.obj.alloc);
 | 
						|
        PyMem_SetAllocator(PYMEM_DOMAIN_OBJ, &alloc);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
PyMem_GetAllocator(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)
 | 
						|
{
 | 
						|
    switch(domain)
 | 
						|
    {
 | 
						|
    case PYMEM_DOMAIN_RAW: *allocator = _PyMem_Raw; break;
 | 
						|
    case PYMEM_DOMAIN_MEM: *allocator = _PyMem; break;
 | 
						|
    case PYMEM_DOMAIN_OBJ: *allocator = _PyObject; break;
 | 
						|
    default:
 | 
						|
        /* unknown domain: set all attributes to NULL */
 | 
						|
        allocator->ctx = NULL;
 | 
						|
        allocator->malloc = NULL;
 | 
						|
        allocator->calloc = NULL;
 | 
						|
        allocator->realloc = NULL;
 | 
						|
        allocator->free = NULL;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
PyMem_SetAllocator(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)
 | 
						|
{
 | 
						|
    switch(domain)
 | 
						|
    {
 | 
						|
    case PYMEM_DOMAIN_RAW: _PyMem_Raw = *allocator; break;
 | 
						|
    case PYMEM_DOMAIN_MEM: _PyMem = *allocator; break;
 | 
						|
    case PYMEM_DOMAIN_OBJ: _PyObject = *allocator; break;
 | 
						|
    /* ignore unknown domain */
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
PyObject_GetArenaAllocator(PyObjectArenaAllocator *allocator)
 | 
						|
{
 | 
						|
    *allocator = _PyRuntime.obj.allocator_arenas;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
PyObject_SetArenaAllocator(PyObjectArenaAllocator *allocator)
 | 
						|
{
 | 
						|
    _PyRuntime.obj.allocator_arenas = *allocator;
 | 
						|
}
 | 
						|
 | 
						|
void *
 | 
						|
PyMem_RawMalloc(size_t size)
 | 
						|
{
 | 
						|
    /*
 | 
						|
     * Limit ourselves to PY_SSIZE_T_MAX bytes to prevent security holes.
 | 
						|
     * Most python internals blindly use a signed Py_ssize_t to track
 | 
						|
     * things without checking for overflows or negatives.
 | 
						|
     * As size_t is unsigned, checking for size < 0 is not required.
 | 
						|
     */
 | 
						|
    if (size > (size_t)PY_SSIZE_T_MAX)
 | 
						|
        return NULL;
 | 
						|
    return _PyMem_Raw.malloc(_PyMem_Raw.ctx, size);
 | 
						|
}
 | 
						|
 | 
						|
void *
 | 
						|
PyMem_RawCalloc(size_t nelem, size_t elsize)
 | 
						|
{
 | 
						|
    /* see PyMem_RawMalloc() */
 | 
						|
    if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize)
 | 
						|
        return NULL;
 | 
						|
    return _PyMem_Raw.calloc(_PyMem_Raw.ctx, nelem, elsize);
 | 
						|
}
 | 
						|
 | 
						|
void*
 | 
						|
PyMem_RawRealloc(void *ptr, size_t new_size)
 | 
						|
{
 | 
						|
    /* see PyMem_RawMalloc() */
 | 
						|
    if (new_size > (size_t)PY_SSIZE_T_MAX)
 | 
						|
        return NULL;
 | 
						|
    return _PyMem_Raw.realloc(_PyMem_Raw.ctx, ptr, new_size);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
PyMem_RawFree(void *ptr)
 | 
						|
{
 | 
						|
    _PyMem_Raw.free(_PyMem_Raw.ctx, ptr);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void *
 | 
						|
PyMem_Malloc(size_t size)
 | 
						|
{
 | 
						|
    /* see PyMem_RawMalloc() */
 | 
						|
    if (size > (size_t)PY_SSIZE_T_MAX)
 | 
						|
        return NULL;
 | 
						|
    return _PyMem.malloc(_PyMem.ctx, size);
 | 
						|
}
 | 
						|
 | 
						|
void *
 | 
						|
PyMem_Calloc(size_t nelem, size_t elsize)
 | 
						|
{
 | 
						|
    /* see PyMem_RawMalloc() */
 | 
						|
    if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize)
 | 
						|
        return NULL;
 | 
						|
    return _PyMem.calloc(_PyMem.ctx, nelem, elsize);
 | 
						|
}
 | 
						|
 | 
						|
void *
 | 
						|
PyMem_Realloc(void *ptr, size_t new_size)
 | 
						|
{
 | 
						|
    /* see PyMem_RawMalloc() */
 | 
						|
    if (new_size > (size_t)PY_SSIZE_T_MAX)
 | 
						|
        return NULL;
 | 
						|
    return _PyMem.realloc(_PyMem.ctx, ptr, new_size);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
PyMem_Free(void *ptr)
 | 
						|
{
 | 
						|
    _PyMem.free(_PyMem.ctx, ptr);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
char *
 | 
						|
_PyMem_RawStrdup(const char *str)
 | 
						|
{
 | 
						|
    size_t size;
 | 
						|
    char *copy;
 | 
						|
 | 
						|
    size = strlen(str) + 1;
 | 
						|
    copy = PyMem_RawMalloc(size);
 | 
						|
    if (copy == NULL)
 | 
						|
        return NULL;
 | 
						|
    memcpy(copy, str, size);
 | 
						|
    return copy;
 | 
						|
}
 | 
						|
 | 
						|
char *
 | 
						|
_PyMem_Strdup(const char *str)
 | 
						|
{
 | 
						|
    size_t size;
 | 
						|
    char *copy;
 | 
						|
 | 
						|
    size = strlen(str) + 1;
 | 
						|
    copy = PyMem_Malloc(size);
 | 
						|
    if (copy == NULL)
 | 
						|
        return NULL;
 | 
						|
    memcpy(copy, str, size);
 | 
						|
    return copy;
 | 
						|
}
 | 
						|
 | 
						|
void *
 | 
						|
PyObject_Malloc(size_t size)
 | 
						|
{
 | 
						|
    /* see PyMem_RawMalloc() */
 | 
						|
    if (size > (size_t)PY_SSIZE_T_MAX)
 | 
						|
        return NULL;
 | 
						|
    return _PyObject.malloc(_PyObject.ctx, size);
 | 
						|
}
 | 
						|
 | 
						|
void *
 | 
						|
PyObject_Calloc(size_t nelem, size_t elsize)
 | 
						|
{
 | 
						|
    /* see PyMem_RawMalloc() */
 | 
						|
    if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize)
 | 
						|
        return NULL;
 | 
						|
    return _PyObject.calloc(_PyObject.ctx, nelem, elsize);
 | 
						|
}
 | 
						|
 | 
						|
void *
 | 
						|
PyObject_Realloc(void *ptr, size_t new_size)
 | 
						|
{
 | 
						|
    /* see PyMem_RawMalloc() */
 | 
						|
    if (new_size > (size_t)PY_SSIZE_T_MAX)
 | 
						|
        return NULL;
 | 
						|
    return _PyObject.realloc(_PyObject.ctx, ptr, new_size);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
PyObject_Free(void *ptr)
 | 
						|
{
 | 
						|
    _PyObject.free(_PyObject.ctx, ptr);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#ifdef WITH_PYMALLOC
 | 
						|
 | 
						|
#ifdef WITH_VALGRIND
 | 
						|
#include <valgrind/valgrind.h>
 | 
						|
 | 
						|
/* If we're using GCC, use __builtin_expect() to reduce overhead of
 | 
						|
   the valgrind checks */
 | 
						|
#if defined(__GNUC__) && (__GNUC__ > 2) && defined(__OPTIMIZE__)
 | 
						|
#  define UNLIKELY(value) __builtin_expect((value), 0)
 | 
						|
#else
 | 
						|
#  define UNLIKELY(value) (value)
 | 
						|
#endif
 | 
						|
 | 
						|
/* -1 indicates that we haven't checked that we're running on valgrind yet. */
 | 
						|
static int running_on_valgrind = -1;
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
Py_ssize_t
 | 
						|
_Py_GetAllocatedBlocks(void)
 | 
						|
{
 | 
						|
    return _PyRuntime.mem.num_allocated_blocks;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Allocate a new arena.  If we run out of memory, return NULL.  Else
 | 
						|
 * allocate a new arena, and return the address of an arena_object
 | 
						|
 * describing the new arena.  It's expected that the caller will set
 | 
						|
 * `usable_arenas` to the return value.
 | 
						|
 */
 | 
						|
static struct arena_object*
 | 
						|
new_arena(void)
 | 
						|
{
 | 
						|
    struct arena_object* arenaobj;
 | 
						|
    uint excess;        /* number of bytes above pool alignment */
 | 
						|
    void *address;
 | 
						|
    static int debug_stats = -1;
 | 
						|
 | 
						|
    if (debug_stats == -1) {
 | 
						|
        char *opt = Py_GETENV("PYTHONMALLOCSTATS");
 | 
						|
        debug_stats = (opt != NULL && *opt != '\0');
 | 
						|
    }
 | 
						|
    if (debug_stats)
 | 
						|
        _PyObject_DebugMallocStats(stderr);
 | 
						|
 | 
						|
    if (_PyRuntime.mem.unused_arena_objects == NULL) {
 | 
						|
        uint i;
 | 
						|
        uint numarenas;
 | 
						|
        size_t nbytes;
 | 
						|
 | 
						|
        /* Double the number of arena objects on each allocation.
 | 
						|
         * Note that it's possible for `numarenas` to overflow.
