mirror of
				https://github.com/python/cpython.git
				synced 2025-11-04 03:44:55 +00:00 
			
		
		
		
	* Remove '#include "structmember.h"'. * If needed, add <stddef.h> to get offsetof() function. * Update Parser/asdl_c.py to regenerate Python/Python-ast.c. * Replace: * T_SHORT => Py_T_SHORT * T_INT => Py_T_INT * T_LONG => Py_T_LONG * T_FLOAT => Py_T_FLOAT * T_DOUBLE => Py_T_DOUBLE * T_STRING => Py_T_STRING * T_OBJECT => _Py_T_OBJECT * T_CHAR => Py_T_CHAR * T_BYTE => Py_T_BYTE * T_UBYTE => Py_T_UBYTE * T_USHORT => Py_T_USHORT * T_UINT => Py_T_UINT * T_ULONG => Py_T_ULONG * T_STRING_INPLACE => Py_T_STRING_INPLACE * T_BOOL => Py_T_BOOL * T_OBJECT_EX => Py_T_OBJECT_EX * T_LONGLONG => Py_T_LONGLONG * T_ULONGLONG => Py_T_ULONGLONG * T_PYSSIZET => Py_T_PYSSIZET * T_NONE => _Py_T_NONE * READONLY => Py_READONLY * PY_AUDIT_READ => Py_AUDIT_READ * READ_RESTRICTED => Py_AUDIT_READ * PY_WRITE_RESTRICTED => _Py_WRITE_RESTRICTED * RESTRICTED => (READ_RESTRICTED | _Py_WRITE_RESTRICTED)
		
			
				
	
	
		
			1111 lines
		
	
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1111 lines
		
	
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
 | 
						|
/* Complex object implementation */
 | 
						|
 | 
						|
/* Borrows heavily from floatobject.c */
 | 
						|
 | 
						|
/* Submitted by Jim Hugunin */
 | 
						|
 | 
						|
#include "Python.h"
 | 
						|
#include "pycore_call.h"          // _PyObject_CallNoArgs()
 | 
						|
#include "pycore_complexobject.h" // _PyComplex_FormatAdvancedWriter()
 | 
						|
#include "pycore_long.h"          // _PyLong_GetZero()
 | 
						|
#include "pycore_object.h"        // _PyObject_Init()
 | 
						|
#include "pycore_pymath.h"        // _Py_ADJUST_ERANGE2()
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
class complex "PyComplexObject *" "&PyComplex_Type"
 | 
						|
[clinic start generated code]*/
 | 
						|
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=819e057d2d10f5ec]*/
 | 
						|
 | 
						|
#include "clinic/complexobject.c.h"
 | 
						|
 | 
						|
/* elementary operations on complex numbers */
 | 
						|
 | 
						|
static Py_complex c_1 = {1., 0.};
 | 
						|
 | 
						|
Py_complex
 | 
						|
_Py_c_sum(Py_complex a, Py_complex b)
 | 
						|
{
 | 
						|
    Py_complex r;
 | 
						|
    r.real = a.real + b.real;
 | 
						|
    r.imag = a.imag + b.imag;
 | 
						|
    return r;
 | 
						|
}
 | 
						|
 | 
						|
Py_complex
 | 
						|
_Py_c_diff(Py_complex a, Py_complex b)
 | 
						|
{
 | 
						|
    Py_complex r;
 | 
						|
    r.real = a.real - b.real;
 | 
						|
    r.imag = a.imag - b.imag;
 | 
						|
    return r;
 | 
						|
}
 | 
						|
 | 
						|
Py_complex
 | 
						|
_Py_c_neg(Py_complex a)
 | 
						|
{
 | 
						|
    Py_complex r;
 | 
						|
    r.real = -a.real;
 | 
						|
    r.imag = -a.imag;
 | 
						|
    return r;
 | 
						|
}
 | 
						|
 | 
						|
Py_complex
 | 
						|
_Py_c_prod(Py_complex a, Py_complex b)
 | 
						|
{
 | 
						|
    Py_complex r;
 | 
						|
    r.real = a.real*b.real - a.imag*b.imag;
 | 
						|
    r.imag = a.real*b.imag + a.imag*b.real;
 | 
						|
    return r;
 | 
						|
}
 | 
						|
 | 
						|
/* Avoid bad optimization on Windows ARM64 until the compiler is fixed */
 | 
						|
#ifdef _M_ARM64
 | 
						|
#pragma optimize("", off)
 | 
						|
#endif
 | 
						|
Py_complex
 | 
						|
_Py_c_quot(Py_complex a, Py_complex b)
 | 
						|
{
 | 
						|
    /******************************************************************
 | 
						|
    This was the original algorithm.  It's grossly prone to spurious
 | 
						|
    overflow and underflow errors.  It also merrily divides by 0 despite
 | 
						|
    checking for that(!).  The code still serves a doc purpose here, as
 | 
						|
    the algorithm following is a simple by-cases transformation of this
 | 
						|
    one:
 | 
						|
 | 
						|
    Py_complex r;
 | 
						|
    double d = b.real*b.real + b.imag*b.imag;
 | 
						|
    if (d == 0.)
 | 
						|
        errno = EDOM;
 | 
						|
    r.real = (a.real*b.real + a.imag*b.imag)/d;
 | 
						|
    r.imag = (a.imag*b.real - a.real*b.imag)/d;
 | 
						|
    return r;
 | 
						|
    ******************************************************************/
 | 
						|
 | 
						|
    /* This algorithm is better, and is pretty obvious:  first divide the
 | 
						|
     * numerators and denominator by whichever of {b.real, b.imag} has
 | 
						|
     * larger magnitude.  The earliest reference I found was to CACM
 | 
						|
     * Algorithm 116 (Complex Division, Robert L. Smith, Stanford
 | 
						|
     * University).  As usual, though, we're still ignoring all IEEE
 | 
						|
     * endcases.