 | 
						|
         */
 | 
						|
        numarenas = _PyRuntime.mem.maxarenas ? _PyRuntime.mem.maxarenas << 1 : INITIAL_ARENA_OBJECTS;
 | 
						|
        if (numarenas <= _PyRuntime.mem.maxarenas)
 | 
						|
            return NULL;                /* overflow */
 | 
						|
#if SIZEOF_SIZE_T <= SIZEOF_INT
 | 
						|
        if (numarenas > SIZE_MAX / sizeof(*_PyRuntime.mem.arenas))
 | 
						|
            return NULL;                /* overflow */
 | 
						|
#endif
 | 
						|
        nbytes = numarenas * sizeof(*_PyRuntime.mem.arenas);
 | 
						|
        arenaobj = (struct arena_object *)PyMem_RawRealloc(_PyRuntime.mem.arenas, nbytes);
 | 
						|
        if (arenaobj == NULL)
 | 
						|
            return NULL;
 | 
						|
        _PyRuntime.mem.arenas = arenaobj;
 | 
						|
 | 
						|
        /* We might need to fix pointers that were copied.  However,
 | 
						|
         * new_arena only gets called when all the pages in the
 | 
						|
         * previous arenas are full.  Thus, there are *no* pointers
 | 
						|
         * into the old array. Thus, we don't have to worry about
 | 
						|
         * invalid pointers.  Just to be sure, some asserts:
 | 
						|
         */
 | 
						|
        assert(_PyRuntime.mem.usable_arenas == NULL);
 | 
						|
        assert(_PyRuntime.mem.unused_arena_objects == NULL);
 | 
						|
 | 
						|
        /* Put the new arenas on the unused_arena_objects list. */
 | 
						|
        for (i = _PyRuntime.mem.maxarenas; i < numarenas; ++i) {
 | 
						|
            _PyRuntime.mem.arenas[i].address = 0;              /* mark as unassociated */
 | 
						|
            _PyRuntime.mem.arenas[i].nextarena = i < numarenas - 1 ?
 | 
						|
                                   &_PyRuntime.mem.arenas[i+1] : NULL;
 | 
						|
        }
 | 
						|
 | 
						|
        /* Update globals. */
 | 
						|
        _PyRuntime.mem.unused_arena_objects = &_PyRuntime.mem.arenas[_PyRuntime.mem.maxarenas];
 | 
						|
        _PyRuntime.mem.maxarenas = numarenas;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Take the next available arena object off the head of the list. */
 | 
						|
    assert(_PyRuntime.mem.unused_arena_objects != NULL);
 | 
						|
    arenaobj = _PyRuntime.mem.unused_arena_objects;
 | 
						|
    _PyRuntime.mem.unused_arena_objects = arenaobj->nextarena;
 | 
						|
    assert(arenaobj->address == 0);
 | 
						|
    address = _PyRuntime.obj.allocator_arenas.alloc(_PyRuntime.obj.allocator_arenas.ctx, ARENA_SIZE);
 | 
						|
    if (address == NULL) {
 | 
						|
        /* The allocation failed: return NULL after putting the
 | 
						|
         * arenaobj back.
 | 
						|
         */
 | 
						|
        arenaobj->nextarena = _PyRuntime.mem.unused_arena_objects;
 | 
						|
        _PyRuntime.mem.unused_arena_objects = arenaobj;
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    arenaobj->address = (uintptr_t)address;
 | 
						|
 | 
						|
    ++_PyRuntime.mem.narenas_currently_allocated;
 | 
						|
    ++_PyRuntime.mem.ntimes_arena_allocated;
 | 
						|
    if (_PyRuntime.mem.narenas_currently_allocated > _PyRuntime.mem.narenas_highwater)
 | 
						|
        _PyRuntime.mem.narenas_highwater = _PyRuntime.mem.narenas_currently_allocated;
 | 
						|
    arenaobj->freepools = NULL;
 | 
						|
    /* pool_address <- first pool-aligned address in the arena
 | 
						|
       nfreepools <- number of whole pools that fit after alignment */
 | 
						|
    arenaobj->pool_address = (pyblock*)arenaobj->address;
 | 
						|
    arenaobj->nfreepools = ARENA_SIZE / POOL_SIZE;
 | 
						|
    assert(POOL_SIZE * arenaobj->nfreepools == ARENA_SIZE);
 | 
						|
    excess = (uint)(arenaobj->address & POOL_SIZE_MASK);
 | 
						|
    if (excess != 0) {
 | 
						|
        --arenaobj->nfreepools;
 | 
						|
        arenaobj->pool_address += POOL_SIZE - excess;
 | 
						|
    }
 | 
						|
    arenaobj->ntotalpools = arenaobj->nfreepools;
 | 
						|
 | 
						|
    return arenaobj;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
address_in_range(P, POOL)
 | 
						|
 | 
						|
Return true if and only if P is an address that was allocated by pymalloc.
 | 
						|
POOL must be the pool address associated with P, i.e., POOL = POOL_ADDR(P)
 | 
						|
(the caller is asked to compute this because the macro expands POOL more than
 | 
						|
once, and for efficiency it's best for the caller to assign POOL_ADDR(P) to a
 | 
						|
variable and pass the latter to the macro; because address_in_range is
 | 
						|
called on every alloc/realloc/free, micro-efficiency is important here).
 | 
						|
 | 
						|
Tricky:  Let B be the arena base address associated with the pool, B =
 | 
						|
arenas[(POOL)->arenaindex].address.  Then P belongs to the arena if and only if
 | 
						|
 | 
						|
    B <= P < B + ARENA_SIZE
 | 
						|
 | 
						|
Subtracting B throughout, this is true iff
 | 
						|
 | 
						|
    0 <= P-B < ARENA_SIZE
 | 
						|
 | 
						|
By using unsigned arithmetic, the "0 <=" half of the test can be skipped.
 | 
						|
 | 
						|
Obscure:  A PyMem "free memory" function can call the pymalloc free or realloc
 | 
						|
before the first arena has been allocated.  `arenas` is still NULL in that
 | 
						|
case.  We're relying on that maxarenas is also 0 in that case, so that
 | 
						|
(POOL)->arenaindex < maxarenas  must be false, saving us from trying to index
 | 
						|
into a NULL arenas.
 | 
						|
 | 
						|
Details:  given P and POOL, the arena_object corresponding to P is AO =
 | 
						|
arenas[(POOL)->arenaindex].  Suppose obmalloc controls P.  Then (barring wild
 | 
						|
stores, etc), POOL is the correct address of P's pool, AO.address is the
 | 
						|
correct base address of the pool's arena, and P must be within ARENA_SIZE of
 | 
						|
AO.address.  In addition, AO.address is not 0 (no arena can start at address 0
 | 
						|
(NULL)).  Therefore address_in_range correctly reports that obmalloc
 | 
						|
controls P.
 | 
						|
 | 
						|
Now suppose obmalloc does not control P (e.g., P was obtained via a direct
 | 
						|
call to the system malloc() or realloc()).  (POOL)->arenaindex may be anything
 | 
						|
in this case -- it may even be uninitialized trash.  If the trash arenaindex
 | 
						|
is >= maxarenas, the macro correctly concludes at once that obmalloc doesn't
 | 
						|
control P.
 | 
						|
 | 
						|
Else arenaindex is < maxarena, and AO is read up.  If AO corresponds to an
 | 
						|
allocated arena, obmalloc controls all the memory in slice AO.address :
 | 
						|
AO.address+ARENA_SIZE.  By case assumption, P is not controlled by obmalloc,
 | 
						|
so P doesn't lie in that slice, so the macro correctly reports that P is not
 | 
						|
controlled by obmalloc.
 | 
						|
 | 
						|
Finally, if P is not controlled by obmalloc and AO corresponds to an unused
 | 
						|
arena_object (one not currently associated with an allocated arena),
 | 
						|
AO.address is 0, and the second test in the macro reduces to:
 | 
						|
 | 
						|
    P < ARENA_SIZE
 | 
						|
 | 
						|
If P >= ARENA_SIZE (extremely likely), the macro again correctly concludes
 | 
						|
that P is not controlled by obmalloc.  However, if P < ARENA_SIZE, this part
 | 
						|
of the test still passes, and the third clause (AO.address != 0) is necessary
 | 
						|
to get the correct result:  AO.address is 0 in this case, so the macro
 | 
						|
correctly reports that P is not controlled by obmalloc (despite that P lies in
 | 
						|
slice AO.address : AO.address + ARENA_SIZE).
 | 
						|
 | 
						|
Note:  The third (AO.address != 0) clause was added in Python 2.5.  Before
 | 
						|
2.5, arenas were never free()'ed, and an arenaindex < maxarena always
 | 
						|
corresponded to a currently-allocated arena, so the "P is not controlled by
 | 
						|
obmalloc, AO corresponds to an unused arena_object, and P < ARENA_SIZE" case
 | 
						|
was impossible.
 | 
						|
 | 
						|
Note that the logic is excruciating, and reading up possibly uninitialized
 | 
						|
memory when P is not controlled by obmalloc (to get at (POOL)->arenaindex)
 | 
						|
creates problems for some memory debuggers.  The overwhelming advantage is
 | 
						|
that this test determines whether an arbitrary address is controlled by
 | 
						|
obmalloc in a small constant time, independent of the number of arenas
 | 
						|
obmalloc controls.  Since this test is needed at every entry point, it's
 | 
						|
extremely desirable that it be this fast.
 | 
						|
*/
 | 
						|
 | 
						|
static bool ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS
 | 
						|
address_in_range(void *p, poolp pool)
 | 
						|
{
 | 
						|
    // Since address_in_range may be reading from memory which was not allocated
 | 
						|
    // by Python, it is important that pool->arenaindex is read only once, as
 | 
						|
    // another thread may be concurrently modifying the value without holding
 | 
						|
    // the GIL. The following dance forces the compiler to read pool->arenaindex
 | 
						|
    // only once.
 | 
						|
    uint arenaindex = *((volatile uint *)&pool->arenaindex);
 | 
						|
    return arenaindex < _PyRuntime.mem.maxarenas &&
 | 
						|
        (uintptr_t)p - _PyRuntime.mem.arenas[arenaindex].address < ARENA_SIZE &&
 | 
						|
        _PyRuntime.mem.arenas[arenaindex].address != 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*==========================================================================*/
 | 
						|
 | 
						|
/* pymalloc allocator
 | 
						|
 | 
						|
   The basic blocks are ordered by decreasing execution frequency,
 | 
						|
   which minimizes the number of jumps in the most common cases,
 | 
						|
   improves branching prediction and instruction scheduling (small
 | 
						|
   block allocations typically result in a couple of instructions).
 | 
						|
   Unless the optimizer reorders everything, being too smart...
 | 
						|
 | 
						|
   Return 1 if pymalloc allocated memory and wrote the pointer into *ptr_p.
 | 
						|
 | 
						|
   Return 0 if pymalloc failed to allocate the memory block: on bigger
 | 
						|
   requests, on error in the code below (as a last chance to serve the request)
 | 
						|
   or when the max memory limit has been reached. */
 | 
						|
static int
 | 
						|
pymalloc_alloc(void *ctx, void **ptr_p, size_t nbytes)
 | 
						|
{
 | 
						|
    pyblock *bp;
 | 
						|
    poolp pool;
 | 
						|
    poolp next;
 | 
						|
    uint size;
 | 
						|
 | 
						|
#ifdef WITH_VALGRIND
 | 
						|
    if (UNLIKELY(running_on_valgrind == -1)) {
 | 
						|
        running_on_valgrind = RUNNING_ON_VALGRIND;
 | 
						|
    }
 | 
						|
    if (UNLIKELY(running_on_valgrind)) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    if (nbytes == 0) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    if (nbytes > SMALL_REQUEST_THRESHOLD) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    LOCK();
 | 
						|
    /*
 | 
						|
     * Most frequent paths first
 | 
						|
     */
 | 
						|
    size = (uint)(nbytes - 1) >> ALIGNMENT_SHIFT;
 | 
						|
    pool = _PyRuntime.mem.usedpools[size + size];
 | 
						|
    if (pool != pool->nextpool) {
 | 
						|
        /*
 | 
						|
         * There is a used pool for this size class.
 | 
						|
         * Pick up the head block of its free list.
 | 
						|
         */
 | 
						|
        ++pool->ref.count;
 | 
						|
        bp = pool->freeblock;
 | 
						|
        assert(bp != NULL);
 | 
						|
        if ((pool->freeblock = *(pyblock **)bp) != NULL) {
 | 
						|
            goto success;
 | 
						|
        }
 | 
						|
 | 
						|
        /*
 | 
						|
         * Reached the end of the free list, try to extend it.
 | 
						|
         */
 | 
						|
        if (pool->nextoffset <= pool->maxnextoffset) {
 | 
						|
            /* There is room for another block. */
 | 
						|
            pool->freeblock = (pyblock*)pool +
 | 
						|
                              pool->nextoffset;
 | 
						|
            pool->nextoffset += INDEX2SIZE(size);
 | 
						|
            *(pyblock **)(pool->freeblock) = NULL;
 | 
						|
            goto success;
 | 
						|
        }
 | 
						|
 | 
						|
        /* Pool is full, unlink from used pools. */
 | 
						|
        next = pool->nextpool;
 | 
						|
        pool = pool->prevpool;
 | 
						|
        next->prevpool = pool;
 | 
						|
        pool->nextpool = next;
 | 
						|
        goto success;
 | 
						|
    }
 | 
						|
 | 
						|
    /* There isn't a pool of the right size class immediately
 | 
						|
     * available:  use a free pool.
 | 
						|
     */
 | 
						|
    if (_PyRuntime.mem.usable_arenas == NULL) {
 | 
						|
        /* No arena has a free pool:  allocate a new arena. */
 | 
						|
#ifdef WITH_MEMORY_LIMITS
 | 
						|
        if (_PyRuntime.mem.narenas_currently_allocated >= MAX_ARENAS) {
 | 
						|
            goto failed;
 | 
						|
        }
 | 
						|
#endif
 | 
						|
        _PyRuntime.mem.usable_arenas = new_arena();
 | 
						|
        if (_PyRuntime.mem.usable_arenas == NULL) {
 | 
						|
            goto failed;
 | 
						|
        }
 | 
						|
        _PyRuntime.mem.usable_arenas->nextarena =
 | 
						|
            _PyRuntime.mem.usable_arenas->prevarena = NULL;
 | 
						|
    }
 | 
						|
    assert(_PyRuntime.mem.usable_arenas->address != 0);
 | 
						|
 | 
						|
    /* Try to get a cached free pool. */
 | 
						|
    pool = _PyRuntime.mem.usable_arenas->freepools;
 | 
						|
    if (pool != NULL) {
 | 
						|
        /* Unlink from cached pools. */
 | 
						|
        _PyRuntime.mem.usable_arenas->freepools = pool->nextpool;
 | 
						|
 | 
						|
        /* This arena already had the smallest nfreepools
 | 
						|
         * value, so decreasing nfreepools doesn't change
 | 
						|
         * that, and we don't need to rearrange the
 | 
						|
         * usable_arenas list.  However, if the arena has
 | 
						|
         * become wholly allocated, we need to remove its
 | 
						|
         * arena_object from usable_arenas.
 | 
						|
         */
 | 
						|
        --_PyRuntime.mem.usable_arenas->nfreepools;
 | 
						|
        if (_PyRuntime.mem.usable_arenas->nfreepools == 0) {
 | 
						|
            /* Wholly allocated:  remove. */
 | 
						|
            assert(_PyRuntime.mem.usable_arenas->freepools == NULL);
 | 
						|
            assert(_PyRuntime.mem.usable_arenas->nextarena == NULL ||
 | 
						|
                   _PyRuntime.mem.usable_arenas->nextarena->prevarena ==
 | 
						|
                   _PyRuntime.mem.usable_arenas);
 | 
						|
 | 
						|
            _PyRuntime.mem.usable_arenas = _PyRuntime.mem.usable_arenas->nextarena;
 | 
						|
            if (_PyRuntime.mem.usable_arenas != NULL) {
 | 
						|
                _PyRuntime.mem.usable_arenas->prevarena = NULL;
 | 
						|
                assert(_PyRuntime.mem.usable_arenas->address != 0);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            /* nfreepools > 0:  it must be that freepools
 | 
						|
             * isn't NULL, or that we haven't yet carved
 | 
						|
             * off all the arena's pools for the first
 | 
						|
             * time.
 | 
						|
             */
 | 
						|
            assert(_PyRuntime.mem.usable_arenas->freepools != NULL ||
 | 
						|
                   _PyRuntime.mem.usable_arenas->pool_address <=
 | 
						|
                   (pyblock*)_PyRuntime.mem.usable_arenas->address +
 | 
						|
                       ARENA_SIZE - POOL_SIZE);
 | 
						|
        }
 | 
						|
 | 
						|
    init_pool:
 | 
						|
        /* Frontlink to used pools. */
 | 
						|
        next = _PyRuntime.mem.usedpools[size + size]; /* == prev */
 | 
						|
        pool->nextpool = next;
 | 
						|
        pool->prevpool = next;
 | 
						|
        next->nextpool = pool;
 | 
						|
        next->prevpool = pool;
 | 
						|
        pool->ref.count = 1;
 | 
						|
        if (pool->szidx == size) {
 | 
						|
            /* Luckily, this pool last contained blocks
 | 
						|
             * of the same size class, so its header
 | 
						|
             * and free list are already initialized.
 | 
						|
             */
 | 
						|
            bp = pool->freeblock;
 | 
						|
            assert(bp != NULL);
 | 
						|
            pool->freeblock = *(pyblock **)bp;
 | 
						|
            goto success;
 | 
						|
        }
 | 
						|
        /*
 | 
						|
         * Initialize the pool header, set up the free list to
 | 
						|
         * contain just the second block, and return the first
 | 
						|
         * block.