 | 
						|
     */
 | 
						|
     Py_complex r;      /* the result */
 | 
						|
     const double abs_breal = b.real < 0 ? -b.real : b.real;
 | 
						|
     const double abs_bimag = b.imag < 0 ? -b.imag : b.imag;
 | 
						|
 | 
						|
    if (abs_breal >= abs_bimag) {
 | 
						|
        /* divide tops and bottom by b.real */
 | 
						|
        if (abs_breal == 0.0) {
 | 
						|
            errno = EDOM;
 | 
						|
            r.real = r.imag = 0.0;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            const double ratio = b.imag / b.real;
 | 
						|
            const double denom = b.real + b.imag * ratio;
 | 
						|
            r.real = (a.real + a.imag * ratio) / denom;
 | 
						|
            r.imag = (a.imag - a.real * ratio) / denom;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else if (abs_bimag >= abs_breal) {
 | 
						|
        /* divide tops and bottom by b.imag */
 | 
						|
        const double ratio = b.real / b.imag;
 | 
						|
        const double denom = b.real * ratio + b.imag;
 | 
						|
        assert(b.imag != 0.0);
 | 
						|
        r.real = (a.real * ratio + a.imag) / denom;
 | 
						|
        r.imag = (a.imag * ratio - a.real) / denom;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        /* At least one of b.real or b.imag is a NaN */
 | 
						|
        r.real = r.imag = Py_NAN;
 | 
						|
    }
 | 
						|
    return r;
 | 
						|
}
 | 
						|
#ifdef _M_ARM64
 | 
						|
#pragma optimize("", on)
 | 
						|
#endif
 | 
						|
 | 
						|
Py_complex
 | 
						|
_Py_c_pow(Py_complex a, Py_complex b)
 | 
						|
{
 | 
						|
    Py_complex r;
 | 
						|
    double vabs,len,at,phase;
 | 
						|
    if (b.real == 0. && b.imag == 0.) {
 | 
						|
        r.real = 1.;
 | 
						|
        r.imag = 0.;
 | 
						|
    }
 | 
						|
    else if (a.real == 0. && a.imag == 0.) {
 | 
						|
        if (b.imag != 0. || b.real < 0.)
 | 
						|
            errno = EDOM;
 | 
						|
        r.real = 0.;
 | 
						|
        r.imag = 0.;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        vabs = hypot(a.real,a.imag);
 | 
						|
        len = pow(vabs,b.real);
 | 
						|
        at = atan2(a.imag, a.real);
 | 
						|
        phase = at*b.real;
 | 
						|
        if (b.imag != 0.0) {
 | 
						|
            len /= exp(at*b.imag);
 | 
						|
            phase += b.imag*log(vabs);
 | 
						|
        }
 | 
						|
        r.real = len*cos(phase);
 | 
						|
        r.imag = len*sin(phase);
 | 
						|
    }
 | 
						|
    return r;
 | 
						|
}
 | 
						|
 | 
						|
static Py_complex
 | 
						|
c_powu(Py_complex x, long n)
 | 
						|
{
 | 
						|
    Py_complex r, p;
 | 
						|
    long mask = 1;
 | 
						|
    r = c_1;
 | 
						|
    p = x;
 | 
						|
    while (mask > 0 && n >= mask) {
 | 
						|
        if (n & mask)
 | 
						|
            r = _Py_c_prod(r,p);
 | 
						|
        mask <<= 1;
 | 
						|
        p = _Py_c_prod(p,p);
 | 
						|
    }
 | 
						|
    return r;
 | 
						|
}
 | 
						|
 | 
						|
static Py_complex
 | 
						|
c_powi(Py_complex x, long n)
 | 
						|
{
 | 
						|
    if (n > 0)
 | 
						|
        return c_powu(x,n);
 | 
						|
    else
 | 
						|
        return _Py_c_quot(c_1, c_powu(x,-n));
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
double
 | 
						|
_Py_c_abs(Py_complex z)
 | 
						|
{
 | 
						|
    /* sets errno = ERANGE on overflow;  otherwise errno = 0 */
 | 
						|
    double result;
 | 
						|
 | 
						|
    if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
 | 
						|
        /* C99 rules: if either the real or the imaginary part is an
 | 
						|
           infinity, return infinity, even if the other part is a
 | 
						|
           NaN. */
 | 
						|
        if (Py_IS_INFINITY(z.real)) {
 | 
						|
            result = fabs(z.real);
 | 
						|
            errno = 0;
 | 
						|
            return result;
 | 
						|
        }
 | 
						|
        if (Py_IS_INFINITY(z.imag)) {
 | 
						|
            result = fabs(z.imag);
 | 
						|
            errno = 0;
 | 
						|
            return result;
 | 
						|
        }
 | 
						|
        /* either the real or imaginary part is a NaN,
 | 
						|
           and neither is infinite. Result should be NaN. */
 | 
						|
        return Py_NAN;
 | 
						|
    }
 | 
						|
    result = hypot(z.real, z.imag);
 | 
						|
    if (!Py_IS_FINITE(result))
 | 
						|
        errno = ERANGE;
 | 
						|
    else
 | 
						|
        errno = 0;
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_subtype_from_c_complex(PyTypeObject *type, Py_complex cval)
 | 
						|
{
 | 
						|
    PyObject *op;
 | 
						|
 | 
						|
    op = type->tp_alloc(type, 0);
 | 
						|
    if (op != NULL)
 | 
						|
        ((PyComplexObject *)op)->cval = cval;
 | 
						|
    return op;
 | 
						|
}
 | 
						|
 | 
						|
PyObject *
 | 
						|
PyComplex_FromCComplex(Py_complex cval)
 | 
						|
{
 | 
						|
    /* Inline PyObject_New */
 | 
						|
    PyComplexObject *op = PyObject_Malloc(sizeof(PyComplexObject));
 | 
						|
    if (op == NULL) {
 | 
						|
        return PyErr_NoMemory();
 | 
						|
    }
 | 
						|
    _PyObject_Init((PyObject*)op, &PyComplex_Type);
 | 
						|
    op->cval = cval;
 | 
						|
    return (PyObject *) op;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_subtype_from_doubles(PyTypeObject *type, double real, double imag)
 | 
						|
{
 | 
						|
    Py_complex c;
 | 
						|
    c.real = real;
 | 
						|
    c.imag = imag;
 | 
						|
    return complex_subtype_from_c_complex(type, c);
 | 
						|
}
 | 
						|
 | 
						|
PyObject *
 | 
						|
PyComplex_FromDoubles(double real, double imag)
 | 
						|
{
 | 
						|
    Py_complex c;
 | 
						|
    c.real = real;
 | 
						|
    c.imag = imag;
 | 
						|
    return PyComplex_FromCComplex(c);
 | 
						|
}
 | 
						|
 | 
						|
double
 | 
						|
PyComplex_RealAsDouble(PyObject *op)
 | 
						|
{
 | 
						|
    if (PyComplex_Check(op)) {
 | 
						|