 | 
						|
         */
 | 
						|
        pool->szidx = size;
 | 
						|
        size = INDEX2SIZE(size);
 | 
						|
        bp = (pyblock *)pool + POOL_OVERHEAD;
 | 
						|
        pool->nextoffset = POOL_OVERHEAD + (size << 1);
 | 
						|
        pool->maxnextoffset = POOL_SIZE - size;
 | 
						|
        pool->freeblock = bp + size;
 | 
						|
        *(pyblock **)(pool->freeblock) = NULL;
 | 
						|
        goto success;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Carve off a new pool. */
 | 
						|
    assert(_PyRuntime.mem.usable_arenas->nfreepools > 0);
 | 
						|
    assert(_PyRuntime.mem.usable_arenas->freepools == NULL);
 | 
						|
    pool = (poolp)_PyRuntime.mem.usable_arenas->pool_address;
 | 
						|
    assert((pyblock*)pool <= (pyblock*)_PyRuntime.mem.usable_arenas->address +
 | 
						|
                             ARENA_SIZE - POOL_SIZE);
 | 
						|
    pool->arenaindex = (uint)(_PyRuntime.mem.usable_arenas - _PyRuntime.mem.arenas);
 | 
						|
    assert(&_PyRuntime.mem.arenas[pool->arenaindex] == _PyRuntime.mem.usable_arenas);
 | 
						|
    pool->szidx = DUMMY_SIZE_IDX;
 | 
						|
    _PyRuntime.mem.usable_arenas->pool_address += POOL_SIZE;
 | 
						|
    --_PyRuntime.mem.usable_arenas->nfreepools;
 | 
						|
 | 
						|
    if (_PyRuntime.mem.usable_arenas->nfreepools == 0) {
 | 
						|
        assert(_PyRuntime.mem.usable_arenas->nextarena == NULL ||
 | 
						|
               _PyRuntime.mem.usable_arenas->nextarena->prevarena ==
 | 
						|
               _PyRuntime.mem.usable_arenas);
 | 
						|
        /* Unlink the arena:  it is completely allocated. */
 | 
						|
        _PyRuntime.mem.usable_arenas = _PyRuntime.mem.usable_arenas->nextarena;
 | 
						|
        if (_PyRuntime.mem.usable_arenas != NULL) {
 | 
						|
            _PyRuntime.mem.usable_arenas->prevarena = NULL;
 | 
						|
            assert(_PyRuntime.mem.usable_arenas->address != 0);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    goto init_pool;
 | 
						|
 | 
						|
success:
 | 
						|
    UNLOCK();
 | 
						|
    assert(bp != NULL);
 | 
						|
    *ptr_p = (void *)bp;
 | 
						|
    return 1;
 | 
						|
 | 
						|
failed:
 | 
						|
    UNLOCK();
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void *
 | 
						|
_PyObject_Malloc(void *ctx, size_t nbytes)
 | 
						|
{
 | 
						|
    void* ptr;
 | 
						|
    if (pymalloc_alloc(ctx, &ptr, nbytes)) {
 | 
						|
        _PyRuntime.mem.num_allocated_blocks++;
 | 
						|
        return ptr;
 | 
						|
    }
 | 
						|
 | 
						|
    ptr = PyMem_RawMalloc(nbytes);
 | 
						|
    if (ptr != NULL) {
 | 
						|
        _PyRuntime.mem.num_allocated_blocks++;
 | 
						|
    }
 | 
						|
    return ptr;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void *
 | 
						|
_PyObject_Calloc(void *ctx, size_t nelem, size_t elsize)
 | 
						|
{
 | 
						|
    void* ptr;
 | 
						|
 | 
						|
    assert(elsize == 0 || nelem <= (size_t)PY_SSIZE_T_MAX / elsize);
 | 
						|
    size_t nbytes = nelem * elsize;
 | 
						|
 | 
						|
    if (pymalloc_alloc(ctx, &ptr, nbytes)) {
 | 
						|
        memset(ptr, 0, nbytes);
 | 
						|
        _PyRuntime.mem.num_allocated_blocks++;
 | 
						|
        return ptr;
 | 
						|
    }
 | 
						|
 | 
						|
    ptr = PyMem_RawCalloc(nelem, elsize);
 | 
						|
    if (ptr != NULL) {
 | 
						|
        _PyRuntime.mem.num_allocated_blocks++;
 | 
						|
    }
 | 
						|
    return ptr;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Free a memory block allocated by pymalloc_alloc().
 | 
						|
   Return 1 if it was freed.
 | 
						|
   Return 0 if the block was not allocated by pymalloc_alloc(). */
 | 
						|
static int
 | 
						|
pymalloc_free(void *ctx, void *p)
 | 
						|
{
 | 
						|
    poolp pool;
 | 
						|
    pyblock *lastfree;
 | 
						|
    poolp next, prev;
 | 
						|
    uint size;
 | 
						|
 | 
						|
    assert(p != NULL);
 | 
						|
 | 
						|
#ifdef WITH_VALGRIND
 | 
						|
    if (UNLIKELY(running_on_valgrind > 0)) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    pool = POOL_ADDR(p);
 | 
						|
    if (!address_in_range(p, pool)) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    /* We allocated this address. */
 | 
						|
 | 
						|
    LOCK();
 | 
						|
 | 
						|
    /* Link p to the start of the pool's freeblock list.  Since
 | 
						|
     * the pool had at least the p block outstanding, the pool
 | 
						|
     * wasn't empty (so it's already in a usedpools[] list, or
 | 
						|
     * was full and is in no list -- it's not in the freeblocks
 | 
						|
     * list in any case).
 | 
						|
     */
 | 
						|
    assert(pool->ref.count > 0);            /* else it was empty */
 | 
						|
    *(pyblock **)p = lastfree = pool->freeblock;
 | 
						|
    pool->freeblock = (pyblock *)p;
 | 
						|
    if (!lastfree) {
 | 
						|
        /* Pool was full, so doesn't currently live in any list:
 | 
						|
         * link it to the front of the appropriate usedpools[] list.
 | 
						|
         * This mimics LRU pool usage for new allocations and
 | 
						|
         * targets optimal filling when several pools contain
 | 
						|
         * blocks of the same size class.
 | 
						|
         */
 | 
						|
        --pool->ref.count;
 | 
						|
        assert(pool->ref.count > 0);            /* else the pool is empty */
 | 
						|
        size = pool->szidx;
 | 
						|
        next = _PyRuntime.mem.usedpools[size + size];
 | 
						|
        prev = next->prevpool;
 | 
						|
 | 
						|
        /* insert pool before next:   prev <-> pool <-> next */
 | 
						|
        pool->nextpool = next;
 | 
						|
        pool->prevpool = prev;
 | 
						|
        next->prevpool = pool;
 | 
						|
        prev->nextpool = pool;
 | 
						|
        goto success;
 | 
						|
    }
 | 
						|
 | 
						|
    struct arena_object* ao;
 | 
						|
    uint nf;  /* ao->nfreepools */
 | 
						|
 | 
						|
    /* freeblock wasn't NULL, so the pool wasn't full,
 | 
						|
     * and the pool is in a usedpools[] list.
 | 
						|
     */
 | 
						|
    if (--pool->ref.count != 0) {
 | 
						|
        /* pool isn't empty:  leave it in usedpools */
 | 
						|
        goto success;
 | 
						|
    }
 | 
						|
    /* Pool is now empty:  unlink from usedpools, and
 | 
						|
     * link to the front of freepools.  This ensures that
 | 
						|
     * previously freed pools will be allocated later
 | 
						|
     * (being not referenced, they are perhaps paged out).
 | 
						|
     */
 | 
						|
    next = pool->nextpool;
 | 
						|
    prev = pool->prevpool;
 | 
						|
    next->prevpool = prev;
 | 
						|
    prev->nextpool = next;
 | 
						|
 | 
						|
    /* Link the pool to freepools.  This is a singly-linked
 | 
						|
     * list, and pool->prevpool isn't used there.
 | 
						|
     */
 | 
						|
    ao = &_PyRuntime.mem.arenas[pool->arenaindex];
 | 
						|
    pool->nextpool = ao->freepools;
 | 
						|
    ao->freepools = pool;
 | 
						|
    nf = ++ao->nfreepools;
 | 
						|
 | 
						|
    /* All the rest is arena management.  We just freed
 | 
						|
     * a pool, and there are 4 cases for arena mgmt:
 | 
						|
     * 1. If all the pools are free, return the arena to
 | 
						|
     *    the system free().
 | 
						|
     * 2. If this is the only free pool in the arena,
 | 
						|
     *    add the arena back to the `usable_arenas` list.
 | 
						|
     * 3. If the "next" arena has a smaller count of free
 | 
						|
     *    pools, we have to "slide this arena right" to
 | 
						|
     *    restore that usable_arenas is sorted in order of
 | 
						|
     *    nfreepools.
 | 
						|
     * 4. Else there's nothing more to do.
 | 
						|
     */
 | 
						|
    if (nf == ao->ntotalpools) {
 | 
						|
        /* Case 1.  First unlink ao from usable_arenas.
 | 
						|
         */
 | 
						|
        assert(ao->prevarena == NULL ||
 | 
						|
               ao->prevarena->address != 0);
 | 
						|
        assert(ao ->nextarena == NULL ||
 | 
						|
               ao->nextarena->address != 0);
 | 
						|
 | 
						|
        /* Fix the pointer in the prevarena, or the
 | 
						|
         * usable_arenas pointer.
 | 
						|
         */
 | 
						|
        if (ao->prevarena == NULL) {
 | 
						|
            _PyRuntime.mem.usable_arenas = ao->nextarena;
 | 
						|
            assert(_PyRuntime.mem.usable_arenas == NULL ||
 | 
						|
                   _PyRuntime.mem.usable_arenas->address != 0);
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            assert(ao->prevarena->nextarena == ao);
 | 
						|
            ao->prevarena->nextarena =
 | 
						|
                ao->nextarena;
 | 
						|
        }
 | 
						|
        /* Fix the pointer in the nextarena. */
 | 
						|
        if (ao->nextarena != NULL) {
 | 
						|
            assert(ao->nextarena->prevarena == ao);
 | 
						|
            ao->nextarena->prevarena =
 | 
						|
                ao->prevarena;
 | 
						|
        }
 | 
						|
        /* Record that this arena_object slot is
 | 
						|
         * available to be reused.
 | 
						|
         */
 | 
						|
        ao->nextarena = _PyRuntime.mem.unused_arena_objects;
 | 
						|
        _PyRuntime.mem.unused_arena_objects = ao;
 | 
						|
 | 
						|
        /* Free the entire arena. */
 | 
						|
        _PyRuntime.obj.allocator_arenas.free(_PyRuntime.obj.allocator_arenas.ctx,
 | 
						|
                             (void *)ao->address, ARENA_SIZE);
 | 
						|
        ao->address = 0;                        /* mark unassociated */
 | 
						|
        --_PyRuntime.mem.narenas_currently_allocated;
 | 
						|
 | 
						|
        goto success;
 | 
						|
    }
 | 
						|
 | 
						|
    if (nf == 1) {
 | 
						|
        /* Case 2.  Put ao at the head of
 | 
						|
         * usable_arenas.  Note that because
 | 
						|
         * ao->nfreepools was 0 before, ao isn't
 | 
						|
         * currently on the usable_arenas list.
 | 
						|
         */
 | 
						|
        ao->nextarena = _PyRuntime.mem.usable_arenas;
 | 
						|
        ao->prevarena = NULL;
 | 
						|
        if (_PyRuntime.mem.usable_arenas)
 | 
						|
            _PyRuntime.mem.usable_arenas->prevarena = ao;
 | 
						|
        _PyRuntime.mem.usable_arenas = ao;
 | 
						|
        assert(_PyRuntime.mem.usable_arenas->address != 0);
 | 
						|
 | 
						|
        goto success;
 | 
						|
    }
 | 
						|
 | 
						|
    /* If this arena is now out of order, we need to keep
 | 
						|
     * the list sorted.  The list is kept sorted so that
 | 
						|
     * the "most full" arenas are used first, which allows
 | 
						|
     * the nearly empty arenas to be completely freed.  In
 | 
						|
     * a few un-scientific tests, it seems like this
 | 
						|
     * approach allowed a lot more memory to be freed.
 | 
						|
     */
 | 
						|
    if (ao->nextarena == NULL ||
 | 
						|
                 nf <= ao->nextarena->nfreepools) {
 | 
						|
        /* Case 4.  Nothing to do. */
 | 
						|
        goto success;
 | 
						|
    }
 | 
						|
    /* Case 3:  We have to move the arena towards the end
 | 
						|
     * of the list, because it has more free pools than
 | 
						|
     * the arena to its right.
 | 
						|
     * First unlink ao from usable_arenas.
 | 
						|
     */
 | 
						|
    if (ao->prevarena != NULL) {
 | 
						|
        /* ao isn't at the head of the list */
 | 
						|
        assert(ao->prevarena->nextarena == ao);
 | 
						|
        ao->prevarena->nextarena = ao->nextarena;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        /* ao is at the head of the list */
 | 
						|
        assert(_PyRuntime.mem.usable_arenas == ao);
 | 
						|
        _PyRuntime.mem.usable_arenas = ao->nextarena;
 | 
						|
    }
 | 
						|
    ao->nextarena->prevarena = ao->prevarena;
 | 
						|
 | 
						|
    /* Locate the new insertion point by iterating over
 | 
						|
     * the list, using our nextarena pointer.
 | 
						|
     */
 | 
						|
    while (ao->nextarena != NULL && nf > ao->nextarena->nfreepools) {
 | 
						|
        ao->prevarena = ao->nextarena;
 | 
						|
        ao->nextarena = ao->nextarena->nextarena;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Insert ao at this point. */
 | 
						|
    assert(ao->nextarena == NULL || ao->prevarena == ao->nextarena->prevarena);
 | 
						|
    assert(ao->prevarena->nextarena == ao->nextarena);
 | 
						|
 | 
						|
    ao->prevarena->nextarena = ao;
 | 
						|
    if (ao->nextarena != NULL) {
 | 
						|
        ao->nextarena->prevarena = ao;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Verify that the swaps worked. */
 | 
						|
    assert(ao->nextarena == NULL || nf <= ao->nextarena->nfreepools);
 | 
						|
    assert(ao->prevarena == NULL || nf > ao->prevarena->nfreepools);
 | 
						|
    assert(ao->nextarena == NULL || ao->nextarena->prevarena == ao);
 | 
						|
    assert((_PyRuntime.mem.usable_arenas == ao && ao->prevarena == NULL)
 | 
						|
           || ao->prevarena->nextarena == ao);
 | 
						|
 | 
						|
    goto success;
 | 
						|
 | 
						|
success:
 | 
						|
    UNLOCK();
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void
 | 
						|
_PyObject_Free(void *ctx, void *p)
 | 
						|
{
 | 
						|
    /* PyObject_Free(NULL) has no effect */
 | 
						|
    if (p == NULL) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    _PyRuntime.mem.num_allocated_blocks--;
 | 
						|
    if (!pymalloc_free(ctx, p)) {
 | 
						|
        /* pymalloc didn't allocate this address */
 | 
						|
        PyMem_RawFree(p);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* pymalloc realloc.
 | 
						|
 | 
						|
   If nbytes==0, then as the Python docs promise, we do not treat this like
 | 
						|
   free(p), and return a non-NULL result.
 | 
						|
 | 
						|
   Return 1 if pymalloc reallocated memory and wrote the new pointer into
 | 
						|
   newptr_p.
 | 
						|
 | 
						|
   Return 0 if pymalloc didn't allocated p. */
 | 
						|
static int
 | 
						|
pymalloc_realloc(void *ctx, void **newptr_p, void *p, size_t nbytes)
 | 
						|
{
 | 
						|
    void *bp;
 | 
						|
    poolp pool;
 | 
						|
    size_t size;
 | 
						|
 | 
						|
    assert(p != NULL);
 | 
						|
 | 
						|
#ifdef WITH_VALGRIND
 | 
						|
    /* Treat running_on_valgrind == -1 the same as 0 */
 | 
						|
    if (UNLIKELY(running_on_valgrind > 0)) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    pool = POOL_ADDR(p);
 | 
						|
    if (!address_in_range(p, pool)) {
 | 
						|
        /* pymalloc is not managing this block.
 | 
						|
 | 
						|
           If nbytes <= SMALL_REQUEST_THRESHOLD, it's tempting to try to take
 | 
						|
           over this block.  However, if we do, we need to copy the valid data
 | 
						|
           from the C-managed block to one of our blocks, and there's no
 | 
						|
           portable way to know how much of the memory space starting at p is
 | 
						|
           valid.
 | 
						|
 | 
						|
           As bug 1185883 pointed out the hard way, it's possible that the
 | 
						|
           C-managed block is "at the end" of allocated VM space, so that a
 | 
						|
           memory fault can occur if we try to copy nbytes bytes starting at p.
 | 
						|
           Instead we punt: let C continue to manage this block. */
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    /* pymalloc is in charge of this block */
 | 
						|
    size = INDEX2SIZE(pool->szidx);
 | 
						|
    if (nbytes <= size) {
 | 
						|
        /* The block is staying the same or shrinking.
 | 
						|
 | 
						|
           If it's shrinking, there's a tradeoff: it costs cycles to copy the
 | 
						|
           block to a smaller size class, but it wastes memory not to copy it.
 | 
						|
 | 
						|
           The compromise here is to copy on shrink only if at least 25% of
 | 
						|
           size can be shaved off. */
 | 
						|
        if (4 * nbytes > 3 * size) {
 | 
						|
            /* It's the same, or shrinking and new/old > 3/4. */
 | 
						|
            *newptr_p = p;
 | 
						|
            return 1;
 | 
						|
        }
 | 
						|
        size = nbytes;
 | 
						|
    }
 | 
						|
 | 
						|
    bp = _PyObject_Malloc(ctx, nbytes);
 | 
						|
    if (bp != NULL) {
 | 
						|
        memcpy(bp, p, size);
 | 
						|
        _PyObject_Free(ctx, p);
 | 
						|
    }
 | 
						|
    *newptr_p = bp;
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void *
 | 
						|
_PyObject_Realloc(void *ctx, void *ptr, size_t nbytes)
 | 
						|
{
 | 
						|
    void *ptr2;
 | 
						|
 | 
						|
    if (ptr == NULL) {
 | 
						|
        return _PyObject_Malloc(ctx, nbytes);
 | 
						|
    }
 | 
						|
 | 
						|
    if (pymalloc_realloc(ctx, &ptr2, ptr, nbytes)) {
 | 
						|
        return ptr2;
 | 
						|
    }
 | 
						|
 | 
						|
    return PyMem_RawRealloc(ptr, nbytes);
 | 
						|
}
 | 
						|
 | 
						|
#else   /* ! WITH_PYMALLOC */
 | 
						|
 | 
						|
/*==========================================================================*/
 | 
						|
/* pymalloc not enabled:  Redirect the entry points to malloc.  These will
 | 
						|
 * only be used by extensions that are compiled with pymalloc enabled. */
 | 
						|
 | 
						|
Py_ssize_t
 | 
						|
_Py_GetAllocatedBlocks(void)
 | 
						|
{
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
#endif /* WITH_PYMALLOC */
 | 
						|
 | 
						|
 | 
						|
/*==========================================================================*/
 | 
						|
/* A x-platform debugging allocator.  This doesn't manage memory directly,
 | 
						|
 * it wraps a real allocator, adding extra debugging info to the memory blocks.
 | 
						|
 */
 | 
						|
 | 
						|
/* Special bytes broadcast into debug memory blocks at appropriate times.
 | 
						|
 * Strings of these are unlikely to be valid addresses, floats, ints or
 | 
						|
 * 7-bit ASCII.
 | 
						|
 */
 | 
						|
#undef CLEANBYTE
 | 
						|
#undef DEADBYTE
 | 
						|
#undef FORBIDDENBYTE
 | 
						|
#define CLEANBYTE      0xCB    /* clean (newly allocated) memory */
 | 
						|
#define DEADBYTE       0xDB    /* dead (newly freed) memory */
 | 
						|
#define FORBIDDENBYTE  0xFB    /* untouchable bytes at each end of a block */
 | 
						|
 | 
						|
/* serialno is always incremented via calling this routine.  The point is
 | 
						|
 * to supply a single place to set a breakpoint.
 | 
						|
 */
 | 
						|
static void
 | 
						|
bumpserialno(void)
 | 
						|
{
 | 
						|
    ++_PyRuntime.mem.serialno;
 | 
						|
}
 | 
						|
 | 
						|
#define SST SIZEOF_SIZE_T
 | 
						|
 | 
						|
/* Read sizeof(size_t) bytes at p as a big-endian size_t. */
 | 
						|
static size_t
 | 
						|
read_size_t(const void *p)
 | 
						|
{
 | 
						|
    const uint8_t *q = (const uint8_t *)p;
 | 
						|
    size_t result = *q++;
 | 
						|
    int i;
 | 
						|
 | 
						|
    for (i = SST; --i > 0; ++q)
 | 
						|
        result = (result << 8) | *q;
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
/* Write n as a big-endian size_t, MSB at address p, LSB at
 | 
						|
 * p + sizeof(size_t) - 1.
 | 
						|
 */
 | 
						|
static void
 | 
						|
write_size_t(void *p, size_t n)
 | 
						|
{
 | 
						|
    uint8_t *q = (uint8_t *)p + SST - 1;
 | 
						|
    int i;
 | 
						|
 | 
						|
    for (i = SST; --i >= 0; --q) {
 | 
						|
        *q = (uint8_t)(n & 0xff);
 | 
						|
        n >>= 8;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Let S = sizeof(size_t).  The debug malloc asks for 4*S extra bytes and
 | 
						|
   fills them with useful stuff, here calling the underlying malloc's result p:
 | 
						|
 | 
						|
p[0: S]
 | 
						|
    Number of bytes originally asked for.  This is a size_t, big-endian (easier
 | 
						|
    to read in a memory dump).