        return ((PyComplexObject *)op)->cval.real;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return PyFloat_AsDouble(op);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
double
 | 
						|
PyComplex_ImagAsDouble(PyObject *op)
 | 
						|
{
 | 
						|
    if (PyComplex_Check(op)) {
 | 
						|
        return ((PyComplexObject *)op)->cval.imag;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return 0.0;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
try_complex_special_method(PyObject *op)
 | 
						|
{
 | 
						|
    PyObject *f;
 | 
						|
 | 
						|
    f = _PyObject_LookupSpecial(op, &_Py_ID(__complex__));
 | 
						|
    if (f) {
 | 
						|
        PyObject *res = _PyObject_CallNoArgs(f);
 | 
						|
        Py_DECREF(f);
 | 
						|
        if (!res || PyComplex_CheckExact(res)) {
 | 
						|
            return res;
 | 
						|
        }
 | 
						|
        if (!PyComplex_Check(res)) {
 | 
						|
            PyErr_Format(PyExc_TypeError,
 | 
						|
                "__complex__ returned non-complex (type %.200s)",
 | 
						|
                Py_TYPE(res)->tp_name);
 | 
						|
            Py_DECREF(res);
 | 
						|
            return NULL;
 | 
						|
        }
 | 
						|
        /* Issue #29894: warn if 'res' not of exact type complex. */
 | 
						|
        if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1,
 | 
						|
                "__complex__ returned non-complex (type %.200s).  "
 | 
						|
                "The ability to return an instance of a strict subclass of complex "
 | 
						|
                "is deprecated, and may be removed in a future version of Python.",
 | 
						|
                Py_TYPE(res)->tp_name)) {
 | 
						|
            Py_DECREF(res);
 | 
						|
            return NULL;
 | 
						|
        }
 | 
						|
        return res;
 | 
						|
    }
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
Py_complex
 | 
						|
PyComplex_AsCComplex(PyObject *op)
 | 
						|
{
 | 
						|
    Py_complex cv;
 | 
						|
    PyObject *newop = NULL;
 | 
						|
 | 
						|
    assert(op);
 | 
						|
    /* If op is already of type PyComplex_Type, return its value */
 | 
						|
    if (PyComplex_Check(op)) {
 | 
						|
        return ((PyComplexObject *)op)->cval;
 | 
						|
    }
 | 
						|
    /* If not, use op's __complex__  method, if it exists */
 | 
						|
 | 
						|
    /* return -1 on failure */
 | 
						|
    cv.real = -1.;
 | 
						|
    cv.imag = 0.;
 | 
						|
 | 
						|
    newop = try_complex_special_method(op);
 | 
						|
 | 
						|
    if (newop) {
 | 
						|
        cv = ((PyComplexObject *)newop)->cval;
 | 
						|
        Py_DECREF(newop);
 | 
						|
        return cv;
 | 
						|
    }
 | 
						|
    else if (PyErr_Occurred()) {
 | 
						|
        return cv;
 | 
						|
    }
 | 
						|
    /* If neither of the above works, interpret op as a float giving the
 | 
						|
       real part of the result, and fill in the imaginary part as 0. */
 | 
						|
    else {
 | 
						|
        /* PyFloat_AsDouble will return -1 on failure */
 | 
						|
        cv.real = PyFloat_AsDouble(op);
 | 
						|
        return cv;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_repr(PyComplexObject *v)
 | 
						|
{
 | 
						|
    int precision = 0;
 | 
						|
    char format_code = 'r';
 | 
						|
    PyObject *result = NULL;
 | 
						|
 | 
						|
    /* If these are non-NULL, they'll need to be freed. */
 | 
						|
    char *pre = NULL;
 | 
						|
    char *im = NULL;
 | 
						|
 | 
						|
    /* These do not need to be freed. re is either an alias
 | 
						|
       for pre or a pointer to a constant.  lead and tail
 | 
						|
       are pointers to constants. */
 | 
						|
    const char *re = NULL;
 | 
						|
    const char *lead = "";
 | 
						|
    const char *tail = "";
 | 
						|
 | 
						|
    if (v->cval.real == 0. && copysign(1.0, v->cval.real)==1.0) {
 | 
						|
        /* Real part is +0: just output the imaginary part and do not
 | 
						|
           include parens. */
 | 
						|
        re = "";
 | 
						|
        im = PyOS_double_to_string(v->cval.imag, format_code,
 | 
						|
                                   precision, 0, NULL);
 | 
						|
        if (!im) {
 | 
						|
            PyErr_NoMemory();
 | 
						|
            goto done;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        /* Format imaginary part with sign, real part without. Include
 | 
						|
           parens in the result. */
 | 
						|
        pre = PyOS_double_to_string(v->cval.real, format_code,
 | 
						|
                                    precision, 0, NULL);
 | 
						|
        if (!pre) {
 | 
						|
            PyErr_NoMemory();
 | 
						|
            goto done;
 | 
						|
        }
 | 
						|
        re = pre;
 | 
						|
 | 
						|
        im = PyOS_double_to_string(v->cval.imag, format_code,
 | 
						|
                                   precision, Py_DTSF_SIGN, NULL);
 | 
						|
        if (!im) {
 | 
						|
            PyErr_NoMemory();
 | 
						|
            goto done;
 | 
						|
        }
 | 
						|
        lead = "(";
 | 
						|
        tail = ")";
 | 
						|
    }
 | 
						|
    result = PyUnicode_FromFormat("%s%s%sj%s", lead, re, im, tail);
 | 
						|
  done:
 | 
						|
    PyMem_Free(im);
 | 
						|
    PyMem_Free(pre);
 | 
						|
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
static Py_hash_t
 | 
						|
complex_hash(PyComplexObject *v)
 | 
						|
{
 | 
						|
    Py_uhash_t hashreal, hashimag, combined;
 | 
						|
    hashreal = (Py_uhash_t)_Py_HashDouble((PyObject *) v, v->cval.real);
 | 
						|
    if (hashreal == (Py_uhash_t)-1)
 | 
						|
        return -1;
 | 
						|
    hashimag = (Py_uhash_t)_Py_HashDouble((PyObject *)v, v->cval.imag);
 | 
						|
    if (hashimag == (Py_uhash_t)-1)
 | 
						|
        return -1;
 | 
						|
    /* Note:  if the imaginary part is 0, hashimag is 0 now,
 | 
						|
     * so the following returns hashreal unchanged.  This is
 | 
						|
     * important because numbers of different types that
 | 
						|
     * compare equal must have the same hash value, so that
 | 
						|
     * hash(x + 0*j) must equal hash(x).
 | 
						|
     */
 | 
						|
    combined = hashreal + _PyHASH_IMAG * hashimag;
 | 
						|
    if (combined == (Py_uhash_t)-1)
 | 
						|
        combined = (Py_uhash_t)-2;
 | 
						|
    return (Py_hash_t)combined;
 | 
						|
}
 | 
						|
 | 
						|
/* This macro may return! */
 | 
						|
#define TO_COMPLEX(obj, c) \
 | 
						|
    if (PyComplex_Check(obj)) \
 | 
						|
        c = ((PyComplexObject *)(obj))->cval; \
 | 
						|
    else if (to_complex(&(obj), &(c)) < 0) \
 | 
						|
        return (obj)
 | 
						|
 | 
						|
static int
 | 
						|
to_complex(PyObject **pobj, Py_complex *pc)
 | 
						|
{
 | 
						|
    PyObject *obj = *pobj;
 | 
						|
 | 
						|
    pc->real = pc->imag = 0.0;
 | 
						|
    if (PyLong_Check(obj)) {
 | 
						|
        pc->real = PyLong_AsDouble(obj);
 | 
						|
        if (pc->real == -1.0 && PyErr_Occurred()) {
 | 
						|
            *pobj = NULL;
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    if (PyFloat_Check(obj)) {
 | 
						|
        pc->real = PyFloat_AsDouble(obj);
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    *pobj = Py_NewRef(Py_NotImplemented);
 | 
						|
    return -1;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_add(PyObject *v, PyObject *w)
 | 
						|
{
 | 
						|
    Py_complex result;
 | 
						|
    Py_complex a, b;
 | 
						|
    TO_COMPLEX(v, a);
 | 
						|
    TO_COMPLEX(w, b);
 | 
						|
    result = _Py_c_sum(a, b);
 | 
						|
    return PyComplex_FromCComplex(result);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_sub(PyObject *v, PyObject *w)
 | 
						|
{
 | 
						|
    Py_complex result;
 | 
						|
    Py_complex a, b;
 | 
						|
    TO_COMPLEX(v, a);
 | 
						|
    TO_COMPLEX(w, b);
 | 
						|
    result = _Py_c_diff(a, b);
 | 
						|
    return PyComplex_FromCComplex(result);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_mul(PyObject *v, PyObject *w)
 | 
						|
{
 | 
						|
    Py_complex result;
 | 
						|
    Py_complex a, b;
 | 
						|
    TO_COMPLEX(v, a);
 | 
						|
    TO_COMPLEX(w, b);
 | 
						|
    result = _Py_c_prod(a, b);
 | 
						|
    return PyComplex_FromCComplex(result);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_div(PyObject *v, PyObject *w)
 | 
						|
{
 | 
						|
    Py_complex quot;
 | 
						|
    Py_complex a, b;
 | 
						|
    TO_COMPLEX(v, a);
 | 
						|
    TO_COMPLEX(w, b);
 | 
						|
    errno = 0;
 | 
						|
    quot = _Py_c_quot(a, b);
 | 
						|
    if (errno == EDOM) {
 | 
						|
        PyErr_SetString(PyExc_ZeroDivisionError, "complex division by zero");
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    return PyComplex_FromCComplex(quot);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_pow(PyObject *v, PyObject *w, PyObject *z)
 | 
						|
{
 | 
						|
    Py_complex p;
 | 
						|
    Py_complex a, b;
 | 
						|
    TO_COMPLEX(v, a);
 | 
						|
    TO_COMPLEX(w, b);
 | 
						|
 | 
						|
    if (z != Py_None) {
 | 
						|
        PyErr_SetString(PyExc_ValueError, "complex modulo");
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    errno = 0;
 | 
						|
    // Check whether the exponent has a small integer value, and if so use
 | 
						|
    // a faster and more accurate algorithm.