 | 
						|
p[S]
 | 
						|
    API ID.  See PEP 445.  This is a character, but seems undocumented.
 | 
						|
p[S+1: 2*S]
 | 
						|
    Copies of FORBIDDENBYTE.  Used to catch under- writes and reads.
 | 
						|
p[2*S: 2*S+n]
 | 
						|
    The requested memory, filled with copies of CLEANBYTE.
 | 
						|
    Used to catch reference to uninitialized memory.
 | 
						|
    &p[2*S] is returned.  Note that this is 8-byte aligned if pymalloc
 | 
						|
    handled the request itself.
 | 
						|
p[2*S+n: 2*S+n+S]
 | 
						|
    Copies of FORBIDDENBYTE.  Used to catch over- writes and reads.
 | 
						|
p[2*S+n+S: 2*S+n+2*S]
 | 
						|
    A serial number, incremented by 1 on each call to _PyMem_DebugMalloc
 | 
						|
    and _PyMem_DebugRealloc.
 | 
						|
    This is a big-endian size_t.
 | 
						|
    If "bad memory" is detected later, the serial number gives an
 | 
						|
    excellent way to set a breakpoint on the next run, to capture the
 | 
						|
    instant at which this block was passed out.
 | 
						|
*/
 | 
						|
 | 
						|
static void *
 | 
						|
_PyMem_DebugRawAlloc(int use_calloc, void *ctx, size_t nbytes)
 | 
						|
{
 | 
						|
    debug_alloc_api_t *api = (debug_alloc_api_t *)ctx;
 | 
						|
    uint8_t *p;           /* base address of malloc'ed pad block */
 | 
						|
    uint8_t *data;        /* p + 2*SST == pointer to data bytes */
 | 
						|
    uint8_t *tail;        /* data + nbytes == pointer to tail pad bytes */
 | 
						|
    size_t total;         /* 2 * SST + nbytes + 2 * SST */
 | 
						|
 | 
						|
    if (nbytes > (size_t)PY_SSIZE_T_MAX - 4 * SST) {
 | 
						|
        /* integer overflow: can't represent total as a Py_ssize_t */
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    total = nbytes + 4 * SST;
 | 
						|
 | 
						|
    /* Layout: [SSSS IFFF CCCC...CCCC FFFF NNNN]
 | 
						|
     *          ^--- p    ^--- data   ^--- tail
 | 
						|
       S: nbytes stored as size_t
 | 
						|
       I: API identifier (1 byte)
 | 
						|
       F: Forbidden bytes (size_t - 1 bytes before, size_t bytes after)
 | 
						|
       C: Clean bytes used later to store actual data
 | 
						|
       N: Serial number stored as size_t */
 | 
						|
 | 
						|
    if (use_calloc) {
 | 
						|
        p = (uint8_t *)api->alloc.calloc(api->alloc.ctx, 1, total);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        p = (uint8_t *)api->alloc.malloc(api->alloc.ctx, total);
 | 
						|
    }
 | 
						|
    if (p == NULL) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    data = p + 2*SST;
 | 
						|
 | 
						|
    bumpserialno();
 | 
						|
 | 
						|
    /* at p, write size (SST bytes), id (1 byte), pad (SST-1 bytes) */
 | 
						|
    write_size_t(p, nbytes);
 | 
						|
    p[SST] = (uint8_t)api->api_id;
 | 
						|
    memset(p + SST + 1, FORBIDDENBYTE, SST-1);
 | 
						|
 | 
						|
    if (nbytes > 0 && !use_calloc) {
 | 
						|
        memset(data, CLEANBYTE, nbytes);
 | 
						|
    }
 | 
						|
 | 
						|
    /* at tail, write pad (SST bytes) and serialno (SST bytes) */
 | 
						|
    tail = data + nbytes;
 | 
						|
    memset(tail, FORBIDDENBYTE, SST);
 | 
						|
    write_size_t(tail + SST, _PyRuntime.mem.serialno);
 | 
						|
 | 
						|
    return data;
 | 
						|
}
 | 
						|
 | 
						|
static void *
 | 
						|
_PyMem_DebugRawMalloc(void *ctx, size_t nbytes)
 | 
						|
{
 | 
						|
    return _PyMem_DebugRawAlloc(0, ctx, nbytes);
 | 
						|
}
 | 
						|
 | 
						|
static void *
 | 
						|
_PyMem_DebugRawCalloc(void *ctx, size_t nelem, size_t elsize)
 | 
						|
{
 | 
						|
    size_t nbytes;
 | 
						|
    assert(elsize == 0 || nelem <= (size_t)PY_SSIZE_T_MAX / elsize);
 | 
						|
    nbytes = nelem * elsize;
 | 
						|
    return _PyMem_DebugRawAlloc(1, ctx, nbytes);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* The debug free first checks the 2*SST bytes on each end for sanity (in
 | 
						|
   particular, that the FORBIDDENBYTEs with the api ID are still intact).
 | 
						|
   Then fills the original bytes with DEADBYTE.
 | 
						|
   Then calls the underlying free.
 | 
						|
*/
 | 
						|
static void
 | 
						|
_PyMem_DebugRawFree(void *ctx, void *p)
 | 
						|
{
 | 
						|
    /* PyMem_Free(NULL) has no effect */
 | 
						|
    if (p == NULL) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    debug_alloc_api_t *api = (debug_alloc_api_t *)ctx;
 | 
						|
    uint8_t *q = (uint8_t *)p - 2*SST;  /* address returned from malloc */
 | 
						|
    size_t nbytes;
 | 
						|
 | 
						|
    _PyMem_DebugCheckAddress(api->api_id, p);
 | 
						|
    nbytes = read_size_t(q);
 | 
						|
    nbytes += 4 * SST;
 | 
						|
    memset(q, DEADBYTE, nbytes);
 | 
						|
    api->alloc.free(api->alloc.ctx, q);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void *
 | 
						|
_PyMem_DebugRawRealloc(void *ctx, void *p, size_t nbytes)
 | 
						|
{
 | 
						|
    if (p == NULL) {
 | 
						|
        return _PyMem_DebugRawAlloc(0, ctx, nbytes);
 | 
						|
    }
 | 
						|
 | 
						|
    debug_alloc_api_t *api = (debug_alloc_api_t *)ctx;
 | 
						|
    uint8_t *head;        /* base address of malloc'ed pad block */
 | 
						|
    uint8_t *data;        /* pointer to data bytes */
 | 
						|
    uint8_t *r;
 | 
						|
    uint8_t *tail;        /* data + nbytes == pointer to tail pad bytes */
 | 
						|
    size_t total;         /* 2 * SST + nbytes + 2 * SST */
 | 
						|
    size_t original_nbytes;
 | 
						|
    size_t serialno;
 | 
						|
#define ERASED_SIZE 64
 | 
						|
    uint8_t save[2*ERASED_SIZE];  /* A copy of erased bytes. */
 | 
						|
 | 
						|
    _PyMem_DebugCheckAddress(api->api_id, p);
 | 
						|
 | 
						|
    data = (uint8_t *)p;
 | 
						|
    head = data - 2*SST;
 | 
						|
    original_nbytes = read_size_t(head);
 | 
						|
    if (nbytes > (size_t)PY_SSIZE_T_MAX - 4*SST) {
 | 
						|
        /* integer overflow: can't represent total as a Py_ssize_t */
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    total = nbytes + 4*SST;
 | 
						|
 | 
						|
    tail = data + original_nbytes;
 | 
						|
    serialno = read_size_t(tail + SST);
 | 
						|
    /* Mark the header, the trailer, ERASED_SIZE bytes at the begin and
 | 
						|
       ERASED_SIZE bytes at the end as dead and save the copy of erased bytes.
 | 
						|
     */
 | 
						|
    if (original_nbytes <= sizeof(save)) {
 | 
						|
        memcpy(save, data, original_nbytes);
 | 
						|
        memset(data - 2*SST, DEADBYTE, original_nbytes + 4*SST);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        memcpy(save, data, ERASED_SIZE);
 | 
						|
        memset(head, DEADBYTE, ERASED_SIZE + 2*SST);
 | 
						|
        memcpy(&save[ERASED_SIZE], tail - ERASED_SIZE, ERASED_SIZE);
 | 
						|
        memset(tail - ERASED_SIZE, DEADBYTE, ERASED_SIZE + 2*SST);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Resize and add decorations. */
 | 
						|
    r = (uint8_t *)api->alloc.realloc(api->alloc.ctx, head, total);
 | 
						|
    if (r == NULL) {
 | 
						|
        nbytes = original_nbytes;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        head = r;
 | 
						|
        bumpserialno();
 | 
						|
        serialno = _PyRuntime.mem.serialno;
 | 
						|
    }
 | 
						|
 | 
						|
    write_size_t(head, nbytes);
 | 
						|
    head[SST] = (uint8_t)api->api_id;
 | 
						|
    memset(head + SST + 1, FORBIDDENBYTE, SST-1);
 | 
						|
    data = head + 2*SST;
 | 
						|
 | 
						|
    tail = data + nbytes;
 | 
						|
    memset(tail, FORBIDDENBYTE, SST);
 | 
						|
    write_size_t(tail + SST, serialno);
 | 
						|
 | 
						|
    /* Restore saved bytes. */
 | 
						|
    if (original_nbytes <= sizeof(save)) {
 | 
						|
        memcpy(data, save, Py_MIN(nbytes, original_nbytes));
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        size_t i = original_nbytes - ERASED_SIZE;
 | 
						|
        memcpy(data, save, Py_MIN(nbytes, ERASED_SIZE));
 | 
						|
        if (nbytes > i) {
 | 
						|
            memcpy(data + i, &save[ERASED_SIZE],
 | 
						|
                   Py_MIN(nbytes - i, ERASED_SIZE));
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (r == NULL) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    if (nbytes > original_nbytes) {
 | 
						|
        /* growing:  mark new extra memory clean */
 | 
						|
        memset(data + original_nbytes, CLEANBYTE, nbytes - original_nbytes);
 | 
						|
    }
 | 
						|
 | 
						|
    return data;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
_PyMem_DebugCheckGIL(void)
 | 
						|
{
 | 
						|
    if (!PyGILState_Check())
 | 
						|
        Py_FatalError("Python memory allocator called "
 | 
						|
                      "without holding the GIL");
 | 
						|
}
 | 
						|
 | 
						|
static void *
 | 
						|
_PyMem_DebugMalloc(void *ctx, size_t nbytes)
 | 
						|
{
 | 
						|
    _PyMem_DebugCheckGIL();
 | 
						|
    return _PyMem_DebugRawMalloc(ctx, nbytes);
 | 
						|
}
 | 
						|
 | 
						|
static void *
 | 
						|
_PyMem_DebugCalloc(void *ctx, size_t nelem, size_t elsize)
 | 
						|
{
 | 
						|
    _PyMem_DebugCheckGIL();
 | 
						|
    return _PyMem_DebugRawCalloc(ctx, nelem, elsize);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void
 | 
						|
_PyMem_DebugFree(void *ctx, void *ptr)
 | 
						|
{
 | 
						|
    _PyMem_DebugCheckGIL();
 | 
						|
    _PyMem_DebugRawFree(ctx, ptr);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void *
 | 
						|
_PyMem_DebugRealloc(void *ctx, void *ptr, size_t nbytes)
 | 
						|
{
 | 
						|
    _PyMem_DebugCheckGIL();
 | 
						|
    return _PyMem_DebugRawRealloc(ctx, ptr, nbytes);
 | 
						|
}
 | 
						|
 | 
						|
/* Check the forbidden bytes on both ends of the memory allocated for p.