 | 
						|
    if (b.imag == 0.0 && b.real == floor(b.real) && fabs(b.real) <= 100.0) {
 | 
						|
        p = c_powi(a, (long)b.real);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        p = _Py_c_pow(a, b);
 | 
						|
    }
 | 
						|
 | 
						|
    _Py_ADJUST_ERANGE2(p.real, p.imag);
 | 
						|
    if (errno == EDOM) {
 | 
						|
        PyErr_SetString(PyExc_ZeroDivisionError,
 | 
						|
                        "0.0 to a negative or complex power");
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    else if (errno == ERANGE) {
 | 
						|
        PyErr_SetString(PyExc_OverflowError,
 | 
						|
                        "complex exponentiation");
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    return PyComplex_FromCComplex(p);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_neg(PyComplexObject *v)
 | 
						|
{
 | 
						|
    Py_complex neg;
 | 
						|
    neg.real = -v->cval.real;
 | 
						|
    neg.imag = -v->cval.imag;
 | 
						|
    return PyComplex_FromCComplex(neg);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_pos(PyComplexObject *v)
 | 
						|
{
 | 
						|
    if (PyComplex_CheckExact(v)) {
 | 
						|
        return Py_NewRef(v);
 | 
						|
    }
 | 
						|
    else
 | 
						|
        return PyComplex_FromCComplex(v->cval);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_abs(PyComplexObject *v)
 | 
						|
{
 | 
						|
    double result;
 | 
						|
 | 
						|
    result = _Py_c_abs(v->cval);
 | 
						|
 | 
						|
    if (errno == ERANGE) {
 | 
						|
        PyErr_SetString(PyExc_OverflowError,
 | 
						|
                        "absolute value too large");
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    return PyFloat_FromDouble(result);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
complex_bool(PyComplexObject *v)
 | 
						|
{
 | 
						|
    return v->cval.real != 0.0 || v->cval.imag != 0.0;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_richcompare(PyObject *v, PyObject *w, int op)
 | 
						|
{
 | 
						|
    PyObject *res;
 | 
						|
    Py_complex i;
 | 
						|
    int equal;
 | 
						|
 | 
						|
    if (op != Py_EQ && op != Py_NE) {
 | 
						|
        goto Unimplemented;
 | 
						|
    }
 | 
						|
 | 
						|
    assert(PyComplex_Check(v));
 | 
						|
    TO_COMPLEX(v, i);
 | 
						|
 | 
						|
    if (PyLong_Check(w)) {
 | 
						|
        /* Check for 0.0 imaginary part first to avoid the rich
 | 
						|
         * comparison when possible.
 | 
						|
         */
 | 
						|
        if (i.imag == 0.0) {
 | 
						|
            PyObject *j, *sub_res;
 | 
						|
            j = PyFloat_FromDouble(i.real);
 | 
						|
            if (j == NULL)
 | 
						|
                return NULL;
 | 
						|
 | 
						|
            sub_res = PyObject_RichCompare(j, w, op);
 | 
						|
            Py_DECREF(j);
 | 
						|
            return sub_res;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            equal = 0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else if (PyFloat_Check(w)) {
 | 
						|
        equal = (i.real == PyFloat_AsDouble(w) && i.imag == 0.0);
 | 
						|
    }
 | 
						|
    else if (PyComplex_Check(w)) {
 | 
						|
        Py_complex j;
 | 
						|
 | 
						|
        TO_COMPLEX(w, j);
 | 
						|
        equal = (i.real == j.real && i.imag == j.imag);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        goto Unimplemented;
 | 
						|
    }
 | 
						|
 | 
						|
    if (equal == (op == Py_EQ))
 | 
						|
         res = Py_True;
 | 
						|
    else
 | 
						|
         res = Py_False;
 | 
						|
 | 
						|
    return Py_NewRef(res);
 | 
						|
 | 
						|
Unimplemented:
 | 
						|
    Py_RETURN_NOTIMPLEMENTED;
 | 
						|
}
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
complex.conjugate
 | 
						|
 | 
						|
Return the complex conjugate of its argument. (3-4j).conjugate() == 3+4j.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_conjugate_impl(PyComplexObject *self)
 | 
						|
/*[clinic end generated code: output=5059ef162edfc68e input=5fea33e9747ec2c4]*/
 | 
						|
{
 | 
						|
    Py_complex c = self->cval;
 | 
						|
    c.imag = -c.imag;
 | 
						|
    return PyComplex_FromCComplex(c);
 | 
						|
}
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
complex.__getnewargs__
 | 
						|
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex___getnewargs___impl(PyComplexObject *self)
 | 
						|
/*[clinic end generated code: output=689b8206e8728934 input=539543e0a50533d7]*/
 | 
						|
{
 | 
						|
    Py_complex c = self->cval;
 | 
						|
    return Py_BuildValue("(dd)", c.real, c.imag);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
complex.__format__
 | 
						|
 | 
						|
    format_spec: unicode
 | 
						|
    /
 | 
						|
 | 
						|
Convert to a string according to format_spec.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex___format___impl(PyComplexObject *self, PyObject *format_spec)
 | 
						|
/*[clinic end generated code: output=bfcb60df24cafea0 input=014ef5488acbe1d5]*/
 | 
						|
{
 | 
						|
    _PyUnicodeWriter writer;
 | 
						|
    int ret;
 | 
						|
    _PyUnicodeWriter_Init(&writer);
 | 
						|
    ret = _PyComplex_FormatAdvancedWriter(
 | 
						|
        &writer,
 | 
						|
        (PyObject *)self,
 | 
						|
        format_spec, 0, PyUnicode_GET_LENGTH(format_spec));
 | 
						|
    if (ret == -1) {
 | 
						|
        _PyUnicodeWriter_Dealloc(&writer);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    return _PyUnicodeWriter_Finish(&writer);
 | 
						|
}
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
complex.__complex__
 | 
						|
 | 
						|
Convert this value to exact type complex.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex___complex___impl(PyComplexObject *self)
 | 
						|
/*[clinic end generated code: output=e6b35ba3d275dc9c input=3589ada9d27db854]*/
 | 
						|
{
 | 
						|
    if (PyComplex_CheckExact(self)) {
 | 
						|
        return Py_NewRef(self);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return PyComplex_FromCComplex(self->cval);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static PyMethodDef complex_methods[] = {
 | 
						|
    COMPLEX_CONJUGATE_METHODDEF
 | 
						|
    COMPLEX___COMPLEX___METHODDEF
 | 
						|
    COMPLEX___GETNEWARGS___METHODDEF
 | 
						|
    COMPLEX___FORMAT___METHODDEF
 | 
						|
    {NULL,              NULL}           /* sentinel */
 | 
						|
};
 | 
						|
 | 
						|
static PyMemberDef complex_members[] = {
 | 
						|
    {"real", Py_T_DOUBLE, offsetof(PyComplexObject, cval.real), Py_READONLY,
 | 
						|
     "the real part of a complex number"},
 | 
						|
    {"imag", Py_T_DOUBLE, offsetof(PyComplexObject, cval.imag), Py_READONLY,
 | 
						|
     "the imaginary part of a complex number"},
 | 
						|
    {0},
 | 
						|
};
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_from_string_inner(const char *s, Py_ssize_t len, void *type)
 | 
						|
{
 | 
						|
    double x=0.0, y=0.0, z;
 | 
						|
    int got_bracket=0;
 | 
						|
    const char *start;
 | 
						|
    char *end;
 | 
						|
 | 
						|
    /* position on first nonblank */
 | 
						|
    start = s;
 | 
						|
    while (Py_ISSPACE(*s))
 | 
						|
        s++;
 | 
						|
    if (*s == '(') {
 | 
						|
        /* Skip over possible bracket from repr(). */
 | 
						|
        got_bracket = 1;
 | 
						|
        s++;
 | 
						|
        while (Py_ISSPACE(*s))
 | 
						|
            s++;
 | 
						|
    }
 | 
						|
 | 
						|
    /* a valid complex string usually takes one of the three forms:
 | 
						|
 | 
						|
         <float>                  - real part only
 | 
						|
         <float>j                 - imaginary part only
 | 
						|
         <float><signed-float>j   - real and imaginary parts
 | 
						|
 | 
						|
       where <float> represents any numeric string that's accepted by the
 | 
						|
       float constructor (including 'nan', 'inf', 'infinity', etc.), and
 | 
						|
       <signed-float> is any string of the form <float> whose first
 | 
						|
       character is '+' or '-'.