 | 
						|
 * If anything is wrong, print info to stderr via _PyObject_DebugDumpAddress,
 | 
						|
 * and call Py_FatalError to kill the program.
 | 
						|
 * The API id, is also checked.
 | 
						|
 */
 | 
						|
static void
 | 
						|
_PyMem_DebugCheckAddress(char api, const void *p)
 | 
						|
{
 | 
						|
    const uint8_t *q = (const uint8_t *)p;
 | 
						|
    char msgbuf[64];
 | 
						|
    const char *msg;
 | 
						|
    size_t nbytes;
 | 
						|
    const uint8_t *tail;
 | 
						|
    int i;
 | 
						|
    char id;
 | 
						|
 | 
						|
    if (p == NULL) {
 | 
						|
        msg = "didn't expect a NULL pointer";
 | 
						|
        goto error;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Check the API id */
 | 
						|
    id = (char)q[-SST];
 | 
						|
    if (id != api) {
 | 
						|
        msg = msgbuf;
 | 
						|
        snprintf(msgbuf, sizeof(msgbuf), "bad ID: Allocated using API '%c', verified using API '%c'", id, api);
 | 
						|
        msgbuf[sizeof(msgbuf)-1] = 0;
 | 
						|
        goto error;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Check the stuff at the start of p first:  if there's underwrite
 | 
						|
     * corruption, the number-of-bytes field may be nuts, and checking
 | 
						|
     * the tail could lead to a segfault then.
 | 
						|
     */
 | 
						|
    for (i = SST-1; i >= 1; --i) {
 | 
						|
        if (*(q-i) != FORBIDDENBYTE) {
 | 
						|
            msg = "bad leading pad byte";
 | 
						|
            goto error;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    nbytes = read_size_t(q - 2*SST);
 | 
						|
    tail = q + nbytes;
 | 
						|
    for (i = 0; i < SST; ++i) {
 | 
						|
        if (tail[i] != FORBIDDENBYTE) {
 | 
						|
            msg = "bad trailing pad byte";
 | 
						|
            goto error;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return;
 | 
						|
 | 
						|
error:
 | 
						|
    _PyObject_DebugDumpAddress(p);
 | 
						|
    Py_FatalError(msg);
 | 
						|
}
 | 
						|
 | 
						|
/* Display info to stderr about the memory block at p. */
 | 
						|
static void
 | 
						|
_PyObject_DebugDumpAddress(const void *p)
 | 
						|
{
 | 
						|
    const uint8_t *q = (const uint8_t *)p;
 | 
						|
    const uint8_t *tail;
 | 
						|
    size_t nbytes, serial;
 | 
						|
    int i;
 | 
						|
    int ok;
 | 
						|
    char id;
 | 
						|
 | 
						|
    fprintf(stderr, "Debug memory block at address p=%p:", p);
 | 
						|
    if (p == NULL) {
 | 
						|
        fprintf(stderr, "\n");
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    id = (char)q[-SST];
 | 
						|
    fprintf(stderr, " API '%c'\n", id);
 | 
						|
 | 
						|
    nbytes = read_size_t(q - 2*SST);
 | 
						|
    fprintf(stderr, "    %" PY_FORMAT_SIZE_T "u bytes originally "
 | 
						|
                    "requested\n", nbytes);
 | 
						|
 | 
						|
    /* In case this is nuts, check the leading pad bytes first. */
 | 
						|
    fprintf(stderr, "    The %d pad bytes at p-%d are ", SST-1, SST-1);
 | 
						|
    ok = 1;
 | 
						|
    for (i = 1; i <= SST-1; ++i) {
 | 
						|
        if (*(q-i) != FORBIDDENBYTE) {
 | 
						|
            ok = 0;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (ok)
 | 
						|
        fputs("FORBIDDENBYTE, as expected.\n", stderr);
 | 
						|
    else {
 | 
						|
        fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n",
 | 
						|
            FORBIDDENBYTE);
 | 
						|
        for (i = SST-1; i >= 1; --i) {
 | 
						|
            const uint8_t byte = *(q-i);
 | 
						|
            fprintf(stderr, "        at p-%d: 0x%02x", i, byte);
 | 
						|
            if (byte != FORBIDDENBYTE)
 | 
						|
                fputs(" *** OUCH", stderr);
 | 
						|
            fputc('\n', stderr);
 | 
						|
        }
 | 
						|
 | 
						|
        fputs("    Because memory is corrupted at the start, the "
 | 
						|
              "count of bytes requested\n"
 | 
						|
              "       may be bogus, and checking the trailing pad "
 | 
						|
              "bytes may segfault.\n", stderr);
 | 
						|
    }
 | 
						|
 | 
						|
    tail = q + nbytes;
 | 
						|
    fprintf(stderr, "    The %d pad bytes at tail=%p are ", SST, tail);
 | 
						|
    ok = 1;
 | 
						|
    for (i = 0; i < SST; ++i) {
 | 
						|
        if (tail[i] != FORBIDDENBYTE) {
 | 
						|
            ok = 0;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (ok)
 | 
						|
        fputs("FORBIDDENBYTE, as expected.\n", stderr);
 | 
						|
    else {
 | 
						|
        fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n",
 | 
						|
                FORBIDDENBYTE);
 | 
						|
        for (i = 0; i < SST; ++i) {
 | 
						|
            const uint8_t byte = tail[i];
 | 
						|
            fprintf(stderr, "        at tail+%d: 0x%02x",
 | 
						|
                    i, byte);
 | 
						|
            if (byte != FORBIDDENBYTE)
 | 
						|
                fputs(" *** OUCH", stderr);
 | 
						|
            fputc('\n', stderr);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    serial = read_size_t(tail + SST);
 | 
						|
    fprintf(stderr, "    The block was made by call #%" PY_FORMAT_SIZE_T
 | 
						|
                    "u to debug malloc/realloc.\n", serial);
 | 
						|
 | 
						|
    if (nbytes > 0) {
 | 
						|
        i = 0;
 | 
						|
        fputs("    Data at p:", stderr);
 | 
						|
        /* print up to 8 bytes at the start */
 | 
						|
        while (q < tail && i < 8) {
 | 
						|
            fprintf(stderr, " %02x", *q);
 | 
						|
            ++i;
 | 
						|
            ++q;
 | 
						|
        }
 | 
						|
        /* and up to 8 at the end */
 | 
						|
        if (q < tail) {
 | 
						|
            if (tail - q > 8) {
 | 
						|
                fputs(" ...", stderr);
 | 
						|
                q = tail - 8;
 | 
						|
            }
 | 
						|
            while (q < tail) {
 | 
						|
                fprintf(stderr, " %02x", *q);
 | 
						|
                ++q;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        fputc('\n', stderr);
 | 
						|
    }
 | 
						|
    fputc('\n', stderr);
 | 
						|
 | 
						|
    fflush(stderr);
 | 
						|
    _PyMem_DumpTraceback(fileno(stderr), p);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static size_t
 | 
						|
printone(FILE *out, const char* msg, size_t value)
 | 
						|
{
 | 
						|
    int i, k;
 | 
						|
    char buf[100];
 | 
						|
    size_t origvalue = value;
 | 
						|
 | 
						|
    fputs(msg, out);
 | 
						|
    for (i = (int)strlen(msg); i < 35; ++i)
 | 
						|
        fputc(' ', out);
 | 
						|
    fputc('=', out);
 | 
						|
 | 
						|
    /* Write the value with commas. */
 | 
						|
    i = 22;
 | 
						|
    buf[i--] = '\0';
 | 
						|
    buf[i--] = '\n';
 | 
						|
    k = 3;
 | 
						|
    do {
 | 
						|
        size_t nextvalue = value / 10;
 | 
						|
        unsigned int digit = (unsigned int)(value - nextvalue * 10);
 | 
						|
        value = nextvalue;
 | 
						|
        buf[i--] = (char)(digit + '0');
 | 
						|
        --k;
 | 
						|
        if (k == 0 && value && i >= 0) {
 | 
						|
            k = 3;
 | 
						|
            buf[i--] = ',';
 | 
						|
        }
 | 
						|
    } while (value && i >= 0);
 | 
						|
 | 
						|
    while (i >= 0)
 | 
						|
        buf[i--] = ' ';
 | 
						|
    fputs(buf, out);
 | 
						|
 | 
						|
    return origvalue;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
_PyDebugAllocatorStats(FILE *out,
 | 
						|
                       const char *block_name, int num_blocks, size_t sizeof_block)
 | 
						|
{
 | 
						|
    char buf1[128];
 | 
						|
    char buf2[128];
 | 
						|
    PyOS_snprintf(buf1, sizeof(buf1),
 | 
						|
                  "%d %ss * %" PY_FORMAT_SIZE_T "d bytes each",
 | 
						|
                  num_blocks, block_name, sizeof_block);
 | 
						|
    PyOS_snprintf(buf2, sizeof(buf2),
 | 
						|
                  "%48s ", buf1);
 | 
						|
    (void)printone(out, buf2, num_blocks * sizeof_block);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#ifdef WITH_PYMALLOC
 | 
						|
 | 
						|
#ifdef Py_DEBUG
 | 
						|
/* Is target in the list?  The list is traversed via the nextpool pointers.