 | 
						|
 | 
						|
       For backwards compatibility, the extra forms
 | 
						|
 | 
						|
         <float><sign>j
 | 
						|
         <sign>j
 | 
						|
         j
 | 
						|
 | 
						|
       are also accepted, though support for these forms may be removed from
 | 
						|
       a future version of Python.
 | 
						|
    */
 | 
						|
 | 
						|
    /* first look for forms starting with <float> */
 | 
						|
    z = PyOS_string_to_double(s, &end, NULL);
 | 
						|
    if (z == -1.0 && PyErr_Occurred()) {
 | 
						|
        if (PyErr_ExceptionMatches(PyExc_ValueError))
 | 
						|
            PyErr_Clear();
 | 
						|
        else
 | 
						|
            return NULL;
 | 
						|
    }
 | 
						|
    if (end != s) {
 | 
						|
        /* all 4 forms starting with <float> land here */
 | 
						|
        s = end;
 | 
						|
        if (*s == '+' || *s == '-') {
 | 
						|
            /* <float><signed-float>j | <float><sign>j */
 | 
						|
            x = z;
 | 
						|
            y = PyOS_string_to_double(s, &end, NULL);
 | 
						|
            if (y == -1.0 && PyErr_Occurred()) {
 | 
						|
                if (PyErr_ExceptionMatches(PyExc_ValueError))
 | 
						|
                    PyErr_Clear();
 | 
						|
                else
 | 
						|
                    return NULL;
 | 
						|
            }
 | 
						|
            if (end != s)
 | 
						|
                /* <float><signed-float>j */
 | 
						|
                s = end;
 | 
						|
            else {
 | 
						|
                /* <float><sign>j */
 | 
						|
                y = *s == '+' ? 1.0 : -1.0;
 | 
						|
                s++;
 | 
						|
            }
 | 
						|
            if (!(*s == 'j' || *s == 'J'))
 | 
						|
                goto parse_error;
 | 
						|
            s++;
 | 
						|
        }
 | 
						|
        else if (*s == 'j' || *s == 'J') {
 | 
						|
            /* <float>j */
 | 
						|
            s++;
 | 
						|
            y = z;
 | 
						|
        }
 | 
						|
        else
 | 
						|
            /* <float> */
 | 
						|
            x = z;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        /* not starting with <float>; must be <sign>j or j */
 | 
						|
        if (*s == '+' || *s == '-') {
 | 
						|
            /* <sign>j */
 | 
						|
            y = *s == '+' ? 1.0 : -1.0;
 | 
						|
            s++;
 | 
						|
        }
 | 
						|
        else
 | 
						|
            /* j */
 | 
						|
            y = 1.0;
 | 
						|
        if (!(*s == 'j' || *s == 'J'))
 | 
						|
            goto parse_error;
 | 
						|
        s++;
 | 
						|
    }
 | 
						|
 | 
						|
    /* trailing whitespace and closing bracket */
 | 
						|
    while (Py_ISSPACE(*s))
 | 
						|
        s++;
 | 
						|
    if (got_bracket) {
 | 
						|
        /* if there was an opening parenthesis, then the corresponding
 | 
						|
           closing parenthesis should be right here */
 | 
						|
        if (*s != ')')
 | 
						|
            goto parse_error;
 | 
						|
        s++;
 | 
						|
        while (Py_ISSPACE(*s))
 | 
						|
            s++;
 | 
						|
    }
 | 
						|
 | 
						|
    /* we should now be at the end of the string */
 | 
						|
    if (s-start != len)
 | 
						|
        goto parse_error;
 | 
						|
 | 
						|
    return complex_subtype_from_doubles(_PyType_CAST(type), x, y);
 | 
						|
 | 
						|
  parse_error:
 | 
						|
    PyErr_SetString(PyExc_ValueError,
 | 
						|
                    "complex() arg is a malformed string");
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_subtype_from_string(PyTypeObject *type, PyObject *v)
 | 
						|
{
 | 
						|
    const char *s;
 | 
						|
    PyObject *s_buffer = NULL, *result = NULL;
 | 
						|
    Py_ssize_t len;
 | 
						|
 | 
						|
    if (PyUnicode_Check(v)) {
 | 
						|
        s_buffer = _PyUnicode_TransformDecimalAndSpaceToASCII(v);
 | 
						|
        if (s_buffer == NULL) {
 | 
						|
            return NULL;
 | 
						|
        }
 | 
						|
        assert(PyUnicode_IS_ASCII(s_buffer));
 | 
						|
        /* Simply get a pointer to existing ASCII characters. */
 | 
						|
        s = PyUnicode_AsUTF8AndSize(s_buffer, &len);
 | 
						|
        assert(s != NULL);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        PyErr_Format(PyExc_TypeError,
 | 
						|
            "complex() argument must be a string or a number, not '%.200s'",
 | 
						|
            Py_TYPE(v)->tp_name);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    result = _Py_string_to_number_with_underscores(s, len, "complex", v, type,
 | 
						|
                                                   complex_from_string_inner);
 | 
						|
    Py_DECREF(s_buffer);
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
@classmethod
 | 
						|
complex.__new__ as complex_new
 | 
						|
    real as r: object(c_default="NULL") = 0
 | 
						|
    imag as i: object(c_default="NULL") = 0
 | 
						|
 | 
						|
Create a complex number from a real part and an optional imaginary part.
 | 
						|
 | 
						|
This is equivalent to (real + imag*1j) where imag defaults to 0.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_new_impl(PyTypeObject *type, PyObject *r, PyObject *i)
 | 
						|
/*[clinic end generated code: output=b6c7dd577b537dc1 input=f4c667f2596d4fd1]*/
 | 
						|
{
 | 
						|
    PyObject *tmp;
 | 
						|
    PyNumberMethods *nbr, *nbi = NULL;
 | 
						|
    Py_complex cr, ci;
 | 
						|
    int own_r = 0;
 | 
						|
    int cr_is_complex = 0;
 | 
						|
    int ci_is_complex = 0;
 | 
						|
 | 
						|
    if (r == NULL) {
 | 
						|
        r = _PyLong_GetZero();
 | 
						|
    }
 | 
						|
 | 
						|
    /* Special-case for a single argument when type(arg) is complex. */
 | 
						|
    if (PyComplex_CheckExact(r) && i == NULL &&
 | 
						|
        type == &PyComplex_Type) {
 | 
						|
        /* Note that we can't know whether it's safe to return
 | 
						|
           a complex *subclass* instance as-is, hence the restriction
 | 
						|
           to exact complexes here.  If either the input or the
 | 
						|
           output is a complex subclass, it will be handled below
 | 
						|
           as a non-orthogonal vector.  */
 | 
						|
        return Py_NewRef(r);
 | 
						|
    }
 | 
						|
    if (PyUnicode_Check(r)) {
 | 
						|
        if (i != NULL) {
 | 
						|
            PyErr_SetString(PyExc_TypeError,
 | 
						|
                            "complex() can't take second arg"
 | 
						|
                            " if first is a string");
 | 
						|
            return NULL;
 | 
						|
        }
 | 
						|
        return complex_subtype_from_string(type, r);
 | 
						|
    }
 | 
						|
    if (i != NULL && PyUnicode_Check(i)) {
 | 
						|
        PyErr_SetString(PyExc_TypeError,
 | 
						|
                        "complex() second arg can't be a string");
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    tmp = try_complex_special_method(r);
 | 
						|
    if (tmp) {
 | 
						|
        r = tmp;
 | 
						|
        own_r = 1;
 | 
						|
    }
 | 
						|
    else if (PyErr_Occurred()) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    nbr = Py_TYPE(r)->tp_as_number;
 | 
						|
    if (nbr == NULL ||
 | 
						|
        (nbr->nb_float == NULL && nbr->nb_index == NULL && !PyComplex_Check(r)))
 | 
						|
    {
 | 
						|
        PyErr_Format(PyExc_TypeError,
 | 
						|
                     "complex() first argument must be a string or a number, "
 | 
						|
                     "not '%.200s'",
 | 
						|
                     Py_TYPE(r)->tp_name);
 | 
						|
        if (own_r) {
 | 
						|
            Py_DECREF(r);
 | 
						|
        }
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    if (i != NULL) {
 | 
						|
        nbi = Py_TYPE(i)->tp_as_number;
 | 
						|
        if (nbi == NULL ||
 | 
						|
            (nbi->nb_float == NULL && nbi->nb_index == NULL && !PyComplex_Check(i)))
 | 
						|
        {
 | 
						|
            PyErr_Format(PyExc_TypeError,
 | 
						|
                         "complex() second argument must be a number, "
 | 
						|
                         "not '%.200s'",
 | 
						|
                         Py_TYPE(i)->tp_name);
 | 
						|
            if (own_r) {
 | 
						|
                Py_DECREF(r);
 | 
						|
            }
 | 
						|
            return NULL;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* If we get this far, then the "real" and "imag" parts should
 | 
						|
       both be treated as numbers, and the constructor should return a
 | 
						|
       complex number equal to (real + imag*1j).
 | 
						|
 | 
						|
       Note that we do NOT assume the input to already be in canonical
 | 
						|
       form; the "real" and "imag" parts might themselves be complex
 | 
						|
       numbers, which slightly complicates the code below. */
 | 
						|
    if (PyComplex_Check(r)) {
 | 
						|
        /* Note that if r is of a complex subtype, we're only
 | 
						|
           retaining its real & imag parts here, and the return
 | 
						|
           value is (properly) of the builtin complex type. */
 | 
						|
        cr = ((PyComplexObject*)r)->cval;
 | 
						|
        cr_is_complex = 1;
 | 
						|
        if (own_r) {
 | 
						|
            Py_DECREF(r);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        /* The "real" part really is entirely real, and contributes
 | 
						|
           nothing in the imaginary direction.
 | 
						|
           Just treat it as a double. */
 | 
						|
        tmp = PyNumber_Float(r);
 | 
						|
        if (own_r) {
 | 
						|
            /* r was a newly created complex number, rather
 | 
						|
               than the original "real" argument. */
 | 
						|
            Py_DECREF(r);
 | 
						|
        }
 | 
						|
        if (tmp == NULL)
 | 
						|
            return NULL;
 | 
						|
        assert(PyFloat_Check(tmp));
 | 
						|
        cr.real = PyFloat_AsDouble(tmp);
 | 
						|
        cr.imag = 0.0;
 | 
						|
        Py_DECREF(tmp);
 | 
						|
    }
 | 
						|
    if (i == NULL) {
 | 
						|
        ci.real = cr.imag;
 | 
						|
    }
 | 
						|
    else if (PyComplex_Check(i)) {
 | 
						|
        ci = ((PyComplexObject*)i)->cval;
 | 
						|
        ci_is_complex = 1;
 | 
						|
    } else {
 | 
						|
        /* The "imag" part really is entirely imaginary, and
 | 
						|
           contributes nothing in the real direction.