 | 
						|
 * The list may be NULL-terminated, or circular.  Return 1 if target is in
 | 
						|
 * list, else 0.
 | 
						|
 */
 | 
						|
static int
 | 
						|
pool_is_in_list(const poolp target, poolp list)
 | 
						|
{
 | 
						|
    poolp origlist = list;
 | 
						|
    assert(target != NULL);
 | 
						|
    if (list == NULL)
 | 
						|
        return 0;
 | 
						|
    do {
 | 
						|
        if (target == list)
 | 
						|
            return 1;
 | 
						|
        list = list->nextpool;
 | 
						|
    } while (list != NULL && list != origlist);
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/* Print summary info to "out" about the state of pymalloc's structures.
 | 
						|
 * In Py_DEBUG mode, also perform some expensive internal consistency
 | 
						|
 * checks.
 | 
						|
 */
 | 
						|
void
 | 
						|
_PyObject_DebugMallocStats(FILE *out)
 | 
						|
{
 | 
						|
    uint i;
 | 
						|
    const uint numclasses = SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT;
 | 
						|
    /* # of pools, allocated blocks, and free blocks per class index */
 | 
						|
    size_t numpools[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
 | 
						|
    size_t numblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
 | 
						|
    size_t numfreeblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
 | 
						|
    /* total # of allocated bytes in used and full pools */
 | 
						|
    size_t allocated_bytes = 0;
 | 
						|
    /* total # of available bytes in used pools */
 | 
						|
    size_t available_bytes = 0;
 | 
						|
    /* # of free pools + pools not yet carved out of current arena */
 | 
						|
    uint numfreepools = 0;
 | 
						|
    /* # of bytes for arena alignment padding */
 | 
						|
    size_t arena_alignment = 0;
 | 
						|
    /* # of bytes in used and full pools used for pool_headers */
 | 
						|
    size_t pool_header_bytes = 0;
 | 
						|
    /* # of bytes in used and full pools wasted due to quantization,
 | 
						|
     * i.e. the necessarily leftover space at the ends of used and
 | 
						|
     * full pools.
 | 
						|
     */
 | 
						|
    size_t quantization = 0;
 | 
						|
    /* # of arenas actually allocated. */
 | 
						|
    size_t narenas = 0;
 | 
						|
    /* running total -- should equal narenas * ARENA_SIZE */
 | 
						|
    size_t total;
 | 
						|
    char buf[128];
 | 
						|
 | 
						|
    fprintf(out, "Small block threshold = %d, in %u size classes.\n",
 | 
						|
            SMALL_REQUEST_THRESHOLD, numclasses);
 | 
						|
 | 
						|
    for (i = 0; i < numclasses; ++i)
 | 
						|
        numpools[i] = numblocks[i] = numfreeblocks[i] = 0;
 | 
						|
 | 
						|
    /* Because full pools aren't linked to from anything, it's easiest
 | 
						|
     * to march over all the arenas.  If we're lucky, most of the memory
 | 
						|
     * will be living in full pools -- would be a shame to miss them.
 | 
						|
     */
 | 
						|
    for (i = 0; i < _PyRuntime.mem.maxarenas; ++i) {
 | 
						|
        uint j;
 | 
						|
        uintptr_t base = _PyRuntime.mem.arenas[i].address;
 | 
						|
 | 
						|
        /* Skip arenas which are not allocated. */
 | 
						|
        if (_PyRuntime.mem.arenas[i].address == (uintptr_t)NULL)
 | 
						|
            continue;
 | 
						|
        narenas += 1;
 | 
						|
 | 
						|
        numfreepools += _PyRuntime.mem.arenas[i].nfreepools;
 | 
						|
 | 
						|
        /* round up to pool alignment */
 | 
						|
        if (base & (uintptr_t)POOL_SIZE_MASK) {
 | 
						|
            arena_alignment += POOL_SIZE;
 | 
						|
            base &= ~(uintptr_t)POOL_SIZE_MASK;
 | 
						|
            base += POOL_SIZE;
 | 
						|
        }
 | 
						|
 | 
						|
        /* visit every pool in the arena */
 | 
						|
        assert(base <= (uintptr_t) _PyRuntime.mem.arenas[i].pool_address);
 | 
						|
        for (j = 0; base < (uintptr_t) _PyRuntime.mem.arenas[i].pool_address;
 | 
						|
             ++j, base += POOL_SIZE) {
 | 
						|
            poolp p = (poolp)base;
 | 
						|
            const uint sz = p->szidx;
 | 
						|
            uint freeblocks;
 | 
						|
 | 
						|
            if (p->ref.count == 0) {
 | 
						|
                /* currently unused */
 | 
						|
#ifdef Py_DEBUG
 | 
						|
                assert(pool_is_in_list(p, _PyRuntime.mem.arenas[i].freepools));
 | 
						|
#endif
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
            ++numpools[sz];
 | 
						|
            numblocks[sz] += p->ref.count;
 | 
						|
            freeblocks = NUMBLOCKS(sz) - p->ref.count;
 | 
						|
            numfreeblocks[sz] += freeblocks;
 | 
						|
#ifdef Py_DEBUG
 | 
						|
            if (freeblocks > 0)
 | 
						|
                assert(pool_is_in_list(p, _PyRuntime.mem.usedpools[sz + sz]));
 | 
						|
#endif
 | 
						|
        }
 | 
						|
    }
 | 
						|
    assert(narenas == _PyRuntime.mem.narenas_currently_allocated);
 | 
						|
 | 
						|
    fputc('\n', out);
 | 
						|
    fputs("class   size   num pools   blocks in use  avail blocks\n"
 | 
						|
          "-----   ----   ---------   -------------  ------------\n",
 | 
						|
          out);
 | 
						|
 | 
						|
    for (i = 0; i < numclasses; ++i) {
 | 
						|
        size_t p = numpools[i];
 | 
						|
        size_t b = numblocks[i];
 | 
						|
        size_t f = numfreeblocks[i];
 | 
						|
        uint size = INDEX2SIZE(i);
 | 
						|
        if (p == 0) {
 | 
						|
            assert(b == 0 && f == 0);
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
        fprintf(out, "%5u %6u "
 | 
						|
                        "%11" PY_FORMAT_SIZE_T "u "
 | 
						|
                        "%15" PY_FORMAT_SIZE_T "u "
 | 
						|
                        "%13" PY_FORMAT_SIZE_T "u\n",
 | 
						|
                i, size, p, b, f);
 | 
						|
        allocated_bytes += b * size;
 | 
						|
        available_bytes += f * size;
 | 
						|
        pool_header_bytes += p * POOL_OVERHEAD;
 | 
						|
        quantization += p * ((POOL_SIZE - POOL_OVERHEAD) % size);
 | 
						|
    }
 | 
						|
    fputc('\n', out);
 | 
						|
    if (_PyMem_DebugEnabled())
 | 
						|
        (void)printone(out, "# times object malloc called", _PyRuntime.mem.serialno);
 | 
						|
    (void)printone(out, "# arenas allocated total", _PyRuntime.mem.ntimes_arena_allocated);
 | 
						|
    (void)printone(out, "# arenas reclaimed", _PyRuntime.mem.ntimes_arena_allocated - narenas);
 | 
						|
    (void)printone(out, "# arenas highwater mark", _PyRuntime.mem.narenas_highwater);
 | 
						|
    (void)printone(out, "# arenas allocated current", narenas);
 | 
						|
 | 
						|
    PyOS_snprintf(buf, sizeof(buf),
 | 
						|
        "%" PY_FORMAT_SIZE_T "u arenas * %d bytes/arena",
 | 
						|
        narenas, ARENA_SIZE);
 | 
						|
    (void)printone(out, buf, narenas * ARENA_SIZE);
 | 
						|
 | 
						|
    fputc('\n', out);
 | 
						|
 | 
						|
    total = printone(out, "# bytes in allocated blocks", allocated_bytes);
 | 
						|
    total += printone(out, "# bytes in available blocks", available_bytes);
 | 
						|
 | 
						|
    PyOS_snprintf(buf, sizeof(buf),
 | 
						|
        "%u unused pools * %d bytes", numfreepools, POOL_SIZE);
 | 
						|
    total += printone(out, buf, (size_t)numfreepools * POOL_SIZE);
 | 
						|
 | 
						|
    total += printone(out, "# bytes lost to pool headers", pool_header_bytes);
 | 
						|
    total += printone(out, "# bytes lost to quantization", quantization);
 | 
						|
    total += printone(out, "# bytes lost to arena alignment", arena_alignment);
 | 
						|
    (void)printone(out, "Total", total);
 | 
						|
}
 | 
						|
 | 
						|
#endif /* #ifdef WITH_PYMALLOC */
 |