 | 
						|
           Just treat it as a double. */
 | 
						|
        tmp = PyNumber_Float(i);
 | 
						|
        if (tmp == NULL)
 | 
						|
            return NULL;
 | 
						|
        ci.real = PyFloat_AsDouble(tmp);
 | 
						|
        Py_DECREF(tmp);
 | 
						|
    }
 | 
						|
    /*  If the input was in canonical form, then the "real" and "imag"
 | 
						|
        parts are real numbers, so that ci.imag and cr.imag are zero.
 | 
						|
        We need this correction in case they were not real numbers. */
 | 
						|
 | 
						|
    if (ci_is_complex) {
 | 
						|
        cr.real -= ci.imag;
 | 
						|
    }
 | 
						|
    if (cr_is_complex && i != NULL) {
 | 
						|
        ci.real += cr.imag;
 | 
						|
    }
 | 
						|
    return complex_subtype_from_doubles(type, cr.real, ci.real);
 | 
						|
}
 | 
						|
 | 
						|
static PyNumberMethods complex_as_number = {
 | 
						|
    (binaryfunc)complex_add,                    /* nb_add */
 | 
						|
    (binaryfunc)complex_sub,                    /* nb_subtract */
 | 
						|
    (binaryfunc)complex_mul,                    /* nb_multiply */
 | 
						|
    0,                                          /* nb_remainder */
 | 
						|
    0,                                          /* nb_divmod */
 | 
						|
    (ternaryfunc)complex_pow,                   /* nb_power */
 | 
						|
    (unaryfunc)complex_neg,                     /* nb_negative */
 | 
						|
    (unaryfunc)complex_pos,                     /* nb_positive */
 | 
						|
    (unaryfunc)complex_abs,                     /* nb_absolute */
 | 
						|
    (inquiry)complex_bool,                      /* nb_bool */
 | 
						|
    0,                                          /* nb_invert */
 | 
						|
    0,                                          /* nb_lshift */
 | 
						|
    0,                                          /* nb_rshift */
 | 
						|
    0,                                          /* nb_and */
 | 
						|
    0,                                          /* nb_xor */
 | 
						|
    0,                                          /* nb_or */
 | 
						|
    0,                                          /* nb_int */
 | 
						|
    0,                                          /* nb_reserved */
 | 
						|
    0,                                          /* nb_float */
 | 
						|
    0,                                          /* nb_inplace_add */
 | 
						|
    0,                                          /* nb_inplace_subtract */
 | 
						|
    0,                                          /* nb_inplace_multiply*/
 | 
						|
    0,                                          /* nb_inplace_remainder */
 | 
						|
    0,                                          /* nb_inplace_power */
 | 
						|
    0,                                          /* nb_inplace_lshift */
 | 
						|
    0,                                          /* nb_inplace_rshift */
 | 
						|
    0,                                          /* nb_inplace_and */
 | 
						|
    0,                                          /* nb_inplace_xor */
 | 
						|
    0,                                          /* nb_inplace_or */
 | 
						|
    0,                                          /* nb_floor_divide */
 | 
						|
    (binaryfunc)complex_div,                    /* nb_true_divide */
 | 
						|
    0,                                          /* nb_inplace_floor_divide */
 | 
						|
    0,                                          /* nb_inplace_true_divide */
 | 
						|
};
 | 
						|
 | 
						|
PyTypeObject PyComplex_Type = {
 | 
						|
    PyVarObject_HEAD_INIT(&PyType_Type, 0)
 | 
						|
    "complex",
 | 
						|
    sizeof(PyComplexObject),
 | 
						|
    0,
 | 
						|
    0,                                          /* tp_dealloc */
 | 
						|
    0,                                          /* tp_vectorcall_offset */
 | 
						|
    0,                                          /* tp_getattr */
 | 
						|
    0,                                          /* tp_setattr */
 | 
						|
    0,                                          /* tp_as_async */
 | 
						|
    (reprfunc)complex_repr,                     /* tp_repr */
 | 
						|
    &complex_as_number,                         /* tp_as_number */
 | 
						|
    0,                                          /* tp_as_sequence */
 | 
						|
    0,                                          /* tp_as_mapping */
 | 
						|
    (hashfunc)complex_hash,                     /* tp_hash */
 | 
						|
    0,                                          /* tp_call */
 | 
						|
    0,                                          /* tp_str */
 | 
						|
    PyObject_GenericGetAttr,                    /* tp_getattro */
 | 
						|
    0,                                          /* tp_setattro */
 | 
						|
    0,                                          /* tp_as_buffer */
 | 
						|
    Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,   /* tp_flags */
 | 
						|
    complex_new__doc__,                         /* tp_doc */
 | 
						|
    0,                                          /* tp_traverse */
 | 
						|
    0,                                          /* tp_clear */
 | 
						|
    complex_richcompare,                        /* tp_richcompare */
 | 
						|
    0,                                          /* tp_weaklistoffset */
 | 
						|
    0,                                          /* tp_iter */
 | 
						|
    0,                                          /* tp_iternext */
 | 
						|
    complex_methods,                            /* tp_methods */
 | 
						|
    complex_members,                            /* tp_members */
 | 
						|
    0,                                          /* tp_getset */
 | 
						|
    0,                                          /* tp_base */
 | 
						|
    0,                                          /* tp_dict */
 | 
						|
    0,                                          /* tp_descr_get */
 | 
						|
    0,                                          /* tp_descr_set */
 | 
						|
    0,                                          /* tp_dictoffset */
 | 
						|
    0,                                          /* tp_init */
 | 
						|
    PyType_GenericAlloc,                        /* tp_alloc */
 | 
						|
    complex_new,                                /* tp_new */
 | 
						|
    PyObject_Del,                               /* tp_free */
 | 
						|
};
 |